Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Method
2.3.1. Ecosystem Service Assessment
2.3.2. Ecosystem Service Trade-Offs Analysis
3. Results
3.1. Land Use Change
3.2. Spatiotemporal Changes of Ecosystem Services
3.2.1. Soil Conservation
3.2.2. Carbon Storage
3.2.3. Water Yield
3.2.4. Food Supply
3.2.5. Water Purification
3.3. Trade-Offs of Ecosystem Services in Ulansuhai Basin
3.4. Trade-Offs of Ecosystem Services in Different Functional Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Pearce, D. Ecological accountancy. Science 1997, 277, 1783. [Google Scholar] [CrossRef]
- Fu, B.; Zhou, G.; Bai, Y.; Song, C.; Liu, J.; Zhang, H.; Lv, Y.; Zheng, H.; Xie, G. The main terrestrial ecosystem services and ecological security in china. Adv. Earth Sci. 2009, 24, 571–576. [Google Scholar]
- Abernethy, V.D. Nature’s services: Societal dependence on natural ecosystems. Popul. Environ. 1999, 20, 277–278. [Google Scholar] [CrossRef]
- Lin, J.; Huang, J.; Prell, C.; Bryan, B.A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 2021, 763, 143012. [Google Scholar] [CrossRef] [PubMed]
- De Simone, W.; Iannella, M.; D’Alessandro, P.; Biondi, M. Assessing influence in biofuel production and ecosystem services when environmental changes affect plant–pest relationships. GCB Bioenergy 2020, 12, 864–877. [Google Scholar] [CrossRef]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Ainscough, J.; de Vries Lentsch, A.; Metzger, M.; Rounsevell, M.; Schröter, M.; Delbaere, B.; de Groot, R.; Staes, J. Navigating pluralism: Understanding perceptions of the ecosystem services concept. Ecosyst. Serv. 2019, 36, 100892. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, A.E.; Clark, M.L. Spatial analysis of conservation priorities based on ecosystem services in the atlantic forest region of misiones, argentina. Forests 2012, 3, 764–786. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, C.; Liu, J.; Zhun, W.; Ma, C.; Wang, Y. Ecosystem service trade-offs and synergy research progress and geography research topics. Geogr. Res. 2013, 32, 1379–1390. [Google Scholar]
- Dai, E.; Wang, X.; Zhu, J.; Zhao, D. Methods, tools and research framework of ecosystem service trade-offs. Geogr. Res. 2016, 35, 1005–1016. [Google Scholar]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.; Banzhaf, S. What are ecosystem services? The need for standardized environmental accounting units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Bekele, E.G.; Nicklow, J.W. Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Willemen, L.; Veldkamp, A.; Verburg, P.H.; Hein, L.; Leemans, R. A multi-scale modelling approach for analysing landscape service dynamics. J. Environ. Manag. 2012, 100, 86–95. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.-C. Bundling ecosystem services in denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Cademus, R.; Escobedo, F.J.; McLaughlin, D.; Abd-Elrahman, A. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in pinus elliotii forests in southeastern USA. Forests 2014, 5, 1409–1431. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Li, J.; Yang, X. Trade-off and synergy among ecosystem services in the guanzhong-tianshui economic region of china. Int. J. Environ. Res. Public Health 2015, 12, 14094–14113. [Google Scholar] [CrossRef]
- Fu, B.; Yu, D. Trade-off analyses and synthetic integrated method of multiple ecosystem services. Resour. Sci. 2016, 38, 1–9. [Google Scholar]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; O’Connor, P.; Xu, H.; Li, Y.; Lu, F.; Robinson, B.E.; Ouyang, Z.; Hai, Y.; Daily, G.C. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 2021, 7, eabf8650. [Google Scholar] [CrossRef] [PubMed]
