Vitamins and Minerals in Four Traditional Garlic Ecotypes (Allium sativum L.) from Italy: An Example of Territorial Biodiversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Procedures
2.2.1. Quality Assurance
2.2.2. Minerals and Oligo-Elements
2.2.3. Vitamins
- Sample preparation vitamin C
- Sample preparation B vitamins
- Chromatographic determination
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, X.F.; Zhang, Y. Myanmar Typical Vegetables; University of Science and Technology of China Press: Hefei, China, 2018. [Google Scholar]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Maggini, S.; Maldonado, P.; Cardim, P.; Fernandez Newball, C.; Sota Latino, E.R. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Min. 2017, 6, 1318–2376. [Google Scholar] [CrossRef]
- Moreb, N.A.; Albandary, A.; Jaiswal, S.; Jaiswal, A.K. Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups. Foods 2021, 10, 389. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed.; Section 8.6, Vitamins are often Precursors to Coenzymes; W. H. Freeman: New York, NY, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22549/ (accessed on 5 April 2021).
- Deakin, V. Micronutrients. In Sport and Exercise Nutrition, 1st ed.; Lanham-New, S.A., Stear, S.J., Shirreffs, S.M., Collins, A.L., Eds.; Wiley-Blackwel: Oxford, UK, 2011; pp. 68–99. [Google Scholar]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trend. Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Watson, J.; Lee, M.; Garcia-Casal, M.N. Consequences of Inadequate Intakes of Vitamin A, Vitamin B12, Vitamin D, Calcium, Iron, and Folate in Older Persons. Curr. Geriatr. Rep. 2018, 7, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglione, D.; Platania, A.; Conti, A.; Falla, M.; D’Urso, M.; Marranzano, M. Dietary Micronutrient and Mineral Intake in the Mediterranean Healthy Eating, Ageing, and Lifestyle (MEAL) Study. Antioxidants 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asensi-Fabado, M.A.; Munne-Bosch, S. Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends Plant Sci. 2010, 15, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Ho, C.T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing meanings in food science and health science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef]
- Lykstad, J.; Sharma, S. Biochemistry, Water Soluble Vitamins. 12 April 2020. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538510/ (accessed on 21 September 2020).
- Reddy, P.; Jialal, I. Biochemistry, Fat Soluble Vitamins. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534869/ (accessed on 21 September 2020).
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Anuraj, H.S. 140—Mineral Deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Disease, 9th ed.; Magill, A.J., Hill, D.R., Solomon, T., Ryan, E.T., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2013; pp. 1003–1010. [Google Scholar]
- Giammarioli, S.; Boniglia, C.; Carratù, B.; Ciarrocchi, M.; Chiarotti, F.; Mosca, M.; Sanzini, E. Use of food supplements and determinants of usage in a sample Italian adult population. Public Health Nutr. 2013, 16, 1768–1781. [Google Scholar] [CrossRef] [Green Version]
- Ruel, M.T.; Alderman, H. Maternal and Child Nutrition Study Group. Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? Lancet 2013, 382, 536–551. [Google Scholar] [CrossRef] [Green Version]
- Peñafiel Anchundia, D.D.; Cevallos-Valdiviezo, H.; Espinel, R.; Van Damme, P. Local traditional foods contribute to diversity and species richness of rural women’s diet in Ecuador. Public Health Nutr. 2019, 22, 2962–2971. [Google Scholar] [CrossRef]
- Block, E. Garlic and Other Alliums: The Lore and the Science; Royal Society of Chemistry, RSC Publishing: Cambridge, UK, 2010; p. 759. [Google Scholar]
- Amagase, H.; Petesch, B.L. Garlic. Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: London, UK, 2003; pp. 2861–2864. ISBN 9780122270550. [Google Scholar]
