A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods
Abstract
:1. Introduction
2. Methods: Review Protocol
2.1. Fair Comparisons of Different Diets
3. Findings: Current Knowledge on Environmental Sustainability of Human Diets
3.1. Diets Studied
3.2. Main Finding: Vegetarian and Vegan Diets Have Lowest Impacts on Land Use, Water Use, and GHG Emissions
3.2.1. Land Use Impacts of Vegetarian and Vegan Diets
3.2.2. Water Use Impacts of Vegetarian and Vegan Diets
3.2.3. Greenhouse Emission Impacts of Vegetarian and Vegan Diets
4. Impacts of Processed, Plant-Based Meat
4.1. Background: Plant-Based Burgers
4.2. Comparison of Life Cycle Assessments
4.2.1. Scope and Boundaries
4.2.2. Unit Processes
4.2.3. Impact Categories Reported
4.3. Findings of Environmental Impact for Plant-Based Meats
4.3.1. Beyond Meat
4.3.2. Impossible Foods
4.3.3. Collective Results
4.3.4. Environmental Gains from a Gradual Shift away from Beef: A Thought Exercise
5. Discussion
Environmental Impacts and Factors Not Considered
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Goldstein, B.; Hansen, S.; Gjerris, M.; Laurent, A.; Birkved, M. Ethical aspects of life cycle assessments of diets. Food Policy 2016, 59, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Regmi, A.; Meade, B. Demand side drivers of global food security. Glob. Food Secur. 2013, 2, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World Scientists’ Warning of a Climate Emergency. BioScience 2019, 70, 8–12. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Sevčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bereżnicka, J.; Pawlonka, T. Meat Consumption as an Indicator of Economic Well-Being—Case Study of A Developed and Developing Economy. Acta Sci. Polonorum. Oeconomia 2018, 17. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Eating Meat: Evolution, Patterns, and Consequences. Popul. Dev. Rev. 2002, 28, 599–639. [Google Scholar] [CrossRef]
- Stoll-Kleemann, S.; O’Riordan, T. The Sustainability Challenges of Our Meat and Dairy Diets. Environ. Sci. Policy Sustain. Dev. 2015, 57, 34–48. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Thoma, G.; Putman, B.; Matlock, M.; Popp, J.; English, L. Sustainability Assessment of U.S. Beef Production Systems; University of Arkansas Resiliency Center: Fayetteville, AR, USA, 2017. [Google Scholar]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- FoodData Central. 2019. Available online: https://fdc.nal.usda.gov/ (accessed on 6 June 2021).
- Soret, S.; Mejia, A.; Batech, M.; Jaceldo-Siegl, K.; Harwatt, H.; Sabaté, J. Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America. Am. J. Clin. Nutr. 2014, 100, 490S–495S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, E.M.; González, A.D. Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina. Food Policy 2018, 79, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Baroni, L.; Cenci, L.; Tettamanti, M.; Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 2007, 61, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: A modelling study. Lancet Planet Health 2018, 2, e344–e352. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.; Thomsen, M.; Pulselli, F.M.; Patrizi, N.; Marini, M.; Caro, D. The carbon footprint of Danish diets. Clim Chang. 2019, 156, 489–507. [Google Scholar] [CrossRef]
