Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV)
Abstract
:1. Introduction
Aim of Study
2. Materials and Methods
2.1. Characteristics of the Field Experiment
- N0: no mineral N;
- N1: 70 kg*ha−1 for maize, 50 kg*ha−1 for winter wheat and 0 kg*ha−1 for winter barley;
- N2: 140 kg*ha−1 for maize, 100 kg*ha−1 for winter wheat and 0 kg*ha−1 for winter barley;
- N3: 210 kg*ha−1 for maize, 150 kg*ha−1 for winter wheat and 40 kg*ha−1 for winter barley;
- N4: 280 kg*ha−1 for maize, 200 kg*ha−1 for winter wheat and 80 kg*ha−1 for winter barley.
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Effects of Year and Season on AS
4.2. Effects of Year and Season on MBC
4.3. Effects of Organic Amendments on AS
4.4. Effects of Organic Amendments on MBC
4.5. Effects of Organic Amendments on SOC
4.6. Effects of Organic Amendments on Grain Yield
4.7. Effects of N Fertilization on AS, MBC, SOC and Grain Yield
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amézketa, E. Soil aggregate stability: A review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Miller, R.M.; Jastrow, J.D. Mycorrhizal Fungi Influence Soil Structure. In Arbuscular Mycorrhizas: Physiology and Function; Springer: Dordrecht, The Netherlands, 2000; pp. 3–18. [Google Scholar]
- Wilpiszeski, R.L.; Aufrecht, J.A.; Retterer, S.T.; Sullivan, M.B.; Graham, D.E.; Pierce, E.M.; Zablocki, O.D.; Palumbo, A.V.; Elias, D.A. Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 2019, 85, e00324-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Nichols, K.A.; Halvorson, J.J. Roles of biology, chemistry, and physics in soil macroaggregate formation and stabilization. Open Agric. J. 2013, 7, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Perfect, E.; Kay, B.D.; van Loon, W.K.P.; Sheard, R.W.; Pojasok, T. Factors influencing soil structural stability within a growing season. Soil Sci. Soc. Am. J. 1990, 54, 173–179. [Google Scholar] [CrossRef]
- Cosentino, D.; Chenu, C.; Le Bissonnais, Y. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biol. Biochem. 2006, 38, 2053–2062. [Google Scholar] [CrossRef]
- Chan, K.Y.; Heenan, D.P.; Ashley, R. Seasonal changes in surface aggregate stability under different tillage and crops. Soil Tillage Res. 1994, 28, 301–314. [Google Scholar] [CrossRef]
- Bullock, M.S.; Kemper, W.D.; Nelson, S.D. Soil cohesion as affected by freezing, water content, time and tillage. Soil Sci. Soc. Am. J. 1988, 52, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Blackman, J.D. Seasonal variation in the aggregate stability of downland soils. Soil Use Manag. 1992, 8, 142–150. [Google Scholar] [CrossRef]
- Lehrsch, G.A.; Jolley, P.M. Temporal changes in wet aggregate stability. Trans. Am. Soc. Agric. Eng. 1992, 35, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Mulla, D.J.; Huyck, L.M.; Reganold, J.P. Temporal variation in aggregate stability on conventional and alternative farms. Soil Sci. Soc. Am. J. 1992, 56, 1620–1624. [Google Scholar] [CrossRef]
- Linsler, D.; Taube, F.; Geisseler, D.; Joergensen, R.G.; Ludwig, B. Temporal variations of the distribution of water-stable aggregates, microbial biomass and ergosterol in temperate grassland soils with different cultivation histories. Geoderma 2015, 241–242, 221–229. [Google Scholar] [CrossRef]
