An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas
Abstract
:1. Introduction and Literature Review
2. Theoretical Analysis and Hypothesis
3. Sample Selection and Data Sources
4. Measures of Green Total Factor Productivity
4.1. Method Introduction
4.1.1. Non-Radial and Non-Angular Directional Distance Function (NDDF)
4.1.2. Global Non-Radial Directional Diststance Function (GNDDF)
4.2. Variable Description
4.2.1. Explained Variable
4.2.2. Explanatory Variable
4.3. Results
5. Model Setting and Empirical Analysis
5.1. Model Setting
5.2. Variable Description
5.2.1. Variable Setting
5.2.2. Empirical Results
5.2.3. Robustness Test of the Panel Threshold Effect
6. Discussion and Policy Recommendations
6.1. Study Results and Discussion
6.1.1. There Are Two “Rationalization Points” with Efficiency Demarcation between Industrial Structure Evolution and Green Growth
6.1.2. Changes in Industrial Structure Will Affect the Results of Green Total Factor Productivity Growth
6.1.3. Driving Forces of Green Total Factor Productivity Growth Mainly Include Technological Progress Efficiency and Scale Efficiency
6.2. Enlightenment of Industrial Structure Adjustment Path
6.2.1. Avoid the Path of Premature and Excessive Industrial Technological Upgrading
6.2.2. Actively Adjust the Green Total Factor Productivity
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Jiang, R. Is China’s Economic Growth Decoupled from Carbon Emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Lee, S.; Oh, D.-W. Economic Growth and the Environment in China: Empirical Evidence Using Prefecture Level Data. China Econ. Rev. 2015, 36, 73–85. [Google Scholar] [CrossRef]
- Chen, L.; Xu, L.; Xu, Q.; Yang, Z. Optimization of Urban Industrial Structure under the Low-Carbon Goal and the Water Constraints: A Case in Dalian, China. J. Clean. Prod. 2016, 114, 323–333. [Google Scholar] [CrossRef]
- Kemp, R.; Never, B. Green Transition, Industrial Policy, and Economic Development. Oxf. Rev. Econ. Policy 2017, 33, 66–84. [Google Scholar] [CrossRef]
- Bernardi, F.; Garrido, L. Is There a New Service Proletariat? Post-Industrial Employment Growth and Social Inequality in Spain. Eur. Sociol. Rev. 2008, 24, 299–313. [Google Scholar] [CrossRef]
- Kuai, P.; Li, W.; Cheng, R.; Cheng, G. An Application of System Dynamics for Evaluating Planning Alternatives to Guide a Green Industrial Transformation in a Resource-Based City. J. Clean. Prod. 2015, 104, 403–412. [Google Scholar] [CrossRef]
- Petrenko, E.; Pritvorova, T.; Dzhazykbaeva, B. Sustainable Developmet Processes: Service Sector in Post-Industrial Economy. J. Secur. Sustain. Issues 2018, 7, 781–791. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, M. The Non-Linear Impact of Industrial Structure on CO2 Emissions in China. Appl. Econ. Lett. 2020, 27, 576–579. [Google Scholar] [CrossRef]
- Pitkänen, K.; Antikainen, R.; Droste, N.; Loiseau, E.; Saikku, L.; Aissani, L.; Hansjürgens, B.; Kuikman, P.J.; Leskinen, P.; Thomsen, M. What Can Be Learned from Practical Cases of Green Economy?—Studies from Five European Countries. J. Clean. Prod. 2016, 139, 666–676. [Google Scholar] [CrossRef]
- Deutz, P.; Gibbs, D. Eco-Industrial Development and Economic Development: Industrial Ecology or Place Promotion? Bus. Strategy Environ. 2004, 13, 347–362. [Google Scholar] [CrossRef]