- Corrado, S.; Luzzani, G.; Trevisan, M.; Lamastra, L. Contribution of different life cycle stages to the greenhouse gas emissions associated with three balanced dietary patterns. Sci Total Env. 2019, 660, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Moses, R.; Sammons, N.; Birkved, M. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute. PLoS ONE 2017, 12, e0189029. [Google Scholar] [CrossRef] [PubMed]
- Heller, M.; Keoleian, G.; Schenck, R.; Huizen, D. Greenhouse gas emissions of the U.S. diet: Aligning nutritional recommendations with environmental concerns. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014. [Google Scholar]
- Hitaj, C.; Rehkamp, S.; Canning, P.; Peters, C.J. Greenhouse Gas Emissions in the United States Food System: Current and Healthy Diet Scenarios. Env. Sci Technol 2019, 53, 5493–5503. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. The hidden water resource use behind meat and dairy. Anim. Front. 2012, 2, 3–8. [Google Scholar] [CrossRef]
- Jalava, M.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet change—A solution to reduce water use? Environ. Res. Lett. 2014, 9, 074016. [Google Scholar] [CrossRef]
- Meier, T.; Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 2013, 47, 877–888. [Google Scholar] [CrossRef]
- Pairotti, M.B.; Cerutti, A.K.; Martini, F.; Vesce, E.; Padovan, D.; Beltramo, R. Energy consumption and GHG emission of the Mediterranean diet: A systemic assessment using a hybrid LCA-IO method. J. Clean. Prod. 2015, 103, 507–516. [Google Scholar] [CrossRef]
- Peters, C.J.; Picardy, J.; Darrouzet-Nardi, A.F.; Wilkins, J.L.; Griffin, T.S.; Fick, G.W. Carrying capacity of U.S. agricultural land: Ten diet scenarios. Elem. Sci. Anthr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Rehkamp, S.; Canning, P. Measuring Embodied Blue Water in American Diets: An EIO Supply Chain Approach. Ecol. Econ. 2018, 147, 179–188. [Google Scholar] [CrossRef]
- Renault, D.; Wallender, W.W. Nutritional water productivity and diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- Rosi, A.; Mena, P.; Pellegrini, N.; Turroni, S.; Neviani, E.; Ferrocino, I.; Di Cagno, R.; Ruini, L.; Ciati, R.; Angelino, D.; et al. Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet. Sci. Rep. 2017, 7, 6105. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.M.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dooren, C.; Marinussen, M.; Blonk, H.; Aiking, H.; Vellinga, P. Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns. Food Policy 2014, 44, 36–46. [Google Scholar] [CrossRef]
- Vanham, D. The water footprint of Austria for different diets. Water Sci Technol 2013, 67, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Hoekstra, A.Y.; Bidoglio, G. Potential water saving through changes in European diets. Environ. Int. 2013, 61, 45–56. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of the EU for different diets. Ecol. Indic. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Vanham, D.; Bidoglio, G. The water footprint of Milan. Water Sci. Technol. 2014, 69, 789–795. [Google Scholar] [CrossRef]
- Vanham, D.; Bidoglio, G. The water footprint of agricultural products in European river basins. Environ. Res. Lett. 2014, 9, 064007. [Google Scholar] [CrossRef]
- Vanham, D.; Mak, T.N.; Gawlik, B.M. Urban food consumption and associated water resources: The example of Dutch cities. Sci. Total Environ. 2016, 565, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; del Pozo, S.; Pekcan, A.G.; Keinan-Boker, L.; Trichopoulou, A.; Gawlik, B.M. Water consumption related to different diets in Mediterranean cities. Sci. Total Environ. 2016, 573, 96–105. [Google Scholar] [CrossRef]