- Bach, E.M.; Hofmockel, K.S. A time for every season: Soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy. GCB Bioenergy 2016, 8, 588–599. [Google Scholar] [CrossRef] [Green Version]
- Aksakal, E.L.; Barik, K.; Angin, I.; Sari, S.; Islam, K.R. Spatio-temporal variability in physical properties of different textured soils under similar management and semi-arid climatic conditions. Catena 2019, 172, 528–546. [Google Scholar] [CrossRef]
- Jiang, H.; Han, X.; Zou, W.; Hao, X.; Zhang, B. Seasonal and long-term changes in soil physical properties and organic carbon fractions as affected by manure application rates in the Mollisol region of Northeast China. Agric. Ecosyst. Environ. 2018, 268, 133–143. [Google Scholar] [CrossRef]
- Habib, L.; Morel, J.L.; Guckert, A.; Plantureux, S.; Chenu, C. Influence of root exudates on soil aggregation. Symbiosis 1990, 9, 87–91. [Google Scholar]
- Morel, J.L.; Habib, L.; Plantureux, S.; Guckert, A. Influence of maize root mucilage on soil aggregate stability. Plant Soil 1991, 136, 111–139. [Google Scholar] [CrossRef]
- Ritz, K.; Young, I.M. Interactions between soil structure and fungi. Mycologist 2004, 18, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Chenu, C.; Cosentino, D. Microbial regulation of soil structural dynamics. In The Architecture and Biology of Soils: Life in Inner Space; Ritz, K., Young, I., Eds.; CABI: Oxfordshire, UK, 2011; pp. 37–70. [Google Scholar]
- Piccolo, A. Humus and Soil Conservation. In Humic Substances in Terrestrial Ecosystems; Elsevier: Amsterdam, The Netherlands, 1996; pp. 225–264. [Google Scholar]
- Yu, H.; Ding, W.; Luo, J.; Geng, R.; Cai, Z. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Tillage Res. 2012, 124, 170–174. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, C.; Liu, G.; Xue, S. Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China. PeerJ 2018, 2018, 1–20. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Angers, D.A.; Leterme, P. A Model to Predict Soil Aggregate Stability Dynamics following Organic Residue Incorporation under Field Conditions. Soil Sci. Soc. Am. J. 2008, 72, 119–125. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Di Gléria, J.; Klimes-Szmik, A.; Dvoracsek, M. Talajfizika és Kolloidika; Akadémiai Kiadó: Budapest, Hungary, 1957. [Google Scholar]
- Huisz, A. Characterization of Changes in Soil Structure and Redistribution of Soil Organic Amtter by New Methods in Long-Term Tillage Experiments. PhD Thesis, University of Debrecen, Debrecen, Hungary, 2012. [Google Scholar]
- Sparling, G.P. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In Biological Indicators of Soil Health; CABI: Oxfordshire, UK, 1997; pp. 97–119. ISBN 0-85199-158-0. [Google Scholar]
- Haynes, R.J. Soil organic matter quality and the size and activity of the microbial biomass: Their significance to the quality of agricultural soils. In Soil Mineral Microbe-Organic Interactions: Theories and Applications; Springer: New York, NY, USA, 2008; pp. 201–231. ISBN 9783540776857. [Google Scholar]
- Wardle, D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Fierer, N.; Strickland, M.S.; Liptzin, D.; Bradford, M.A.; Cleveland, C.C. Global patterns in belowground communities. Ecol. Lett. 2009, 12, 1238–1249. [Google Scholar] [CrossRef]
