Spatial and Temporal Variations in Atmospheric Ventilation Index Coupled with Particulate Matter Concentration in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. LAMP WRF Data
2.1.2. PM Observations
2.2. Methods
2.2.1. AVI
2.2.2. VIP
3. Results
3.1. Horizontal Distribution
3.2. Spatiotemporal Analysis in Three Major Cities
4. Summary and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doherty, R.M.; Heal, M.R.; O’Connor, F.M. Climate change impacts on human health over Europe through its effect on air quality. Environ. Health 2017, 16, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, X.; Chen, X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Ghude, S.D.; Kumar, R.; Jena, C.; Debnath, S.; Kulkarni, R.G.; Alessandrini, S.; Biswas, M.; Kulkarni, S.; Pithani, P.; Kelkar, S.; et al. Evaluation of PM2.5 forecast using chemical data assimilation in the WRF-Chem model: A novel initiative under the Ministry of Earth Sciences Air Quality Early Warning System for Delhi, India. Curr. Sci. 2020, 118, 1803. [Google Scholar]
- Lee, S.-J.; Kim, J.; Cho, C.-H. An automated monitoring of atmospheric mixing height from routine radiosonde profiles over South Korea using a web-based data transfer method. Environ. Monit. Assess. 2014, 186, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Kawai, H. Mixing depth estimation from operational JMA and KMA wind-profiler data and its preliminary applications: Examples from four selected sites. J. Meteorol. Soc. Jpn. 2011, 89, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Lee, J.; Greybush, S.J.; Kang, M.; Kim, J. Spatial and temporal variation in PBL height over the Korean Peninsula in the KMA operational regional model. Adv. Meteorol. 2013, 2013, 381630. [Google Scholar] [CrossRef]
- Gómez-Navarro, J.J.; Raible, C.C.; Dierer, S. Sensitivity of the WRF model to PBL parametrisations and nesting techniques: Evaluation of wind storms over complex terrain. Geosci. Model Dev. 2015, 8, 3349–3363. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.A. Smoke dispersion prediction systems. In Smoke Management Guide for Prescribed and Wildland Fire; The National Wildfire Coordinating Group: Idaho, ID, USA, 2001; Volume 163, p. 178. [Google Scholar]
- Kiefer, M.T.; Charney, J.J.; Zhong, S.; Heilman, W.E.; Bian, X.; Hom, J.L.; Patterson, M. Evaluation of the Ventilation Index in Complex Terrain: A Dispersion Modeling Study. J. Appl. Meteorol. 2019, 58, 551–568. [Google Scholar] [CrossRef]
- Chiodi, A.M.; Larkin, N.K.; Varner, J.M.; Hiers, J.K. Sensitivity of prescribed burn weather windows to atmospheric dispersion parameters over southeastern USA. Int. J. Wildland Fire 2019, 28, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Belosi, F.; Conte, M.; Gianelle, V.; Santachiara, G.; Contini, D. On the concentration of SARS-CoV-2 in outdoor air and the interaction with pre-existing atmospheric particles. Environ. Res. 2021, 193, 110603. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Emanuel, K. A ventilation index for tropical cyclones. Bull. Am. Meteorol. Soc. 2012, 93, 1901–1912. [Google Scholar] [CrossRef]
- Jena, C.; Ghude, S.D.; Kumar, R.; Debnath, S.; Govardhan, G.; Soni, V.K.; Kulkarni, S.H.; Beig, G.; Nanjundiah, R.S.; Rajeevan, M. Performance of high resolution (400 m) PM 2.5 forecast over Delhi. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment (MOE). It Looks If You Know Right Away. Fine Dust, What the Hell? Administrative Publication Registration Number 11-1480000-001435-01; Ministry of Environment (MOE): Sejong, Korea, 2016. [Google Scholar]
- Lee, S.; Oh, S.; Yun, H.; Lee, B.; Jung, S. Assessment of particulate matter health effects and adaptation measures in municipal levels. Korea Inst. Health Soc. Affairs 2018, 19. (In Korean with English Abstract). [Google Scholar]
- Yi, O.; Hong, Y.C.; Kim, H. Seasonal effect of PM10 concentrations on mortality and morbidity in Seoul, Korea: A temperature-matched case-crossover analysis. Environ. Res. 2010, 110, 89–95. [Google Scholar] [CrossRef]
- Lee, S.-J.; Song, J.; Kim, Y. The NCAM Land-Atmosphere Modeling Package (LAMP) version 1: Implementation and evaluation. Korean J. Agric. For. Meteorol. 2016, 18, 307–319, (In Korean with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- So, Y.Y.; Lee, S.-J.; Choi, S.W.; Lee, S.-J. Construction of NCAM-LAMP precipitation and soil moisture database to support landslide prediction. Korean J. Agric. For. Meteorol. 2020, 22, 152–163, (In Korean with English Abstract). [Google Scholar]
- Lee, J.; Lee, S.; Jeong, Y.; Kim, D.; Lee, S.-J.; Choi, W. Design of the business model to reduce the damage of heavy snowfall in greenhouse. J. Korean Soc. Agric. Eng. 2021, 63, 61–74. [Google Scholar]
- Hong, M.; Lee, S.H.; Lee, S.-J.; Choi, J.Y. Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit. Agric. Water Manag. 2021, 243, 106494. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.-J.; Koo, J.S. Database construction of high-resolution daily meteorological and climatological data using NCAM-LAMP: Sunshine hour data. Korean J. Agric. For. Meteorol. 2020, 22, 135–143, (In Korean with English Abstract). [Google Scholar]
- KMA Weather Data Service Open MET Data Portal. Available online: https://data.kma.go.kr/data/climate/selectDustRltmList.do?pgmNo=68 (accessed on 4 May 2021).