- Vanham, D.; Gawlik, B.M.; Bidoglio, G. Food consumption and related water resources in Nordic cities. Ecol. Indic. 2017, 74, 119–129. [Google Scholar] [CrossRef]
- Vanham, D.; Comero, S.; Gawlik, B.M.; Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 2018, 1, 518–525. [Google Scholar] [CrossRef]
- Veeramani, A.; Dias, G.M.; Kirkpatrick, S.I. Carbon footprint of dietary patterns in Ontario, Canada: A case study based on actual food consumption. J. Clean. Prod. 2017, 162, 1398–1406. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; FAO’s Animal Production and Health Division: Rome, Italy, 2006. [Google Scholar]
- Hutson, S.; Barber, N.; Kenny, J.; Linsey, K.; Lumia, D.; Maupin, M. Estimated Use of Water in the United States in 2000; USGS: Reston, VA, USA, 2004. [Google Scholar]
- McGlade, J.; Werner, B.; Young, M.; Matlock, M.; Jefferies, D.; Sonneman, G.; Martinez-Aldaya, M.; Pfister, S.; Berger, M.; Farell, C.; et al. Measuring Water Use in a Green Economy, A Report of the Working Group on Water Efficiency to the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2012. [Google Scholar]
- Berardy, A.; Fresán, U.; Matos, R.A.; Clarke, A.; Mejia, A.; Jaceldo-Siegl, K.; Sabaté, J. Environmental Impacts of Foods in the Adventist Health Study-2 Dietary Questionnaire. Sustainability 2020, 12, 10267. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing Chapter 2; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Millward, D.J.; Garnett, T. Plenary Lecture 3: Food and the planet: Nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods. Proc. Nutr. Soc. 2010, 69, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Sonesson, U.; Davis, J.; Ziegler, F. Food Production and Emissions of Greenhouse Gases; The Swedish Institute for Food and Biotechnology: Goteborg, Sweden, 2010. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Optio, C.; Djkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 139. [Google Scholar]
- USDA. 2015–2020 Dietary Guidelines for Americans; U.S. Department of Health and Human Services and U.S. Department of Agriculture USDA: Washington, DC, USA, 20 December 2015. [Google Scholar]
- Heller, M.C.; Keoleian, G.A. Beyond Meat’s Beyond Burger Life Cycle Assessment: A Detailed Comparison between a Plant-Based and an Animal-Based Protein Source; University of Michigan: Ann Arbor, MI, USA, 2018; pp. 1–38. [Google Scholar]
- Khan, S.; Loyola, C.; Dettling, J.; Hester, J.; Moses, R. Comparative Environmental LCA of the Impossible Burger® with Conventional Ground Beef Burger; Quantis: Lausanne, Switzerland, 2019. [Google Scholar]
- Eisen, M. How GMOs Can Save Civilization (and Probably Already Have); Impossible Foods: Redwood City, CA, USA, 2018. [Google Scholar]
- EPA. Greenhouse Gas Emissions from a Typical Passenger Vehicle; EPA: Washington, DC, USA, 2018. [Google Scholar]
- INPE. PRODES Amazonia: Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite; INPE: São José dos Campos, São Paulo, 2021. [Google Scholar]
- Errickson, F.; Kuruc, K.; McFadden, J. Animal-based foods have high social and climate costs. Nat. Food 2021, 2, 274–281. [Google Scholar] [CrossRef]