- Soong, J.L.; Fuchslueger, L.; Marañon-Jimenez, S.; Torn, M.S.; Janssens, I.A.; Penuelas, J.; Richter, A. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Chang. Biol. 2020, 26, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 1998, 30, 1627–1637. [Google Scholar] [CrossRef]
- Spedding, T.A.; Hamel, C.; Mehuys, G.R.; Madramootoo, C.A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 2004, 36, 499–512. [Google Scholar] [CrossRef]
- Kallenbach, C.; Grandy, A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 241–252. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Hijbeek, R.; van Ittersum, M.K.; ten Berge, H.F.M.; Gort, G.; Spiegel, H.; Whitmore, A.P. Do organic inputs matter—A meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 2017, 411, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Spiegel, H.; Dersch, G.; Baumgarten, A.; Hösch, J. The international organic nitrogen long-term fertilisation experiment (IOSDV) at Vienna after 21 years. Arch. Agron. Soil Sci. 2010, 56, 405–420. [Google Scholar] [CrossRef]
- Tajnšek, A.; Čergan, Z.; Čeh, B. Results of the long-term field experiment IOSDV Jable at the beginning of the 21st century. Arch. Agron. Soil Sci. 2013, 59, 1099–1108. [Google Scholar] [CrossRef]
- Kismányoky, T.; Tóth, Z. Effect of mineral and organic fertilization on soil organic carbon content as well as on grain production of cereals in the IOSDV (ILTE) long-term field experiment, Keszthely, Hungary. Arch. Agron. Soil Sci. 2013, 59, 1121–1131. [Google Scholar] [CrossRef]
- Stehlíková, I.; Madaras, M.; Lipavský, J.; Šimon, T. Study on some soil quality changes obtained from long-term experiments. Plant Soil Environ. 2016, 62, 74–79. [Google Scholar] [CrossRef]
- Are, M.; Kaart, T.; Selge, A.; Astover, A.; Reintam, E. The interaction of soil aggregate stability with other soil properties as influenced by manure and nitrogen fertilization. Zemdirbyste 2018, 105, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Kautz, T.; Wirth, S.; Ellmer, F. Microbial activity in a sandy arable soil is governed by the fertilization regime. Eur. J. Soil Biol. 2004, 40, 87–94. [Google Scholar] [CrossRef]
- Csathó, P.; Magyar, M.; Debreczeni, K.; Sárdi, K. Correlation between soil P and wheat shoot P contents in a network of Hungarian long-term field trials. Commun. Soil Sci. Plant Anal. 2005, 36, 275–293. [Google Scholar] [CrossRef]
- Kismányoky, T.; Balázs, J. Keszthely, Long-Term Field Experiments; Kismányoky, T., Balázs, J., Eds.; Pannon University: Veszprém, Keszthely, 1996. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Kemper, W.D.; Koch, E.J. Aggregate Stability of Soils from Western United States and Canada. Measurement Procedure, Correlation with Soil Constituents; US Department of Agriculture: North Bend, WA, USA, 1966; pp. 29–30.
- MSz-08-0210-1977. A Talaj Szerves Széntartalmának Meghatározása, Magyar Szabvány (Testing Organic Carbon Content in Soils, Hungarian Standard); Hungarian Standard Institution: Budapest, Hungary, 1977. [Google Scholar]
- Tyurin, I.V. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 1931, 26, 36–47. [Google Scholar]
