Do Tourism Activities and Urbanization Drive Material Consumption in the OECD Countries? A Quantile Regression Approach
Abstract
:1. Introduction
- (a)
- Is economic expansion positively associated with domestic material consumption in OECD countries?
- (b)
- Is urbanization positively associated with domestic material consumption in OECD countries?
- (c)
- Is tourism development positively associated with domestic material consumption in OECD countries?
2. Literature Review
2.1. Domestic Material Consumption
2.2. DMC and Economic Expansion
2.3. DMC and Urbanization
2.4. DMC and Tourism Development
3. Materials and Methods
3.1. Data Description
3.2. Empirical Method
Quantile Regression
4. Results
5. Conclusions
5.1. Policy
5.2. Limitation and Recommendation for Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | LDMCC | LGDPC | LTOU | LURB |
---|---|---|---|---|
LDMCC | 1.00 | |||
LGDPC | −0.16 A | 1.00 | ||
LTOU | −0.26 A | 0.12 A | 1.00 | |
LURB | −0.14 A | 0. 60 A | 0.01 | 1.00 |
References
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H. Methodology and indicators of economy-wide material flow accounting: State of the art and reliability across sources. J. Ind. Ecol. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- European Commission. Roadmap to a Resource Efficient Europe (Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions No. COM(2011) 571 Final); European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Mezger, G.; del Tánago, M.G.; De Stefano, L. Environmental flows and the mitigation of hydrological alteration downstream from dams: The Spanish case. J. Hydrol. 2020, 598, 125732. [Google Scholar]
- Dong, L.; Dai, M.; Liang, H.; Zhang, N.; Mancheri, N.; Ren, J.; Dou, Y.; Hu, M. Material flows and resource productivity in China, South Korea and Japan from 1970 to 2008: A transitional perspective. J. Clean. Prod. 2017, 141, 1164–1177. [Google Scholar] [CrossRef]
- OECD. Material Resources, Productivity and the Environment: Key Findings; OECD: Paris, France, 2013. [Google Scholar]
- Telega, I.; Telega, A. Driving factors of material consumption in European countries—Spatial panel data analysis. J. Environ. Econ. Policy 2019, 9, 269–280. [Google Scholar] [CrossRef]
- OECD. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences; OECD: Paris, France, 2018. [Google Scholar]
- OECD/European Commission. Cities in the World: A New Perspective on Urbanisation; OECD/European Commission: Paris, France, 2020. [Google Scholar]
- OECD. OECD Tourism Trends and Policies 2020; OECD: Paris, France, 2020; ISBN 9789264703148. [Google Scholar]
- Lasisi, T.T.; Alola, A.A.; Eluwole, K.K.; Ozturen, A.; Alola, U.V. The environmental sustainability effects of income, labour force, and tourism development in OECD countries. Environ. Sci. Pollut. Res. 2020, 27, 21231–21242. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Material Flow Accounts and Resource Productivity. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Material_flow_accounts_and_resource_productivity (accessed on 15 May 2021).