- Henders, S.; Persson, U.M.; Kastner, T. Trading forests: Land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 2015, 10, 125012. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Forests and Deforestation. 2021. Available online: https://OurWorldInData.Org (accessed on 6 June 2021).
- Pernollet, F.; Coelho, C.R.V.; van der Werf, H.M.G. Methods to simplify diet and food life cycle inventories: Accuracy versus data-collection resources. J. Clean. Prod. 2017, 140, 410–420. [Google Scholar] [CrossRef]
- Scherer, L.; Behrens, P.; Tukker, A. Opportunity for a Dietary Win-Win-Win in Nutrition, Environment, and Animal Welfare. One Earth 2019, 1, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Batlle-Bayer, L.; Bala, A.; Garcia-Herrero, I.; Lemaire, É.; Song, G.; Aldaco, R.; Fullana-i-Palmer, P. The Spanish Dietary Guidelines: A potential tool to reduce greenhouse gas emissions of current dietary patterns. J. Clean. Prod. 2019, 213, 588–598. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients 2019, 11, 856. [Google Scholar] [CrossRef] [Green Version]
- Tom, M.; Fischbeck, P.; Hendrickson, C. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 2015, 36, 92–103. [Google Scholar] [CrossRef]
- Kim, D.; Parajuli, R.; Thoma, G.J. Life Cycle Assessment of Dietary Patterns in the United States: A Full Food Supply Chain Perspective. Sustainability 2020, 12, 1586. [Google Scholar] [CrossRef] [Green Version]
- Van Kernebeek, H.R.J.; Oosting, S.J.; Van Ittersum, M.K.; Bikker, P.; De Boer, I.J.M. Saving land to feed a growing population: Consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 2016, 21, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.; Page, G.; Opie, K.; Huang, J.; Bellotti, W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. J. Clean. Prod. 2014, 73, 24–30. [Google Scholar] [CrossRef]
- Kuempel, C.D.; Frazier, M.; Nash, K.L.; Jacobsen, N.S.; Williams, D.R.; Blanchard, J.L.; Cottrell, R.S.; McIntyre, P.B.; Moran, D.; Bouwman, L.; et al. Integrating Life Cycle and Impact Assessments to Map Food’s Cumulative Environmental Footprint. One Earth 2020, 3, 65–78. [Google Scholar] [CrossRef]
- Zaharia, S.; Ghosh, S.; Shrestha, R.; Manohar, S.; Thorne-Lyman, A.L.; Bashaasha, B.; Kabunga, N.; Gurung, S.; Namirembe, G.; Appel, K.H.; et al. Sustained intake of animal-sourced foods is associated with less stunting in young children. Nat. Food 2021, 2, 246–254. [Google Scholar] [CrossRef]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Qual. Prefer. 2021, 87, 104063. [Google Scholar] [CrossRef]
- Camilleri, A.R.; Larrick, R.P.; Hossain, S.; Patino-Echeverri, D. Consumers underestimate the emissions associated with food but are aided by labels. Nat. Clim. Chang. 2019, 9, 53–58. [Google Scholar] [CrossRef]
Findings: Environmental Impact Reductions from Vegan and Vegetarian Diets | ||||||||
---|---|---|---|---|---|---|---|---|
Authors and Year | Country | GHG Emissions | Land Use | Water Use | Functional Unit | |||
Aleksandrowicz et al., 2016 [15] | Review of 63 studies with 210 diet scenarios | vegetarian (1) | −31% | vegetarian (1) | −51% | vegetarian (1) | −37.00% | NA |
vegan (1) | −45% | vegan (1) | −55% | |||||
Arrieta & Gonzalez, 2018 [17] | Argentina | vegetarian (2) | −68.40% | 2000 kcal/day | ||||
vegan (2) | −73% | |||||||
vegetarian (3) | −56% | |||||||
vegan (3) | −62.60% | |||||||
Baroni et al., 2007 [18] | Italy | vegetarian | −24% | vegetarian | −42.50% | vegetarian | −49.00% | energetic and nutrient content |