- Guerrieri, P.; Meliciani, V. Technology and International Competitiveness: The Interdependence between Manufacturing and Producer Services. Struct. Chang. Econ. Dyn. 2005, 16, 489–502. [Google Scholar] [CrossRef]
- Drucker, J. Regional Industrial Structure Concentration in the United States: Trends and Implications. Econ. Geogr. 2011, 87, 421–452. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, J. Industrial Structure Change and Economic Growth: A China-Russia Comparison. China Econ. Rev. 2018, 47, 219–233. [Google Scholar] [CrossRef]
- Mah, J.S. Industrial Policy and Economic Development: Korea’s Experience. J. Econ. Issues 2007, 41, 77–92. [Google Scholar] [CrossRef]
- Timmer, M.P.; Szirmai, A. Productivity Growth in Asian Manufacturing: The Structural Bonus Hypothesis Examined. Struct. Chang. Econ. Dyn. 2000, 11, 371–392. [Google Scholar] [CrossRef]
- Fomina, A.V.; Berduygina, O.N.; Shatsky, A.A. Industrial Cooperation and Its Influence on Sustainable Economic Growth. Entrep. Sustain. Issues 2018, 5, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Dauth, W.; Suedekum, J. Globalization and Local Profiles of Economic Growth and Industrial Change. J. Econ. Geogr. 2016, 16, 1007–1034. [Google Scholar] [CrossRef] [Green Version]
- Gürlük, S. Economic Growth, Industrial Pollution and Human Development in the Mediterranean Region. Ecol. Econ. 2009, 68, 2327–2335. [Google Scholar] [CrossRef]
- Chang, D.-S.; Yeh, L.-T.; Chen, Y. The Effects of Economic Development, International Trade, Industrial Structure and Energy Demands on Sustainable Development. Sustain. Dev. 2014, 22, 377–390. [Google Scholar] [CrossRef]
- Mokyr, J.; Nye, J.V.C. Distributional Coalitions, the Industrial Revolution, and the Origins of Economic Growth in Britain. South. Econ. J. 2007, 74, 50–70. [Google Scholar] [CrossRef]
- Zhixin, Z.; Qiao, X. Low-Carbon Economy, Industrial Structure and Changes in China’s Development Mode Based on the Data of 1996-2009 in Empirical Analysis. Energy Procedia 2011, 5, 2025–2029. [Google Scholar] [CrossRef] [Green Version]
- Binh, K.B.; Park, S.Y.; Shin, B.S. Financial Structure Does Matter for Industrial Growth: Direct Evidence from OECD Countries; Social Science Research Network: Rochester, NY, USA, 2006. [Google Scholar] [CrossRef]
- Borgersen, T.-A.; King, R.M. Export-Led Growth in Transition Economies. East. Eur. Econ. 2014, 52, 33–54. [Google Scholar] [CrossRef]
- Fang, C. How China’s Economic Growth Steers to Total Factor Productivity-driven. China Pollinat. 2013, 1, 56–71. [Google Scholar]
- Lin, Y. New structural economics: The framework of reconstructing development economics. Econ. Q. 2011, 10, 1–32. [Google Scholar] [CrossRef]
- Jin, F.; Jin, R. The spatial effect of agricultural industrial structure change on green total factor productivity growth. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2020, 1, 124–134. [Google Scholar] [CrossRef]
- Ambroise, L.; Prim-Allaz, I.; Teyssier, C.; Peillon, S. The Environment-Strategy-Structure Fit and Performance of Industrial Servitized SMEs. J. Serv. Manag. 2017, 29, 301–328. [Google Scholar] [CrossRef]
- Fagerberg, J. Technological Progress, Structural Change and Productivity Growth: A Comparative Study. Struct. Chang. Econ. Dyn. 2000, 11, 393–411. [Google Scholar] [CrossRef]
