The Impact of Climate Change Adaptation Strategies on Income and Food Security: Empirical Evidence from Small-Scale Fishers in Indonesia
Abstract
:1. Introduction
2. Literature Review
2.1. Climate Change and Small-Scale Fisher
2.1.1. Changing the Fishing Target
2.1.2. Changing of Fishing Time and Location
3. Material and Method
3.1. Data Collection
3.2. Measuring Income and Food Security
3.3. Empirical Framework
4. Result
4.1. Descriptive Statistics
4.2. Factors Affecting Fishers’ Adaptation to Climate Change
4.3. Impact of Adaptation Strategies on Income and Food Security
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldrian, E.; Djamil, Y.S. Spatio-temporal climatic change of rainfall in East Java Indonesia. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 435–448. [Google Scholar] [CrossRef]
- Avia, L.Q. Change in rainfall per-decades over Java Island, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Medan, Indonesia, 18–19 October 2019; p. 012037. [Google Scholar]
- Muskananfola, M.R.; Febrianto, S. Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System. Reg. Stud. Mar. Sci. 2020, 34, 101060. [Google Scholar] [CrossRef]
- Roessig, J.M.; Woodley, C.M.; Cech, J.J.; Hansen, L.J. Effects of global climate change on marine and estuarine fishes and fisheries. Rev. Fish Biol. Fish. 2004, 14, 251–275. [Google Scholar] [CrossRef]
- Bertrand, A.; Lengaigne, M.; Takahashi, K.; Avadí, A.; Poulain, F.; Harrod, C. El Niño Southern Oscillation (ENSO) effects on fisheries and aquaculture. FAO Fish. Aquac. Tech. Pap. 2020. [Google Scholar] [CrossRef]
- Grafton, R.Q. Adaptation to climate change in marine capture fisheries. Mar. Policy 2010, 34, 606–615. [Google Scholar] [CrossRef]
- Kleisner, K.M.; Fogarty, M.J.; McGee, S.; Hare, J.A.; Moret, S.; Perretti, C.T.; Saba, V.S. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 2017, 153, 24–36. [Google Scholar] [CrossRef]
- Asante, F.A.; Amuakwa-Mensah, F. Climate change and variability in Ghana: Stocktaking. Climate 2015, 3, 78–99. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, S.; Razafindrabe, B.H.N.; Shaw, R. Fishery livelihoods and adaptation to climate change: A case study of Chilika lagoon, India. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 339–355. [Google Scholar] [CrossRef]
- Oduniyi, O.S.; Tekana, S.S. Adoption of agroforestry practices and climate change mitigation strategies in North West province of South Africa. Int. J. Clim. Chang. Strateg. Manag. 2019. [Google Scholar] [CrossRef]
- Daw, T.; Adger, W.N.; Brown, K.; Badjeck, M.-C. Climate change and capture fisheries: Potential impacts, adaptation and mitigation. World Fish 2009. Available online: https://hdl.handle.net/20.500.12348/1339 (accessed on 15 July 2021).
- Colgan, C.S.; Merrill, S.B. The effects of climate change on economic activity in Maine: Coastal York County case study. Maine Policy Rev. 2008, 17, 66–79. [Google Scholar]
- Mabe, F.N.; Asase, A. Climate change adaptation strategies and fish catchability: The case of inland artisanal fishers along the Volta Basin in Ghana. Fish. Res. 2020, 230, 105675. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture: Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016. [Google Scholar]
- Fiorella, K.J.; Hickey, M.D.; Salmen, C.R.; Nagata, J.M.; Mattah, B.; Magerenge, R.; Cohen, C.R.; Bukusi, E.A.; Brashares, J.S.; Fernald, L.H. Fishing for food? Analyzing links between fishing livelihoods and food security around Lake Victoria, Kenya. Food Secur. 2014, 6, 851–860. [Google Scholar] [CrossRef]