- Heshmati, M.; Abdu, A.; Jusop, S.; Majid, N.M. Effects of land use practices on the organic carbon content, cation Exchange capacity and aggregate stability of soils in the catchment zones. Am. J. Appl. Sci. 2011, 8, 1363–1373. [Google Scholar] [CrossRef]
- Algayer, B.; Le Bissonnais, Y.; Darboux, F.; Algayer, B.; Le Bissonnais, Y.; Darboux, F. Short-term dynamics of soil aggregate stability in the field. Soil Sci. Soc. Am. J. 2014, 78, 1168–1176. [Google Scholar] [CrossRef]
- Bottinelli, N.; Angers, D.A.; Hallaire, V.; Michot, D.; Le Guillou, C.; Cluzeau, D.; Heddadj, D.; Menasseri-Aubry, S. Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Tillage Res. 2017, 170, 14–17. [Google Scholar] [CrossRef]
- Long, P.; Sui, P.; Gao, W.S.; Wang, B.B.; Huang, J.X.; Yan, P.; Zou, J.X.; Yan, L.L.; Chen, Y.Q. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. J. Integr. Agric. 2015, 14, 774–787. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Yan, C.; Mei, X.; Zhang, Y.; Fan, T. Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PLoS ONE 2013, 8, e56536. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Šimon, T.; Mikanová, O.; Cerhanová, D. Long-term effect of straw and farmyard manure on soil organic matter in field experiment in the Czech Republic. Arch. Agron. Soil Sci. 2013, 59, 1–13. [Google Scholar] [CrossRef]
- Bogužas, V.; Mikučionienė, R.; Šlepetienė, A.; Sinkevičienė, A.; Feiza, V.; Steponavičienė, V.; Adamavičienė, A. Long-term effect of tillage systems, straw and green manure combinations on soil organic matter. Zemdirbyste 2015, 102, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef] [PubMed]
- Lipavský, J.; Kubát, J.; Zobač, J. Long-term effects of straw and farmyard manure on crop yields and soil properties. Arch. Agron. Soil Sci. 2008, 54, 369–379. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Powlson, D.S.; Prookes, P.C.; Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
Factor | AS Average (%) | AS CV | MBC Average (µg C*g−1 soil) | MBC CV | SOC Average (%) | SOC CV | Grain Yield Average (t*ha−1) | Grain Yield CV |
---|---|---|---|---|---|---|---|---|
year | ||||||||
2015 | 43.4 a | 25.3 | 196.1 a | 33.7 | 6.44 a | 28.1 | ||
2016 | 58.2 b | 16.3 | 225.0 b | 34.5 | 4.04 b | 26.0 | ||
season | ||||||||
spring | 56.7 a | 18.5 | 204.8 | 32.4 | ||||
autumn | 45.1 b | 26.8 | 216.3 | 36.8 | ||||
organic amendment | ||||||||
no | 48.3 a | 28.6 | 171.9 a | 36.0 | 1.125 a | 5.8 | 5.18 | 38.9 |
manure | 50.7 a | 21.5 | 252.6 c | 26.7 | 1.288 b | 7.2 | 5.58 | 35.4 |
straw | 53.7 b | 23.6 | 200.7 b | 33.7 | 1.144 a | 3.1 | 4.97 | 34.6 |
N fertilizer dose | ||||||||
N0 | 51.7 a | 27.7 | 218.9 a | 33.6 | 1.158 a | 7.9 | 3.49 a | 36.8 |
N1 | 51.6 a | 25.6 | 224.2 a | 31.1 | 1.200 ab | 8.1 | 4.99 b | 25.9 |
N2 | 48.7 a | 24.2 | 205.3 a | 31.9 | 1.207 b | 10.1 | 5.98 bc | 31.5 |
N3 | 51.6 a | 21.9 | 204.0 a | 39.3 | 1.183 ab | 7.6 | 6.03 c | 34.1 |
N4 | 50.8 a | 25.6 | 200.3 a | 38.6 | 1.180 ab | 7.8 | 5.74 bc | 30.5 |
sampling time (year*season) | ||||||||
2015 spring | 50.0 b | 17.0 | 175.1 a | 26.8 | ||||
2015 autumn | 36.9 a | 24.9 | 217.1 b | 34.8 | ||||
2016 spring | 63.4 c | 11.8 | 234.5 b | 29.9 | ||||
2016 autumn | 53.2 b | 16.0 | 215.4 b | 39.0 | ||||