- Singh, L. Technological Progress, Structural Change and Productivity Growth in the Manufacturing Sector of South Korea. World Rev. Sci. Technol. Sustain. Dev. 2004, 1, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.; Zheng, R.; Yu, D. Impact of industrial structure change on economic growth and fluctuation in China. Econ. Res. J. 2011, 5, 4–16. [Google Scholar]
- Soytas, U.; Sari, R. Energy Consumption, Economic Growth, and Carbon Emissions: Challenges Faced by an EU Candidate Member. Ecol. Econ. 2009, 68, 1667–1675. [Google Scholar] [CrossRef]
- Yuan, X.; Mu, R.; Zuo, J.; Wang, Q. Economic Development, Energy Consumption, and Air Pollution: A Critical Assessment in China. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 781–798. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, N. Impact of Human Health on Economic Growth under the Constraint of Environment Pollution. Technol. Forecast. Soc. Chang. 2021, 169, 120828. [Google Scholar] [CrossRef]
- Conrad, E.; Cassar, L.F. Decoupling Economic Growth and Environmental Degradation: Reviewing Progress to Date in the Small Island State of Malta. Sustainability 2014, 6, 6729–6750. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Wang, E.; Lu, X.; Chen, H.; Zhang, J. Research on the Calculation and Influencing Factors of the Green Development of Regional Industry in China. Reg. Econ. Dev. Res. 2020, 33–43. [Google Scholar] [CrossRef]
- Walz, R. Competences for Green Development and Leapfrogging in Newly Industrializing Countries. Int Econ Econ Policy 2010, 7, 245–265. [Google Scholar] [CrossRef]
- Jupesta, J.; Boer, R.; Parayil, G.; Harayama, Y.; Yarime, M.; de Oliveira, J.A.P.; Subramanian, S.M. Managing the Transition to Sustainability in an Emerging Economy: Evaluating Green Growth Policies in Indonesia. Environ. Innov. Soc. Transit. 2011, 1, 187–191. [Google Scholar] [CrossRef]
- Grillitsch, M.; Hansen, T. Green Industry Development in Different Types of Regions. Eur. Plan. Stud. 2019, 27, 2163–2183. [Google Scholar] [CrossRef] [Green Version]
- Morssy, A. Green Growth, Innovation and Sustainable Development. Int. J. Environ. Sustain. 2012, 1. [Google Scholar] [CrossRef]
- Bailey, I.; Caprotti, F. The Green Economy: Functional Domains and Theoretical Directions of Enquiry. Environ. Plan. A: Econ. Space 2014, 46, 1797–1813. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Li, M.; Pu, C. Study on the industrial structure optimization under constraint of energy intensity. Energy Environ. 2021, 32, 134–151. [Google Scholar] [CrossRef]
- Ning, G.; Zhao, J. The Empirical Analysis of China’s Industrial Structure Optimization Based on Resources and Environment Constraints. In Proceedings of the 2016 International Conference on Education, Management, Computer and Society, Shenyang, China, 1–3 January 2016; pp. 976–979. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 Emission Performance in Electricity Generation: A Non-Radial Directional Distance Function Approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Pastor, J.T.; Asmild, M.; Lovell, C.A.K. The Biennial Malmquist Productivity Change Index. Socio-Econ. Plan. Sci. 2011, 45, 10–15. [Google Scholar] [CrossRef]
Year | The Green Total Factor Productivity Index GNDDF | Technical Efficiency Index GNDDFEC | Technical Progress Index GNDDFTC |
---|---|---|---|