- Korea Environment Corporation. Available online: https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123 (accessed on 30 April 2021).
- Cressman, G.P. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Hong, S.Y.; Pan, H.L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Northwest Modeling Consortium. Forecast Graphics Descriptions. Available online: https://a.atmos.washington.edu/wrfrt/descript/definitions/vent.html (accessed on 4 May 2021).
Classification | AVI | PM10 | VIP |
---|---|---|---|
Very Poor | 0–235 | >151 | 0–2.8 |
Poor | 235–2350 | 81–150 | 2.8–3.5 |
Marginal (Normal) | 2350–4700 | 31–80 | 3.5–5.1 |
Good | >4700 | 0–30 | >5.1 |
Maximum VIP | Minimum VIP | ||
---|---|---|---|
1 | City/County (lon, lat) | Uljin (129.399, 37.0152) | Chuncheon (126.641, 38.0184) |
Value | 7.066 | 2.378 | |
2 | City/County (lon, lat) | Pyeongchang (128.725, 37.6764) | Gimje (126.791, 35.8980) |
Value | 7.018 | 2.524 | |
3 | City/County (lon, lat) | Mungyeong (128.168, 36.6276) | Hwacheon (127.699, 38.1096) |
Value | 7.003 | 2.536 | |
4 | City/County (lon, lat) | Yeongdong (127.992, 36.2172) | Yeoju (127.553, 37.3572) |
Value | 6.924 | 2.627 | |
5 | City/County (lon, lat) | Andong (128.637, 36.6276) | Yeongcheon (128.901, 35.8752) |
Value | 6.839 | 2.656 | |
6 | City/County (lon, lat) | Gunsan (126.762, 36.012) | Goyang (126.732, 37.6536) |
Value | 6.746 | 2.656 | |
7 | City/County (lon, lat) | Sangju (128.051, 36.2856) | Gimhae (128.901, 35.3508) |
Value | 6.430 | 2.662 | |
8 | City/County (lon, lat) | Cheorwon (127.406, 38.1552) | Hapcheon (128.227, 35.5560) |
Value | 6.421 | 2.712 | |
9 | City/County (lon, lat) | Taean (126.264, 36.5592) | Paju (126.703, 37.9044) |
Value | 6.376 | 2.729 | |
10 | City/County (lon, lat) | Goseong (128.549, 38.2692) | Gimpo (126.703, 37.6536) |
Value | 6.287 | 2.732 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, S.-J.; Kang, J.-H.; Jang, E.-S. Spatial and Temporal Variations in Atmospheric Ventilation Index Coupled with Particulate Matter Concentration in South Korea. Sustainability 2021, 13, 8954. https://doi.org/10.3390/su13168954
Lee S, Lee S-J, Kang J-H, Jang E-S. Spatial and Temporal Variations in Atmospheric Ventilation Index Coupled with Particulate Matter Concentration in South Korea. Sustainability. 2021; 13(16):8954. https://doi.org/10.3390/su13168954
Chicago/Turabian StyleLee, Seoyeon, Seung-Jae Lee, Jung-Hyuk Kang, and Eun-Suk Jang. 2021. "Spatial and Temporal Variations in Atmospheric Ventilation Index Coupled with Particulate Matter Concentration in South Korea" Sustainability 13, no. 16: 8954. https://doi.org/10.3390/su13168954
APA StyleLee, S., Lee, S.-J., Kang, J.-H., & Jang, E.-S. (2021). Spatial and Temporal Variations in Atmospheric Ventilation Index Coupled with Particulate Matter Concentration in South Korea. Sustainability, 13(16), 8954. https://doi.org/10.3390/su13168954