total | 50.9 | 25.0 | 210.5 | 34.8 | 1.186 | 8.4 | 5245 | 36.3 |
Factor | Partial Eta Squared (Significance) | |||
---|---|---|---|---|
AS | MBC | SOC | Grain Yield | |
year (Y) | 0.592 (0.000) | 0.130 (0.000) | - | 0.685 (0.000) |
season (S) | 0.470 (0.000) | 0.023 (0.095) | - | - |
organic amendment (O) | 0.111 (0.001) | 0.439 (0.000) | 0.561 (0.000) | 0.087 (0.066) |
N fertilizer dose (N) | 0.032 (0.420) | 0.058 (0.122) | 0.068 (0.075) | 0.597 (0.000) |
year*season | 0.014 (0.201) | 0.143 (0.000) | - | - |
year*organic amendment | 0.017 (0.350) | 0.158 (0.000) | - | 0.069 (0.119) |
year*N fertilizer dose | 0.023 (0.593) | 0.095 (0.017) | - | 0.203 (0.008) |
season*organic amendment | 0.043 (0.072) | 0.380 (0.000) | - | - |
season*N fertilizer dose | 0.029 (0.469) | 0.088 (0.025) | - | - |
organic amendment*N fertilizer dose | 0.302 (0.000) | 0.080 (0.247) | 0.051 (0.600) | 0.227 (0.040) |
R Squared [adjusted R Squared] | 0.76 [0.643] | 0.738 [0.609] | 0.584 [0.549] | 0.815 [0.726] |
Factor | Partial Eta Squared (Significance) | |||
---|---|---|---|---|
AS | MBC | SOC | Grain Yield | |
N0 dose: | ||||
year | 0.686 (0.000) | 0.375 (0.001) | 0.368 (0.021) | |
season | 0.528 (0.000) | 0.000 (0.989) | ||
organic amendment | 0.573 (0.000) | 0.331 (0.008) | 0.785 (0.000) | 0.544 (0.009) |
N1 dose: | ||||
year | 0.517 (0.000) | 0.305 (0.003) | 0.809 (0.000) | |
season | 0.369 (0.001) | 0.364 (0.001) | ||
organic amendment | 0.135 (0.176) | 0.334 (0.008) | 0.367 (0.004) | 0.692 (0.001) |
N2 dose: | ||||
year | 0.488 (0.000) | 0.000 (0.961) | 0.681 (0.000) | |
season | 0.435 (0.000) | 0.013 (0.576) | ||
organic amendment | 0.437 (0.001) | 0.518 (0.000) | 0.592 (0.000) | 0.055 (0.710) |
N3 dose: | ||||
year | 0.676 (0.000) | 0.004 (0.771) | 0.755 (0.000) | |
season | 0.406 (0.000) | 0.001 (0.908) | ||
organic amendment | 0.319 (0.010) | 0.559 (0.000) | 0.622 (0.000) | 0.145 (0.392) |
N4 dose: | ||||
year | 0.599 (0.000) | 0.113 (0.093) | 0.747 (0.000) | |
season | 0.610 (0.000) | 0.010 (0.625) | ||
organic amendment | 0.237 (0.039) | 0.520 (0.000) | 0.502 (0.000) | 0.026 (0.845) |
MBC Total Year 2015 Year 2016 | SOC Total Year 2015 Year 2016 | Norm. Grain Yield Total Year 2015 Year 2016 | |
---|---|---|---|
AS | |||
total | 0.173 (0.020) | −0.055 (0.466) | 0.113 (0.291) |
year 2015 | −0.122 (0.252) | −0.087 (0.416) | 0.123 (0.422) |
year 2016 | 0.265 (0.012) | −0.046 (0.667) | 0.189 (0.215) |
MBC | |||
total | 0.339 (0.000) | 0.056 (0.597) | |
year 2015 | 0.555 (0.000) | 0.223 (0.142) | |
year 2016 | 0.170 (0.109) | −0.093 (0.544) | |
SOC | |||
total | 0.274 (0.009) | ||
year 2015 | 0.404 (0.006) | ||
year 2016 | 0.145 (0.343) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csitári, G.; Tóth, Z.; Kökény, M. Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV). Sustainability 2021, 13, 9769. https://doi.org/10.3390/su13179769
Csitári G, Tóth Z, Kökény M. Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV). Sustainability. 2021; 13(17):9769. https://doi.org/10.3390/su13179769
Chicago/Turabian StyleCsitári, Gábor, Zoltán Tóth, and Mónika Kökény. 2021. "Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV)" Sustainability 13, no. 17: 9769. https://doi.org/10.3390/su13179769