- Taylor, S.F.; Roberts, M.J.; Milligan, B.; Ncwadi, R. Measurement and implications of marine food security in the Western Indian Ocean: An impending crisis? Food Secur. 2019, 11, 1395–1415. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.D.; Cisneros-Montemayor, A.; Hanich, Q.; Johnson, J.E.; Lehodey, P.; Moore, B.R.; Pratchett, M.S.; Reygondeau, G.; Senina, I.; Virdin, J. Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands. Mar. Policy 2018, 88, 303–314. [Google Scholar] [CrossRef]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Shaffril, H.A.M.; Samah, A.A.; D’Silva, J.L. Adapting towards climate change impacts: Strategies for small-scale fishermen in Malaysia. Mar. Policy 2017, 81, 196–201. [Google Scholar] [CrossRef]
- Abu Samah, A.; Shaffril, H.A.M.; Hamzah, A.; Abu Samah, B. Factors affecting small-scale fishermen’s adaptation toward the impacts of climate change: Reflections from Malaysian fishers. SAGE Open 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sereenonchai, S.; Arunrat, N. Fishers’ Decisions to Adopt Adaptation Strategies and Expectations for Their Children to Pursue the Same Profession in Chumphon Province, Thailand. Climate 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.S.; Jacobson, S.K.; Anold, H.; Mbonde, A.S.; O’Reilly, C.M. Adapting to change in inland fisheries: Analysis from Lake Tanganyika, East Africa. Reg. Environ. Chang. 2019, 19, 1765–1776. [Google Scholar] [CrossRef]
- Le Dang, H.; Li, E.; Nuberg, I.; Bruwer, J. Understanding farmers’ adaptation intention to climate change: A structural equa-tion modelling study in the Mekong Delta, Vietnam. Environ. Sci. Policy 2014, 41, 11–22. [Google Scholar] [CrossRef]
- Edwards, C.B.; Friedlander, A.; Green, A.; Hardt, M.; Sala, E.; Sweatman, H.; Williams, I.; Zgliczynski, B.; Sandin, S.; Smith, J. Global assessment of the status of coral reef herbivorous fishes: Evidence for fishing effects. Proc. R. Soc. B Biol. Sci. 2014, 281, 20131835. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Bruno, J.F. The impact of climate change on the world’s marine ecosystems. Science 2010, 328, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Badjeck, M.-C.; Allison, E.H.; Halls, A.S.; Dulvy, N.K. Impacts of climate variability and change on fishery-based livelihoods. Mar. Policy 2010, 34, 375–383. [Google Scholar] [CrossRef]
- Muringai, R.T.; Naidoo, D.; Mafongoya, P.; Lottering, S. The impacts of climate change on the livelihood and food security of small-scale fishers in Lake Kariba, Zimbabwe. J. Asian Afr. Stud. 2020, 55, 298–313. [Google Scholar] [CrossRef]
- Rizal, A.; Anna, Z. Climate change and its possible food security implications toward Indonesian marine and fisheries. World News Nat. Sci. Int. Sientific J. 2019, 22. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-e303250f-f51b-47b0-b935-b8917d2aa8dc (accessed on 13 July 2021).
- Barange, M.; Bahri, T.; Beveridge, M.C.; Cochrane, K.L.; Funge-Smith, S.; Poulain, F. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Currrent Knowledge, Adaptation and Mitigation Options; FAO: Rome, Italy, 2018. [Google Scholar]
- Bah, O.A.; Kone, T.; Yaffa, S.; Sawaneh, M.; Kone, D. Fishers’ perceptions of climate change on freshwater fisheries and the role of these systems in their adaptation strategy in Central River Region of the Gambia. Int. J. Agric. Environ. Res. 2018, 4, 321–340. [Google Scholar]
- Colgan, C.; Merrill, S.; Rubin, J. Energy Efficiency, Business Competitiveness, and Untapped Potential in Maine. Energy & the Environment 2008. Available online: https://digitalmaine.com/energy_docs/27/ (accessed on 13 July 2021).