vegan | −69.60% | vegan | −52.10% | vegan | −57.30% | |||
Blackstone et al., 2018 [19] | USA | vegetarian | −48.79% | vegetarian | −42.93% | vegetarian | −10.00% | 2000 kcal/day |
vegetarian | −47.78% | vegetarian | −39.92% | vegetarian | −7.45% | 3000 kcal/day | ||
Bruno et al., 2019 [20] | Denmark | vegetarian | −25.14% | 2000 kcal/day | ||||
vegan | −51.37% | |||||||
Corrado et al., 2019 [21] | Italy | vegetarian | −18.00% | ~2000 kcal/day, ~70 g protein | ||||
vegan | −21% | |||||||
Fresan et al., 2019 [16] | Review of 25 studies with 49 scenarios for current diet, 20 for vegetarian, 15 for vegan | vegetarian (4) | −35% | vegetarian (4) | −42% | vegetarian (4) | −28.00% | energetic and nutrient content |
vegan (4) | −40% | vegan (4) | −50% | vegan (4) | −22.00% | |||
Goldstein et al., 2016 [1] | Denmark | vegetarian | −56% | vegetarian | −67% | |||
vegan | −70% | vegan | −78% | 2000 kcal/day | ||||
Goldstein et al., 2017 [22] | USA | vegetarian | −15% | vegetarian | −63% | vegetarian | −62.00% | 2481 kcal/day |
vegan | −40% | vegan | −74% | vegan | −70.00% | |||
Hallstrom et al., 2015 [14] | Review of 14 journal articles with 49 diet scenarios | vegetarian * | −35% | vegetarian (1) | −50% | NA | ||
vegan * | −55% | vegan (1) | −60% | |||||
Heller and Keoleian, 2014 [23] | USA | vegetarian | −30% | |||||
vegan | −50% | 2000 kcal/day | ||||||
Hitaj et al., 2019 [24] | USA | vegetarian | −12% | 2211−2214 kcal/day | ||||
Hoekstra, 2012 [25] | USA | vegetarian | −36.10% | |||||
vegan | −53.80% | 3400 kcal/day | ||||||
Jalava et al., 2014 [26] | Global, assessed recommended change per country | vegetarian | −24.00% | Average daily energy requirement (2053−2704) kcal | ||||
vegan | −35.20% | |||||||
Meier and Christen, 2013 [27] | Germany | vegetarian | −25% | vegetarian | −27.20% | 2000 kcal/day | ||
vegan | −50% | vegan | −49.90% | |||||
Pairotti et al., 2015 [28] | Italy | vegetarian | 13% | 2000 kcal/day | ||||
Peters et al., 2016 [29] | USA | vegetarian | −86% | Baseline 2844 kcal, modeled scenarios 2153 kcal/day ** | ||||
vegan (5) | −85% | |||||||
Rehkamp et al., 2017 [30] | USA | vegetarian a (6) | 0.00% | 2010 DGA compliant diets | ||||
vegetarian b (6) | −68.87% | |||||||
Renault and Wallender, 2000 [31] | USA | vegetarian | −52.00% | 2700 kcal/day | ||||
Rosi et al., 2017 [32] | Italy | vegetarian | −26.70% | |||||
vegan | −21.80% | Observed diets, 2000−2500 kcal | ||||||
vegetarian | −35% | |||||||
Scarborough et al., 2014 [33] | United Kingdom | vegan | −50.40% | 2000 kcal/day | ||||
Soret et al., 2014 [13] | 35,583 diets of non-vegetarian Adventist and 26,728 of vegetarian Adventists across the USA | vegetarian (7) | −29% | 2000 kcal/day | ||||
van Dooren et al., 2014 [34] | Netherlands | vegetarian | −21% | vegetarian | −48% | 2000 kcal/day | ||
vegan | −37% | vegan | −59% | |||||
Vanham, 2013 [35] | Austria | vegetarian | −8.1% | 2200 kcal/day | ||||
Vanham et al.2013 [36] | Four EU Zones | vegetarian south | −15.4% | 2200 kcal/day | ||||
vegetarian east | −18.5% | 2201 kcal/day | ||||||
vegetarian west | −20.5% | 2202 kcal/day | ||||||
vegetarian north | −30.5% | 2203 kcal/day | ||||||
Vanham et al., 2013 [37] | EU27 + Croatia | vegetarian | −20.5% | 2200 kcal/day | ||||
Vanham & Bidoglio, 2014 [38] | Milan | vegetarian | −18.4% | 2200 kcal/day | ||||
Vanham & Bidoglio, 2014 [39] | Forty European countries | vegetarian (8) | −28.9% | 2200 kcal/day | ||||