- United Nations. Domestic Material Consumption; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Steinberger, J.K.; Krausmann, F. Material and energy productivity. Environ. Sci. Technol. 2011, 45, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Schandl, H.; Hatfield-Dodds, S.; Wiedmann, T.; Geschke, A.; Cai, Y.; West, J.; Newth, D.; Baynes, T.; Lenzen, M.; Owen, A. Decoupling global environmental pressure and economic growth: Scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 2016, 132, 45–56. [Google Scholar] [CrossRef]
- Ivanova, D.; Stadler, K.; Steen-Olsen, K.; Wood, R.; Vita, G.; Tukker, A.; Hertwich, E.G. Environmental impact assessment of household consumption. J. Ind. Ecol. 2016, 20, 526–536. [Google Scholar] [CrossRef]
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; Schaffartzik, A. Global material flows and resource productivity: Forty years of evidence. J. Ind. Ecol. 2018, 22, 827–838. [Google Scholar] [CrossRef]
- Tukker, A.; Jansen, B. Environmental impacts of products: A detailed review of studies. J. Ind. Ecol. 2006, 10, 159–182. [Google Scholar] [CrossRef]
- Malik, K.; Rahman, S.M.; Khondaker, A.N.; Abubakar, I.R.; Aina, Y.A.; Hasan, M.A. Renewable energy utilization to promote sustainability in GCC countries: Policies, drivers, and barriers. Environ. Sci. Pollut. Res. 2019, 26, 20798–20814. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-Y.; Gao, M.; Kim, H.; Shah, K.J.; Pei, S.-L.; Chiang, P.-C. Advances and challenges in sustainable tourism toward a green economy. Sci. Total Environ. 2018, 635, 452–469. [Google Scholar] [CrossRef] [PubMed]
- Schaffartzik, A.; Duro, J.A.; Krausmann, F. Global appropriation of resources causes high international material inequality—Growth is not the solution. Ecol. Econ. 2019, 163, 9–19. [Google Scholar] [CrossRef]
- Arranz, A.M. Lessons from the past for sustainability transitions? A meta-analysis of socio-technical studies. Glob. Environ. Chang. 2017, 44, 125–143. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Causal effect of environmental factors, economic indicators and domestic material consumption using frequency domain causality test. Sci. Total Environ. 2020, 736, 139602. [Google Scholar] [CrossRef]
- Canas, A.; Ferrao, P.; Conceicao, P. A new environmental Kuznets curve? Relationship between direct material input and income per capita: Evidence from industrialised countries. Ecol. Econ. 2003, 46, 217–229. [Google Scholar] [CrossRef]
- Bringezu, S.; Schütz, H.; Steger, S.; Baudisch, J. International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 2004, 51, 97–124. [Google Scholar] [CrossRef]
- Vehmas, J.; Luukkanen, J.; Kaivo-Oja, J. Linking analyses and environmental Kuznets curves for aggregated material flows in the EU. J. Clean. Prod. 2007, 15, 1662–1673. [Google Scholar] [CrossRef]
- Steinberger, J.K.; Krausmann, F.; Getzner, M.; Schandl, H.; West, J. Development and dematerialization: An international study. PLoS ONE 2013, 8, e70385. [Google Scholar] [CrossRef] [Green Version]
- Steinberger, J.K.; Krausmann, F.; Eisenmenger, N. Global patterns of materials use: A socioeconomic and geophysical analysis. Ecol. Econ. 2010, 69, 1148–1158. [Google Scholar] [CrossRef]
- Steger, S.; Bleischwitz, R. Drivers for the use of materials across countries. J. Clean. Prod. 2011, 19, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Schaffartzik, A.; Mayer, A.; Gingrich, S.; Eisenmenger, N.; Loy, C.; Krausmann, F. The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Glob. Environ. Chang. 2014, 26, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giljum, S.; Dittrich, M.; Lieber, M.; Lutter, S. Global patterns of material flows and their socio-economic and environmental implications: A MFA study on all countries world-wide from 1980 to 2009. Resources 2014, 3, 319–339. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittrich, M.; Giljum, S.; Lutter, S.; Polzin, C. Green Economies around the World. Implications of Resource Use for Development and the Environment; SERI: Vienna, Austria, 2012. [Google Scholar]