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Belhabib, D.; Lam, V.W.; Cheung, W.W. Overview of West African fisheries under climate change: Impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy 2016, 71, 15–28. [Google Scholar] [CrossRef]
- McIlgorm, A.; Hanna, S.; Knapp, G.; Le Floc’H, P.; Millerd, F.; Pan, M. How will climate change alter fishery governance? Insights from seven international case studies. Mar. Policy 2010, 34, 170–177. [Google Scholar] [CrossRef]
- Andrade, H. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fish. Oceanogr. 2003, 12, 10–18. [Google Scholar] [CrossRef]
- Stenevik, E.K.; Sundby, S. Impacts of climate change on commercial fish stocks in Norwegian waters. Mar. Policy 2007, 31, 19–31. [Google Scholar] [CrossRef]
- Dulvy, N.; Chassot, E.; Hyemans, J.; Hyde, K.; Pauly, D. Climate change, ecosystem variability and fisheries productivity. Remote Sens. Fish. Aquac. Soc. Benefits IOCCG Rep. 2009, 8, 11–28. [Google Scholar]
- Murawski, S. Climate change and marine fish distributions: Forecasting from historical analogy. Trans. Am. Fish. Soc. 1993, 122, 647–658. [Google Scholar] [CrossRef]
- Comte, L.; Buisson, L.; Daufresne, M.; Grenouillet, G. Climate-induced changes in the distribution of freshwater fish: Observed and predicted trends. Freshw. Biol. 2013, 58, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Last, P.R.; White, W.T.; Gledhill, D.C.; Hobday, A.J.; Brown, R.; Edgar, G.J.; Pecl, G. Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Glob. Ecol. Biogeogr. 2011, 20, 58–72. [Google Scholar] [CrossRef]
- Townhill, B.L.; Radford, Z.; Pecl, G.; van Putten, I.; Pinnegar, J.K.; Hyder, K. Marine recreational fishing and the implications of climate change. Fish Fish. 2019, 20, 977–992. [Google Scholar] [CrossRef] [Green Version]
- Kusuma, D.; Murdimanto, A.; Aden, L.; Sukresno, B.; Jatisworo, D.; Hanintyo, R. Sea surface temperature dynamics in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, 27–28 September 2017; p. 012038. [Google Scholar]
- Sriyanti, M.G. Indonesia Climate Change Sectoral Roadmap-ICCSR; BAPPENAS: Jakarta, Indonesia, 2010. [Google Scholar]
- WFP. Food Consumption Analysis: Calculation and Use of the Food Consumption Score in Food Security Analysis; WFP: Rome, Italy, 2008. [Google Scholar]
- Hasanah, A.; Mendolia, S.; Yerokhin, O. Labour migration, food expenditure, and household food security in eastern indonesia. Econ. Rec. 2017, 93, 122–143. [Google Scholar] [CrossRef]
- Isaura, E.R.; Chen, Y.-C.; Yang, S.-H. Pathways from food consumption score to cardiovascular disease: A seven-year follow-up study of indonesian adults. Int. J. Environ. Res. Public Health 2018, 15, 1567. [Google Scholar] [CrossRef] [Green Version]
- Toiba, H.; Nugroho, T.W.; Retnoningsih, D.; Rahman, M.S. Food system transformation and its impact on smallholder farmers’ income and food security in Indonesia. Cogent Econ. Financ. 2020, 8, 1854412. [Google Scholar] [CrossRef]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Seo, S.N. An analysis of public adaptation to climate change using agricultural water schemes in South America. Ecol. Econ. 2011, 70, 825–834. [Google Scholar] [CrossRef]
- Becerril, J.; Abdulai, A. The impact of improved maize varieties on poverty in Mexico: A propensity score-matching approach. World Dev. 2010, 38, 1024–1035. [Google Scholar] [CrossRef]
- Yamashita, Y.; Matsushita, Y.; Azuno, T. Catch performance of coastal squid jigging boats using LED panels in combination with metal halide lamps. Fish. Res. 2012, 113, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Owusu, V.; Ma, W.; Renwick, A.; Emuah, D. Does the use of climate information contribute to climate change adaptation? Evidence from Ghana. Clim. Dev. 2020, 1–14. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.Y.; Vlek, P.L.; MacCarthy, D.S. Farmers’ perception and adaptation to climate change: A case study of Sekyedumase district in Ghana. Environ. Dev. Sustain. 2012, 14, 495–505. [Google Scholar] [CrossRef]