Vanham et al., 2016 [40] | Seven Dutch cities | vegetarian (9) | −15.4% | 2200 kcal/day | ||||
Vanham et al., 2016 [41] | Twelve Mediterranean cities | vegetarian (10) | −16.7% | 2200 kcal/day | ||||
Vanham et al., 2017 [42] | Seven Nordic cities | vegetarian (11) | −29.5% | 2200 kcal/day | ||||
Vanham et al., 2018 [43] | France, Germany, UK | vegetarian (12) | −28.9% | 2200 kcal/day | ||||
Veeramani et al., 2017 [44] | USA | vegetarian | −56% | |||||
vegan | −58% |
4 oz. Beyond Burger (i) | 4 oz. Impossible Burger (ii) | 4 oz. 80/20 Beef [54] (iii) | |
---|---|---|---|
Protein (g) | 20 | 19 | 19 |
Iron (DV) | 25% | 25% | 12% |
Saturated fat (g) | 5 | 8 | 9 |
Cholesterol (mg) | 0 | 0 | 80 |
Total fat (g) | 22 | 14 | 23 |
Calories | 290 | 240 | 287 |
Impact Category | Unit | Beef Patty (i) | Beyond Burger (ii) | Impossible Burger (iii) |
---|---|---|---|---|
GHG Emissions | kg CO2 eq. | 3.7 (2.9, 4.3) | 0.35 (0.33, 0.37) −90.5% (−90.0%, −91.1%) * (−87.2%, −88.6%) ** | 0.40 (0.35, 0.45) −89% (−87.8%, −90.5%) * (−84.5%, −87.9%) ** |
Energy use | MJ | 11.4 (9.5, 13.6) | 5.7 (5.38, 6.08) −50% (−46.7%, −52.8%) * (−36%, −43.4%) ** | - |
Land use | m2a eq. | 7.0 (4.2, 11.6) | 0.45 (0.42, 0.47) −93.5% (−93.3%, −94%) * (−88.8%, −90%) ** | 0.28 (0.18, 0.42) −96% (−94%, −97.4%) * (−90%, −95.7%) ** |
Absolute Water use | L eq. | 96.4 (70.1, 140.4) | 3.27 (3.09, 3.48) −96.6% (−96.4%, −96.8%) * (−95%, −95.6%) ** | 12.11 (6.45, 23.05) −87.4% (−76.1%, −93.3%) * (−67.1%, −90.8%) ** |
Aquatic Eutrophication Potential | g PO4 eq. | 1.71 (1.62, 6.87) | - | 0.15 (0.26–1.10) −91% (−35.7%, −84.8%) * (−32.1%, −84%) ** |
Impact Category | Meat/Alternative Quantity | Unit | Beef Patty (i) | Beyond Burger (ii) | Impossible Burger (iii) | Reductions from Replacing Half of Beef with a Plant-Based Burger | |
---|---|---|---|---|---|---|---|
Beyond (ii) | Impossible (iii) | ||||||
GHG Emissions | 1.56 oz | kg CO2 eq. | 1.443 | 0.14 | 0.16 | 0.65325 | 0.6435 |
1.56 oz/day, one year by 30 million people | Metric tons CO2 eq. | 15,800,850 | 1,494,675 | 1,708,200 | 7,153,088 | 7,046,325 | |
Times the annual emissions of a typical U.S. car (iv) | 3,434,967 | 324,929 | 371,348 | 1,555,019 | 1,531,810 | ||
Land use | 1.56 oz | m2 eq. | 2.73 | 0.18 | 0.11 | 1.28 | 1.31 |
1.56 oz/day, one year by 30 million people | km2 eq. | 29,893,500,000 | 1,921,725,000 | 1,195,740,000 | 13,985,887,500 | 14,348,880,000 | |
Times annual area deforested in the Brazilian Legal Amazon (v) | 2,823,604 | 181,517 | 112,944 | 1,321,043 | 1,355,330 | ||
Absolute Water use | 1.56 oz | L eq. | 37.60 | 1.28 | 4.72 | 18.16 | 16.44 |
1.56 oz/day, one year by 30 million people | L eq. | 4.12 × 1011 | 1.40 × 1010 | 5.17 × 1010 | 198,855,832,500 | 179,980,222,500 | |
Times per-capita annual consumption (100 gallons/day) | 2,979,543 | 101,070 | 374,297 | 1,439,237 | 1,302,623 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kustar, A.; Patino-Echeverri, D. A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods. Sustainability 2021, 13, 9926. https://doi.org/10.3390/su13179926
Kustar A, Patino-Echeverri D. A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods. Sustainability. 2021; 13(17):9926. https://doi.org/10.3390/su13179926
Chicago/Turabian StyleKustar, Anna, and Dalia Patino-Echeverri. 2021. "A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods" Sustainability 13, no. 17: 9926. https://doi.org/10.3390/su13179926