- Piña, W.H.A.; Martínez, C.I.P. Urban material flow analysis: An approach for Bogotá, Colombia. Ecol. Indic. 2014, 42, 32–42. [Google Scholar] [CrossRef]
- Decker, E.H.; Elliott, S.; Smith, F.A.; Blake, D.R.; Rowland, F.S. Energy and material flow through the urban ecosystem. Annu. Rev. Energy Environ. 2000, 25, 685–740. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Yu, X. Urban weight and its driving forces: A case study of Beijing. Sci. Total Environ. 2019, 658, 590–601. [Google Scholar] [CrossRef]
- Liu, W.; Chang, A.C.; Chen, W.; Zhou, W.; Feng, Q. A framework for the urban eco-metabolism model-Linking metabolic processes to spatial patterns. J. Clean. Prod. 2017, 165, 168–176. [Google Scholar] [CrossRef]
- Moore, J.; Kissinger, M.; Rees, W.E. An urban metabolism and ecological footprint assessment of Metro Vancouver. J. Environ. Manag. 2013, 124, 51–61. [Google Scholar] [CrossRef]
- Sahely, H.R.; Dudding, S.; Kennedy, C.A. Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Can. J. Civ. Eng. 2003, 30, 468–483. [Google Scholar] [CrossRef]
- Barles, S. Urban metabolism of Paris and its region. J. Ind. Ecol. 2009, 13, 898–913. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- He, L.; Zha, J.; Loo, H.A. How to improve tourism energy efficiency to achieve sustainable tourism: Evidence from China. Curr. Issues Tour. 2020, 23. [Google Scholar] [CrossRef]
- Alola, A.A.; Eluwole, K.K.; Alola, U.V.; Lasisi, T.T.; Avci, T. Environmental quality and energy import dynamics: The tourism perspective of the coastline Mediterranean countries (CMCs). Manag. Environ. Qual. 2019. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Bekun, F.V. Modelling the interaction between tourism, energy consumption, pollutant emissions and urbanization: Renewed evidence from panel VAR. Environ. Sci. Pollut. Res. 2020, 27, 38881–38900. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Lasisi, T.T.; Uzuner, G.; Akadiri, A.C. Examining the causal impacts of tourism, globalization, economic growth and carbon emissions in tourism island territories: Bootstrap panel Granger causality analysis. Curr. Issues Tour. 2020, 23, 470–484. [Google Scholar] [CrossRef]
- Uzuner, G.; Akadiri, S.S.; Lasisi, T.T. The asymmetric relationship between globalization, tourism, CO2 emissions and economic growth in Turkey: Implications for environmental policy making. Environ. Sci. Pollut. Res. 2020, 27, 32742–32753. [Google Scholar] [CrossRef]
- Eluwole, K.K.; Akadiri, S.S.; Alola, A.A.; Etokakpan, M.U. Does the interaction between growth determinants a drive for global environmental sustainability? Evidence from world top 10 pollutant emissions countries. Sci. Total Environ. 2020, 705, 135972. [Google Scholar] [CrossRef]
- Giljum, C.P.S.; Dittrich, S.B.M. Resource Use and Resource Efficiency in Emerging Economies: A Pilot Study on Trends over the Past 25 Years; Sustainable Europe Research Institute: Vienna, Austria, 2011. [Google Scholar]
- Grübler, A.; Nakićenović, N.; Victor, D.G. Dynamics of energy technologies and global change. Energy Policy 1999, 27, 247–280. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Dincer, O.C.; Payne, J.E. The relationship between corruption and income inequality in US states: Evidence from a panel cointegration and error correction model. Public Choice 2010, 145, 125–135. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Ozturk, I.; Aslan, A.; Kalyoncu, H. Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries. Energy Policy 2010, 38, 4422–4428. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. Energy Econ. 2013, 36, 262–267. [Google Scholar] [CrossRef]