- Mulwa, C.; Marenya, P.; Kassie, M. Response to climate risks among smallholder farmers in Malawi: A multivariate probit assessment of the role of information, household demographics, and farm characteristics. Clim. Risk Manag. 2017, 16, 208–221. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Prokopy, L.S.; Haigh, T.; Hobbs, J.; Knoot, T.; Knutson, C.; Loy, A.; Mase, A.S.; McGuire, J.; Morton, L.W. Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States. Clim. Chang. 2013, 117, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Gc, A.; Yeo, J.-H. Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model. Science 2020, 2, 87. [Google Scholar] [CrossRef]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Determinants of adaptation practices to climate change by Chepang households in the rural Mid-Hills of Nepal. Reg. Environ. Chang. 2013, 13, 437–447. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Diouf, N.S.; Ouédraogo, M.; Ndiaye, O.; Zougmoré, R.B. Closing the gap between climate information producers and users: Assessment of needs and uptake in Senegal. Climate 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Zougmoré, R.; Partey, S.; Ouédraogo, M.; Omitoyin, B.; Thomas, T.; Ayantunde, A.; Ericksen, P.; Said, M.; Jalloh, A. Toward climate-smart agriculture in West Africa: A review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agric. Food Secur. 2016, 5, 26. [Google Scholar] [CrossRef]
- Asayehegn, K. Farmers’ perception on climate change adaptation strategies: A case study from the irrigation schemes of Central Tigray Regional State, Ethiopia. Erud. J. Microbiol. Biodivers. 2012, 1, 1–6. [Google Scholar]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Coulthard, S. Adapting to environmental change in artisanal fisheries—Insights from a South Indian Lagoon. Global Environ. Chang. 2008, 18, 479–489. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Hoang, V.-N.; Lee, B. Farmers’ adaptation to climate change, its determinants and impacts on rice yield in Nepal. Ecol. Econ. 2018, 144, 139–147. [Google Scholar] [CrossRef]
- Uddin, M.N.; Bokelmann, W.; Entsminger, J.S. Factors affecting farmers’ adaptation strategies to environmental degradation and climate change effects: A farm level study in Bangladesh. Climate 2014, 2, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Yegbemey, R.N.; Yabi, J.A.; Tovignan, S.D.; Gantoli, G.; Kokoye, S.E.H. Farmers’ decisions to adapt to climate change under various property rights: A case study of maize farming in northern Benin (West Africa). Land Use Policy 2013, 34, 168–175. [Google Scholar] [CrossRef]
- Dey, M.M.; Gosh, K.; Valmonte-Santos, R.; Rosegrant, M.W.; Chen, O.L. Economic impact of climate change and climate change adaptation strategies for fisheries sector in Solomon Islands: Implication for food security. Mar. Policy 2016, 67, 171–178. [Google Scholar] [CrossRef]
- Lam, V.W.; Cheung, W.W.; Reygondeau, G.; Sumaila, U.R. Projected change in global fisheries revenues under climate change. Sci. Rep. 2016, 6, 32607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, V.W.; Cheung, W.W.; Sumaila, U.R. Marine capture fisheries in the Arctic: Winners or losers under climate change and ocean acidification? Fish Fish. 2016, 17, 335–357. [Google Scholar] [CrossRef]
- Amare, A.; Simane, B. Does adaptation to climate change and variability provide household food security? Evidence from Muger sub-basin of the upper Blue-Nile, Ethiopia. Ecol. Process. 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
Variable | Definition | Percentage | Mean | Std. Dev | Minimal | Maximal |
---|---|---|---|---|---|---|
Treatment Variable | ||||||
Adaptation | 1 if the fisher applied adaptation (changing the fishing gear, and change the fishing time and location) 0 otherwise | 45.900 | 0.500 | 0.000 | 1.000 | |
Control variables | ||||||
Fishing gear | Total fishing gear owned by fisher (unit) | 6.224 | 2.801 | 2.000 | 20.000 | |
Fishing tool | Total fishing tool owned by fisher (unit) | 4.006 | 2.740 | 0.000 | 10.000 | |
Saving | Saving owned (US$) | 217.110 | 202.251 | 7.008 | 1100.213 | |
Access to credit | Dummy, 1 if fisher had access to credit (micro finance, cooperative, and bank); 0 otherwise | 55.900 | 0.498 | 0.000 | 1.000 | |
Fisher group | Dummy, 1 if fisher participated in fisher group; 0 otherwise | 50.000 | 0.501 | 0.000 | 1.000 | |
Climate information | Dummy, 1 if fisher had climate information access (wind speed, wave level, temperature, and rain intensity); 0 otherwise | 49.400 | 0.501 | 0.000 | 1.000 | |
Social activity | Dummy, 1 if fisher participated in social activity (cultural, and religion activity); 0 otherwise | 79.400 | 0.406 | 0.000 | 1.000 | |