2001 | 1.00 | 0.99 | 1.01 |
2002 | 0.99 | 1.03 | 0.96 |
2003 | 0.99 | 1.00 | 0.99 |
2004 | 0.99 | 1.00 | 0.99 |
2005 | 1.00 | 1.06 | 0.94 |
2006 | 1.00 | 1.02 | 0.99 |
2007 | 1.00 | 1.01 | 0.99 |
2008 | 1.01 | 1.01 | 1.00 |
2009 | 1.01 | 1.00 | 1.01 |
2010 | 1.01 | 0.98 | 1.03 |
2011 | 1.00 | 0.98 | 1.02 |
2012 | 1.01 | 1.01 | 1.00 |
2013 | 1.03 | 1.02 | 1.01 |
2014 | 1.02 | 1.01 | 1.01 |
2015 | 1.04 | 1.02 | 1.02 |
2016 | 1.04 | 1.01 | 1.02 |
2017 | 1.04 | 0.91 | 1.14 |
2018 | 1.03 | 0.99 | 1.10 |
2019 | 1.04 | 0.97 | 1.09 |
Average | 1.01 | 1.00 | 1.01 |
Threshold | Fstat | Prob | Crit10 | Crit5 | Crit1 |
---|---|---|---|---|---|
Single | 1.93 | 0.830 | 10.787 | 13.196 | 19.829 |
Double | 12.64 | 0.090 | 12.150 | 14.420 | 18.410 |
Triple | 2.27 | 0.655 | 7.884 | 16.904 | 39.420 |
Model | Threshold | Lower | Upper |
---|---|---|---|
Th-1 | 0.661 | 0.624 | 0.671 |
Th-2 | 0.673 | 0.648 | 0.673 |
GTFP | Coef. | Std. Err. | t | p > |t| | [95% Conf. Interval] | |
---|---|---|---|---|---|---|
TS | –0.463 ** | 0.216 | −2.14 | 0.034 | −0.891 | −0.035 |
FI | 0.023 | 0.036 | 0.62 | 0.535 | −0.049 | 0.094 |
EDU | 1.282 *** | 0.322 | 3.98 | 0.000 | 0.644 | 1.920 |
IN | −0.475 *** | 0.083 | −5.7 | 0.000 | −0.640 | −0.310 |
CZ | 0.784 *** | 0.254 | 3.08 | 0.003 | 0.281 | 1.287 |
IP | −0.157 *** | 0.041 | −3.78 | 0.000 | −0.239 | −0.075 |
_cons | −6.171 *** | 0.908 | −6.8 | 0.000 | −7.969 | −4.374 |
R-squared | 0.439 | |||||
Hausman | 0.000 |
GTFP | Coef. | Std. Err. | t | p > |t| | [95% Conf. Interval] | |
---|---|---|---|---|---|---|
TS1 | −1.485 * | 0.791 | −1.88 | 0.063 | −3.051 | 0.080 |
TS2 | 11.625 *** | 2.785 | 4.17 | 0.000 | 6.110 | 17.140 |
TS3 | −0.394 * | 0.209 | −1.89 | 0.062 | −0.807 | 0.020 |
FI | 0.009 | 0.034 | 0.27 | 0.785 | −0.058 | 0.076 |
EDU | 1.186 *** | 0.301 | 3.95 | 0.000 | 0.591 | 1.781 |
IN | −0.477 *** | 0.077 | −6.17 | 0.000 | −0.631 | −0.324 |
CZ | 0.584 ** | 0.242 | 2.42 | 0.017 | 0.105 | 1.062 |
IP | −0.120 *** | 0.040 | −3 | 0.003 | −0.199 | −0.041 |
_cons | −5.171 *** | 0.884 | −5.85 | 0.000 | −6.921 | −3.421 |
R-squared | 0.524 |
GTFP | The Original Results | Replace Educational Levels | ||
---|---|---|---|---|
Coef. | t | Coef. | t | |
TS1 | −1.485 * | −1.88 | −1.828 ** | −2.19 |
TS2 | 11.625 *** | 4.17 | 11.991 *** | 4.05 |
TS3 | −0.394 * | −1.89 | −0.502 ** | −2.27 |
FI | 0.009 | 0.27 | 0.017 | 0.47 |
EDU | 1.186 *** | 3.95 | −0.040 | −0.42 |
IN | −0.477 *** | −6.17 | −0.467 *** | −5.21 |
CZ | 0.584 ** | 2.42 | 1.051 *** | 4.39 |
IP | −0.120 *** | −3 | −0.084 * | −1.7 |
Constant | −5.171 *** | −5.85 | −4.541 *** | −4.14 |
R-squared | 0.524 | 0.439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, G.; Yu, D.; Ke, L. An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas. Sustainability 2021, 13, 8154. https://doi.org/10.3390/su13158154
Liang G, Yu D, Ke L. An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas. Sustainability. 2021; 13(15):8154. https://doi.org/10.3390/su13158154
Chicago/Turabian StyleLiang, Gefu, Dajia Yu, and Lifei Ke. 2021. "An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas" Sustainability 13, no. 15: 8154. https://doi.org/10.3390/su13158154
APA StyleLiang, G., Yu, D., & Ke, L. (2021). An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas. Sustainability, 13(15), 8154. https://doi.org/10.3390/su13158154