- Uddin, M.M.M. What are the dynamic links between agriculture and manufacturing growth and environmental degradation? Evidence from different panel income countries. Environ. Sustain. Indic. 2020, 7, 100041. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A.; York, R. Driving the human ecological footprint. Front. Ecol. Environ. 2007, 5, 13–18. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Moran, D. The footprint of using metals: New metrics of consumption and productivity. Environ. Econ. Policy Stud. 2015, 17, 369–388. [Google Scholar] [CrossRef]
- Baynes, T.M.; Musango, J.K. Estimating current and future global urban domestic material consumption. Environ. Res. Lett. 2018, 13, 65012. [Google Scholar] [CrossRef]
- Asongu, S.A.; Odhiambo, N.M. How enhancing information and communication technology has affected inequality in Africa for sustainable development: An empirical investigation. Sustain. Dev. 2019, 27, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Asongu, S.A.; Odhiambo, N.M. Basic formal education quality, information technology, and inclusive human development in sub-Saharan Africa. Sustain. Dev. 2019, 27, 419–428. [Google Scholar] [CrossRef]
- Mosteller, F.; Tukey, J.W. Data Analysis and Regression: A Second Course in Statistics; Addison-Wesley: Boston, MA, USA, 1977. [Google Scholar]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Hansen, B.E. Statistical inference in instrumental variables regression with I (1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Bianchi, M.; Tapia, C.; del Valle, I. Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method. J. Ind. Ecol. 2020, 24, 1074–1087. [Google Scholar] [CrossRef]
- Marco, V.; Baggio, R. Italian tourism intermediaries: A social network analysis exploration. Curr. Issues Tour. 2021, 24, 1270–1283. [Google Scholar]
Reference | Year | Country | Variables | Outcome |
---|---|---|---|---|
Canas, Ferrao, and Conceicao [21] | 1960–1998 | 16 industrialized countries | Direct Material Input (DMI) per capita, Gross Domestic Product (GDP) per capita | Inverted-U, or quadratic relationship between DMI and GDP. |
Vehmas, Luukkanen, and Kaivo-Oja [23] | 1980–2000 | 15 EU countries | Direct Material Input (DMI) per capita, Gross Domestic Product (GDP) per capita | A weak de-linking of material flows from economic growth. |
Steinberger, Krausmann, Getzner, Schandl, and West [24] | 1970–2005 | 39 developing and developed countries | Direct Material Input (DMI) per capita, Gross Domestic Product (GDP) per capita | A weak indication for an EKC of DMC as well as an inverted U-shaped association between DMC per capita and GDP per capita |
Moore, Kissinger, and Rees [35] | 2006 | Metro Vancouver (North America) | Urban metabolism, CO2 emissions | Food, transportation, and buildings are the largest components of the footprint. |
Barles [37] | 2003 | France | DMC, Domestic Material Input, Domestic Material Output, and Local and Exported Processed Output | A significant relationship between material flows and regional and urban planning and development. |
Li et al. [33] | 2000-2015 | Beijing | Total Material Consumption, GDP | “Tourism development and construction activity leading up to the Olympic Games attracted a large inflow of migrant workers.” “The resulting huge resource consumption and waste emission:” |
Giljum and Dittrich [47] | 1985–2005 | 16 countries in Africa, Asia and Latin America | DMC, CO2 emissions, GDP | Seychelles’ primary industry is tourism and due to the rapid expansion of tourism, the material consumption of the country has experienced a high growth rate. |
Variable | Description and Unit | Source |
---|---|---|
Domestic Material Consumption | Materials used domestically by the economy (measured in tonnes) 1 | OECD |
Per capita (DMCC) | ||