- Heterogeneity and regional differences in ecosystem services responses driven by the “three modernizations”. Land Degrad. Dev. 2021, 32, 3743–3761. [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in munessa–shashemene landscape of the ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Research on the Spatial Trade-Off and Coordination of Ecosystem Services in Arid Inland River Basin—A Case Study of Jiajiu Region. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2017. [Google Scholar]
- Zhao, Y.; Jiang, C.; Dong, X.; Yang, Z.; Wen, M.; Yang, J. Understanding the complex environmental management through a len of food-water-ecosystem nexus: Insights from an ecosystem restoration hotspot in dryland. Sci. Total Environ. 2021, 783, 147029. [Google Scholar] [CrossRef] [PubMed]
- Guo, L. Constructing the endogenous mechanism of ecological protection and restoration of “mountains, water, forests, fields, lakes and grass”. China Resour. Compr. Util. 2019, 37, 133–135. [Google Scholar]
- Shi, C.; Pan, Y. Impact of waterfowl nature reserve on ecological environment in wuliangsuhai wetland, inner mongolia. Inn. Mong. Environ. Sci. 2017, 29, 171–172. [Google Scholar]
- Shi, J. The necessity of wuliangsuhai wetland restoration. Inn. Mong. For. Investig. Des. 2018, 41, 56–80. [Google Scholar]
- Tian, Y.; Feng, Q.; Tang, M.; Zheng, S.; Liu, C.; Wu, D.; Wang, L. Ecological protection and restoration of forest, wetland, grassland and cropland based on the perspective of ecosystem assessment: A case study in wuliangsuhai watershed. Acta Ecol. Sin. 2019, 39, 8826–8836. [Google Scholar]
- Tang, Y.; Zhu, W.; Zhang, H.; Song, Y. A review on principle and application of the invest model. Ecol. Sci. 2015, 34, 204–208. [Google Scholar]
- Wu, Y.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.; Yin, G. Ecosystem service trade-offs and synergies under influence of climate and land cover change in an afforested semiarid basin, China. Ecol. Eng. 2021, 159, 106083. [Google Scholar] [CrossRef]
- Ran, C.; Wang, S.; Bai, X.; Tan, Q.; Zhao, C.; Luo, X.; Chen, H.; Xi, H. Trade-offs and synergies of ecosystem services in southwestern China. Environ. Eng. Sci. 2020, 37, 669–678. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Zhang, H.; Yan, W.; Zhao, C. Trade-offs and synergies in ecosystem service values of inland lake wetlands in central asia under land use/cover change: A case study on ebinur lake, China. Glob. Ecol. 2020, 24, e01253. [Google Scholar]
- Yang, J.; Xie, B.; Zhang, D. Spatio-temporal variation of water yield and its response to precipitation and land use change in the yellow river basin based on invest model. Chin. J. Appl. Ecol. 2020, 31, 2731–2739. [Google Scholar]
- Zhao, L.; Xia, J.; Xu, C.-Y.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Liu, Y. Scale Dependence of the Relationship between Ecosystem Services. Master’s Thesis, Inner Mongolia University, Hohhot, China, 2016. [Google Scholar]
- Zhu, Q.; Guo, J.; Guo, X.; Chen, L.; Han, Y.; Liu, S. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, F.; Duan, Z.; Zhang, L.; Kong, X. Calculation method for density and storage of soil organic carbon. Chin. J. Soil Sci. 2005, 36, 836–839. [Google Scholar]
- Zhang, Z. Ecosystem Service Evaluation of Dengkou County Based on Invest Model. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2017. [Google Scholar]
- Zhao, R.; Yue, Y.; Yao, Y.; Li, G. Forest carbon storage and its dynamics in inner mongolia. J. Arid Land Res. Environ. 2011, 25, 80–84. [Google Scholar]