Length of the trips | Fisher time in fishing activity (hours) | 213.171 | 76.369 | 70.000 | 370.000 | |
Distance trip | Distance to the fishing ground (Km) | 6.734 | 3.376 | 1.000 | 20.000 | |
Age | Age of Fisher (in years) | 47.965 | 10.872 | 25.000 | 81.000 | |
Education | Fisher education level (in years) | 7.571 | 3.593 | 0.000 | 12.000 | |
Experience | Experience in fishing activities (in years) | 26.453 | 13.230 | 3.000 | 59.000 | |
Household size | Total family member | 3.459 | 0.986 | 1.000 | 6.000 | |
Boat | the size of the boat used by the fisher (gross tonnage) | 4.171 | 0.901 | 1.500 | 5.000 | |
Outcome Variables | ||||||
Income | Fishers’ income (US$/Month) | 189.357 | 96.757 | 70.077 | 1149.267 | |
Food Consumption Score | Aggregates household-level data on the diversity and frequency of food groups consumed | 32.876 | 2.443 | 23.000 | 39.000 |
Variable | Adaptation (n = 78) | Non Adaptation (n = 92) | t-Value | ||
---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | ||
Fishing gear (unit) | 7.385 | 3.063 | 5.239 | 2.119 | 5.372 *** |
Fishing tool (unit) | 5.128 | 0.301 | 3.054 | 0.255 | 5.296 *** |
Saving (US$) | 320.054 | 218.962 | 129.831 | 136.433 | 6.903 *** |
Access to credit (dummy) | 0.872 | 0.336 | 0.293 | 0.458 | 9.238 *** |
Fisher group (dummy) | 0.833 | 0.375 | 0.217 | 0.415 | 10.079 *** |
Climate information (dummy) | 0.782 | 0.416 | 0.250 | 0.435 | 8.107 *** |
Social activity (dummy) | 0.923 | 0.268 | 0.685 | 0.467 | 3.982 *** |
Length of the trips (hours) | 221.269 | 82.042 | 206.304 | 70.936 | 1.276 * |
Distance trip (km) | 5.165 | 2.337 | 8.065 | 3.558 | −6.156 *** |
Age (years) | 46.167 | 10.326 | 49.489 | 11.143 | −2.003 ** |
Education (years) | 9.808 | 2.634 | 5.674 | 3.190 | 9.110 *** |
Experience (years) | 22.808 | 13.258 | 29.543 | 12.461 | −3.410 *** |
Household size (person) | 3.424 | 1.051 | 3.500 | 0.908 | 0.500 |
Boat size (gross tonnage) | 3.987 | 1.022 | 4.326 | 0.754 | −2.482 *** |
Income (US$) | 225.451 | 53.126 | 158.755 | 113.731 | 4.756 *** |
Food Consumption Score (FCS) | 33.628 | 2.380 | 32.239 | 2.322 | 3.842 *** |
Variable | Coef. | Std. Err | z | p > |z| |
---|---|---|---|---|
Fishing gear (unit) | −0.005 | 0.060 | −0.090 | 0.927 |
Fishing tool (unit) | 0.063 | 0.055 | 1.150 | 0.250 |
Saving (UDS) | −2.04 × 10−8 | 6.33 × 10−8 | −0.320 | 0.747 |
Access to credit (dummy) | 0.785 | 0.350 | 2.240 | 0.025 ** |
Fisher group (dummy) | 0.814 | 0.338 | 2.410 | 0.016 ** |
Climate information (dummy) | 0.665 | 0.333 | 2.000 | 0.046 ** |
Social activity (dummy) | 0.351 | 0.437 | 0.800 | 0.422 |
Length of the trips (hours) | 0.002 | 0.002 | 0.830 | 0.404 |
Distance trip (km) | −0.075 | 0.054 | −1.400 | 0.162 |
Age (years) | −0.039 | 0.016 | −2.430 | 0.015 ** |
Education (years) | 0.108 | 0.051 | 2.100 | 0.036 ** |
Experience (years) | 0.021 | 0.015 | 1.410 | 0.158 |
Household size (person) | 0.126 | 0.146 | 0.860 | 0.388 |
Boat size (gross tonnage) | −0.205 | 0.164 | −1.250 | 0.211 |
_cons | −0.781 | 1.388 | −0.560 | 0.574 |
The number of obs | 170 | |||
LR chi2(12) | 121.060 | |||
Prob. > chi2 | 0.000 | |||
Pseudo R2 | 0.516 |
Matching Algorithm | Outcome | Treated | Control | ATT | Std. Err | t-Value |
---|---|---|---|---|---|---|
Nearest neighbor Matching | Income | 78 | 17 | 45.27 | 8.479 | 5.353 *** |
FCS | 78 | 17 | 2.974 | 0.381 | 7.811 *** | |
Kernel-based matching | Income | 78 | 44 | 39.594 | 25.788 | 1.536 ** |
FCS | 78 | 44 | 2.698 | 0.692 | 3.897 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Toiba, H.; Huang, W.-C. The Impact of Climate Change Adaptation Strategies on Income and Food Security: Empirical Evidence from Small-Scale Fishers in Indonesia. Sustainability 2021, 13, 7905. https://doi.org/10.3390/su13147905
Rahman MS, Toiba H, Huang W-C. The Impact of Climate Change Adaptation Strategies on Income and Food Security: Empirical Evidence from Small-Scale Fishers in Indonesia. Sustainability. 2021; 13(14):7905. https://doi.org/10.3390/su13147905
Chicago/Turabian StyleRahman, Moh. Shadiqur, Hery Toiba, and Wen-Chi Huang. 2021. "The Impact of Climate Change Adaptation Strategies on Income and Food Security: Empirical Evidence from Small-Scale Fishers in Indonesia" Sustainability 13, no. 14: 7905. https://doi.org/10.3390/su13147905