Gross domestic product | Proxy for income per capita and measured as constant 2010 U.S. dollars | WDI |
per capita (GDPC) | Computed as GDP per capita divided by mid-year country population | |
International tourism arrivals (TOU) | The number of international inbound tourists that have travelled to another country other than the usual country of residence | WDI |
Urbanization rate (URB) | Urban population rate refers to people living in urban areas as (% of total population) | |
Common Statistics | Mean, Minimum, Maximum, Standard Dev, Skewness, Kurtosis | Jarque-Bera |
LDMCC | 13.840, 32.325, 0.891, 6.507, 0.084, 3.220, 1.688 | |
LGDPC | 47,602.56, 3955.276, 315,349.5, 50,180.31, 2.599, 10.803, 1930.38 A | |
LTOU | 43,515,943, 509,000, 1.826 × 109, 1.91 × 108, 5.370, 30.270, 18,861.20 A | |
LURB | 74.313, 50.754, 97.919, 12.318, 0.234, 2.052, 24.556 A | |
Observation for the series is 527 | ||
Experimental period: 1995-2016 |
Variable (Level) | LLC | IPS | ADF-Fisher | PP-Fisher |
LDMCC | −1.79 B | −0.70 | 72.29 | 99.06 A |
LGDPC | −6.35 A | −1.38 C | 65.66 | 108.83 A |
LTOU | 3.04 | 6.00 | 29.07 | 25.52 |
LURB | −73.19 A | −34.45 A | 224.46 A | 807.13 A |
Variable (Δ) | LLC | IPS | ADF-Fisher | PP-Fisher |
LDMCC | −9.32 A | −8.73 A | 189.90 A | 384.69 A |
LGDPC | −8.34 A | −5.47 A | 129.36 A | 157.75 A |
LTOU | −5.92 A | −6.42 A | 144.11 A | 233.94 A |
LURB | −1.25 | −6.63 A | 100.25 A | 193.01 A |
Pedroni Residual Cointegration Test | ||||
Within Dimension | Between Dimension | |||
T-Statistic | Weighted Statistic | T-Statistic | ||
Group rho-Statistic | 0.83 | 0.35 | 1.87 | |
Panel rho-Statistic | −2.73 A | 0.38 | −11.93 A | |
Group PP-Statistic | −12.31 A | −6.68 A | −3.07 A | |
Group ADF-Statistic | −8.83 A | −3.99 A | ||
Kao Residual Cointegration | ||||
T-Statistic | ||||
ADF | −1.96 B |
Variable | OLS | FMOLS (Pooled) | Dynamic (Pooled) | ||||||
LGDPC | 0.26 A | 0.29 A | 0.29 B | ||||||
LURB | −1.26 A | −1.73 A | −0.09 | ||||||
LURB | 3.61 A | 2.08 A | 2.47 | ||||||
LTOU | −0.11 A | −0.07 A | −0.09 | ||||||
Quantile Regression | |||||||||
Variable | 10th | 20th | 30th | 40th | 50th | 60th | 70th | 80th | 90th |
LGDPC | 0.57 A | 0.01 | −0.02 A | 0.07 C | 0.11 A | 0.14 A | 0.15 A | 0.18 A | 0.21 A |
LURB | −4.22 A | −0.56 | −0.42 C | −0.26 B | −0.20 B | −0.27 A | −0.35 A | −0.05 A | 0.32 B |
LTOU | 3.31 A | 3.22 A | 3.53 A | 3.51 A | 3.51 A | 3.33 A | 3.22 A | 3.14 A | 3.24 A |
LTOUsq | −0.10 A | −0.10 A | −0.11 A | −0.11 A | −0.11 A | −0.11 A | −0.10 A | −0.10 A | −0.11 A |
Constant | −12.81 A | −21.26 A | −23.98 A | −24.88 A | −25.23 A | −23.51 A | −22.20 A | −22.97 A | 25.15 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasisi, T.T.; Eluwole, K.K.; Alola, U.V.; Aldieri, L.; Vinci, C.P.; Alola, A.A. Do Tourism Activities and Urbanization Drive Material Consumption in the OECD Countries? A Quantile Regression Approach. Sustainability 2021, 13, 7742. https://doi.org/10.3390/su13147742
Lasisi TT, Eluwole KK, Alola UV, Aldieri L, Vinci CP, Alola AA. Do Tourism Activities and Urbanization Drive Material Consumption in the OECD Countries? A Quantile Regression Approach. Sustainability. 2021; 13(14):7742. https://doi.org/10.3390/su13147742
Chicago/Turabian StyleLasisi, Taiwo Temitope, Kayode Kolawole Eluwole, Uju Violet Alola, Luigi Aldieri, Concetto Paolo Vinci, and Andrew Adewale Alola. 2021. "Do Tourism Activities and Urbanization Drive Material Consumption in the OECD Countries? A Quantile Regression Approach" Sustainability 13, no. 14: 7742. https://doi.org/10.3390/su13147742
APA StyleLasisi, T. T., Eluwole, K. K., Alola, U. V., Aldieri, L., Vinci, C. P., & Alola, A. A. (2021). Do Tourism Activities and Urbanization Drive Material Consumption in the OECD Countries? A Quantile Regression Approach. Sustainability, 13(14), 7742. https://doi.org/10.3390/su13147742