- Yang, X. Evaluation of Water Production and Water Quality Purification Services in the Arid Regions of Northwest China under the Background of Climate and Land Use Changes. Doctor Dissertation, East China Normal University, Shanghai, China, 2020. [Google Scholar]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Li, Z. Analysis on trade-offs and synergies of ecosystem services in arid inland river basin. Trans. Chin. Soc. Agric. Eng. 2017, 33, 280–289. [Google Scholar]
- Zhang, X.; Niu, J.; Buyantuev, A.; Zhang, Q.; Dong, J.; Kang, S.; Zhang, J. Understanding grassland degradation and restoration from the perspective of ecosystem services: A case study of the xilin river basin in inner mongolia, China. Sustainability 2016, 8, 594. [Google Scholar] [CrossRef] [Green Version]
- Hoover, C.M.; Heath, L.S. Potential gains in c storage on productive forestlands in the northeastern united states through stocking management. Ecol. Appl. 2011, 21, 1154–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.; Yang, S.; Bu, J.; Chen, J.; Gao, Y. Quantitative assessment for the dynamics of the main ecosystem services and their interactions in the northwestern arid area, China. Sustainability 2020, 12, 803. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-H.; Fu, B.-J.; He, C.-S.; Lü, Y.-H. Variation of ecosystem services and human activities: A case study in the yanhe watershed of China. Acta Oecologica. 2012, 44, 46–57. [Google Scholar] [CrossRef]
- Di, D.; Wu, Z.; Guo, X.; Lv, C.; Wang, H. Value stream analysis and emergy evaluation of the water resource eco-economic system in the yellow river basin. Water 2019, 11, 710. [Google Scholar] [CrossRef] [Green Version]
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Farmland | 5763.59 | 5852.73 | 7515.27 | 7483.34 | 7316.46 |
Woodland | 208.09 | 211.76 | 208.30 | 209.84 | 448.13 |
Grassland | 5312.52 | 5155.78 | 4487.05 | 4500.42 | 4509.21 |
Water bodies | 628.20 | 610.44 | 607.17 | 645.31 | 821.22 |
Construction land | 1188.52 | 1199.51 | 730.63 | 759.45 | 829.87 |
Unused land | 3150.09 | 3220.82 | 2702.67 | 2652.71 | 2332.10 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Farmland | 0.48 | 0.52 | 0.53 | 0.71 | 0.79 |
Woodland | 0.41 | 0.43 | 0.46 | 0.60 | 1.22 |
Grassland | 1.42 | 1.43 | 1.70 | 2.03 | 2.78 |
Water bodies | 0.02 | 0.02 | 0.03 | 0.03 | 0.05 |
Construction land | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 |
Unused land | 0.04 | 0.05 | 0.07 | 0.08 | 0.07 |
Total | 2.4 | 2.5 | 2.8 | 3.5 | 5.0 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Farmland | 33.12 | 33.63 | 43.19 | 43.00 | 42.02 |
Woodland | 2.46 | 2.50 | 2.46 | 2.48 | 5.29 |
Grassland | 32.71 | 31.75 | 27.63 | 27.71 | 27.75 |
Water bodies | 0 | 0 | 0 | 0 | 0 |
Construction land | 0 | 0 | 0 | 0 | 0 |
Unused land | 0 | 0 | 0 | 0 | 0 |
Total | 68.29 | 67.88 | 73.28 | 73.19 | 75.06 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Farmland | 7.20 | 9.20 | 13.56 | 10.23 | 17.21 |
Woodland | 0.10 | 0.09 | 0.10 | 0.10 | 0.6 |
Grassland | 4.27 | 4.88 | 6.88 | 5.06 | 10.85 |
Water bodies | 0 | 0 | 0 | 0 | 0 |
Construction land | 1.37 | 12.25 | 30.92 | 23.17 | 91.77 |
Unused land | 4.47 | 41.80 | 66.83 | 45.64 | 129.62 |
Total | 17.41 | 68.22 | 118.29 | 84.20 | 250.05 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Farmland | 2.01 | 1.82 | 2.66 | 2.36 | 3.96 |
Grassland | 0.12 | 0.54 | 0.58 | 0.97 | 1.08 |
Total | 2.13 | 2.36 | 3.24 | 3.33 | 5.04 |
Land-Use Types | Element | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|
Farmland | Nitrogen | 3141.50 | 3141.50 | 4216.11 | 4340.87 | 4086.62 |
Woodland | 0.12 | 0.14 | 0.14 | 0.13 | 0.25 | |
Grassland | 4.80 | 4.74 | 4.34 | 4.11 | 4.24 | |
Water bodies | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | |
Construction land | 322.56 | 315.79 | 236.75 | 249.83 | 275.23 | |
Unused land | 12.40 | 11.61 | 13.59 | 11.42 | 9.48 | |
Total | 3481.40 | 3473.79 | 4470.94 | 4606.38 | 4375.84 | |
Farmland | Phosphorus | 898.26 | 904.71 | 1330.91 | 1371.04 | 1268.81 |
Woodland | 0.04 | 0.05 | 0.05 | 0.04 | 0.08 | |
Grassland | 2.16 | 2.13 | 1.95 | 1.84 | 1.91 | |
Water bodies | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | |
Construction land | 145.15 | 142.11 | 106.54 | 112.42 | 123.85 | |
Unused land | 1.24 | 1.36 | 1.16 | 1.14 | 0.95 | |
Total | 1046.87 | 1050.37 | 1440.62 | 1486.50 | 1395.62 |
Category | SC | CS | WP | FS | WY |
---|---|---|---|---|---|
2000 | |||||
SC | 1.000 | ||||
CS | 0.218 ** | 1.000 | |||
WP | 0.03 | −0.210 ** | 1.000 | ||
FS | −0.146 ** | 0.291 ** | −0.438 ** | 1.000 | |
WY | −0.021 | −0.023 | −0.012 | 0.034 | 1.000 |
2005 | |||||
SC | 1.000 | ||||
CS | 0.217 ** | 1.000 | |||
WP | 0.025 | −0.215 ** | 1.000 | ||
FS | −0.123 ** | 0.315 ** | −0.416 ** | 1.000 | |
WY | −0.016 | −0.236 ** | 0.049 * | −0.047 * | 1.000 |
2010 | |||||
SC | 1.000 | ||||
CS | 0.190 ** | 1.000 | |||
WP | 0.039 * | −0.260 ** | 1.000 | ||
FS | −0.115 ** | 0.323 ** | −0.459 ** | 1.000 | |
WY | −0.001 | −0.361 ** | 0.091 ** | −0.034 | 1.000 |
2015 | |||||
SC | 1.000 | ||||
CS | 0.204 ** | 1.000 | |||
WP | 0.074 ** | −0.261 ** | 1.000 | ||
FS | −0.110 ** | 0.343 ** | −0.472 ** | 1.000 | |
WY | −0.041 * | −0.368 ** | 0.100 ** | −0.037 | 1.000 |
2018 | |||||
SC | 1.000 | ||||
CS | 0.253 ** | 1.000 | |||
WP | 0.146 ** | −0.193 ** | 1.000 | ||
FS | −0.147 ** | 0.383 ** | −0.467 ** | 1.000 | |
WY | −0.03 | −0.469 ** | 0.077 ** | −0.133 ** | 1.000 |
Category | WY | FS | WP | CS | SC |
---|---|---|---|---|---|
I | |||||
WY | 1.000 | ||||
FS | 0.073 | 1.000 | |||
WP | −0.364 ** | −0.162 ** | 1.000 | ||
CS | −0.513 ** | −0.148 ** | 0.464 ** | 1.000 | |
SC | −0.035 | −0.253 ** | −0.055 | 0.193 ** | 1.000 |
II | |||||
WY | 1.000 | ||||
FS | −0.093 * | 1.000 | |||
WP | −0.224 ** | −0.257 ** | 1.000 | ||
CS | −0.266 ** | 0.145 ** | 0.141 ** | 1.000 | |
SC | −0.01 | −0.092 * | 0.025 | −0.032 | 1.000 |
III | |||||
WY | 1.000 | ||||
FS | 0.042 | 1.000 | |||
WP | −0.452 ** | −0.252 ** | 1.000 | ||
CS | 0.130 ** | 0.045 | −0.152 ** | 1.000 | |
SC | 0.112 * | −0.079 | −0.027 | 0.118 ** | 1.000 |
IV | |||||
WY | 1.000 | ||||
FS | 0.427 ** | 1.000 | |||
WP | −0.581 ** | −0.294 ** | 1.000 | ||
CS | −0.495 ** | −0.304 ** | 0.477 ** | 1.000 | |
SC | −0.292 ** | −0.310 ** | 0.186 ** | 0.587 ** | 1.000 |
V | |||||
WY | 1.000 | ||||
FS | −0.341 ** | 1.000 | |||
WP | −0.117 ** | −0.384 ** | 1.000 | ||
CS | −0.167 ** | 0.657 ** | −0.196 ** | 1.000 | |
SC | 0.088 * | −0.176 ** | 0.114 ** | −0.169 ** | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yu, E.; Li, S.; Fu, X.; Wu, G. Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin. Sustainability 2021, 13, 9839. https://doi.org/10.3390/su13179839
Wang L, Yu E, Li S, Fu X, Wu G. Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin. Sustainability. 2021; 13(17):9839. https://doi.org/10.3390/su13179839
Chicago/Turabian StyleWang, Lina, Enyi Yu, Shuang Li, Xiao Fu, and Gang Wu. 2021. "Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin" Sustainability 13, no. 17: 9839. https://doi.org/10.3390/su13179839
APA StyleWang, L., Yu, E., Li, S., Fu, X., & Wu, G. (2021). Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin. Sustainability, 13(17), 9839. https://doi.org/10.3390/su13179839