- Petrovska, B.B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev. 2010, 4, 106–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivlin, R.S. Historical perspective on the use of garlic. J. Nutr. 2001, 131, 951S–954S. [Google Scholar] [CrossRef] [Green Version]
- Charu, K.; Yogita, S.; Sonali, S. Neutraceutical potential of organosulfur compounds in fresh garlic and garlic preparations. Int. J. Pharm. Bio. Sci. 2014, 5, 978–982. [Google Scholar]
- Botas, J.; Fernandes, Â.; Barros, L.; Alves, M.J.; Carvalho, A.M.; Ferreira, I.C.F.R. A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties. Molecules 2019, 24, 2194. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisciani, S.; Gambelli, L.; Durazzo, A.; Marconi, S.; Camilli, E.; Rossetti, C.; Gabrielli, P.; Aguzzi, A.; Temperini, O.; Marletta, L. Carbohydrates Components of Some Italian Local Landraces: Garlic (Allium sativum L.). Sustainability 2017, 9, 1922. [Google Scholar] [CrossRef] [Green Version]
- Patumraj, S.; Tewit, S.; Amatyakul, S.; Jariyapongskul, A.; Maneesri, S.; Kasantikul, V.; Shepro, D. Comparative Effects of Garlicand Aspirin on Diabetic Cardiovascular Complications. Drug Deliv. 2000, 7, 91–96. [Google Scholar]
- Zeng, T.; Guo, F.F.; Zhang, C.L.; Song, F.Y.; Zhao, X.L.; Xie, K.Q. A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. J. Sci. Food Agric. 2012, 92, 1892–1902. [Google Scholar] [CrossRef]
- Raman, P.; Dewitt, D.L.; Nair, M.G. Lipid peroxidation and cyclooxygenase enzyme inhibitory activities of acidic aqueous extracts of some dietary supplements. Phytother. Res. PTR 2008, 22, 204–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed. Pharm. 2020, 123, 109730. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Chaurasia, H.; Chandel, S.R.; Kaushik, S.; Bhatt, B. A Review: Impact of garlic on human health. Int. J. Pharm. Biol. Sci. 2021, 10, 935–947. [Google Scholar] [CrossRef]
- Põldma, P.; Moor, U.; Tõnutare, T.; Herodes, K.; Rebane, R. Selenium treatment under field conditions affects mineral nutrition, yield and antioxidant properties of bulb onion (Allium cepa L.). Acta Sci. Pol. Hortorum Cultus 2013, 12, 167–181. [Google Scholar]
- Martins, N.; Petropoulos, S.; Ferreira, I.C. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Tocmo, R.; Liang, D.; Lin, Y.; Huang, D. Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Front. Nutr. 2015, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prianshu, A.; Singh, M.; Kumar, M.; Malik, S.; Sahahi, U.; Lodhi, S. Effect of integrated nutrient management on yield and quality of Garlic cv. Yamuna Safed-3. J. AgriSearch 2020, 7, 251–254. [Google Scholar]
- Evrendilek, G.A. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A., Ed.; Academic Press: London, UK, 2020; pp. 89–105. [Google Scholar]
- González, R.E.; Soto, V.C.; Sance, M.M.; Camargo, A.B.; Galmarini, C.R. Variability of solids, organosulfur compounds, pungency and health-enhancing traits in garlic (Allium sativum L.) cultivars belonging to different ecophysiological groups. J. Agric. Food Chem. 2009, 57, 10282–10288. [Google Scholar] [CrossRef] [PubMed]
- Figliuolo, G.; Candido, V.; Logozzo, G.; Miccolis, V.; Zeuli, P.L.S. Genetic evaluation of cultivated garlic germplasm (Allium sativum L. and A. ampeloprasum L.). Euphytica 2001, 121, 325–334. [Google Scholar] [CrossRef]
- Mohammadi, B.; Khodadadi, M.; Karami, E.; Shaaf, S. Variation in agro-morphological characters in Iranian garlic landraces. Int. J. Veg. Sci. 2014, 20, 202–215. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional Value, Chemical Characterization and Bulb Morphology of Greek Garlic Landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibar, B.; Temel, S. Evaluation of mineral composition of some wild edible plants growing in the Eastern Anatolia region grasslands of Turkey and consumed as vegetable. J. Food Process. Preserv. 2016, 1, 56–66. [Google Scholar] [CrossRef]
- Atif, M.J.; Amin, B.; Ghani, M.I.; Hayat, S.; Ali, M.; Zhang, Y.; Cheng, Z. Influence of Different Photoperiod and Temperature Regimes on Growth and Bulb Quality of Garlic (Allium sativum L.) Cultivars. Agronomy 2019, 9, 879. [Google Scholar] [CrossRef] [Green Version]
- Atif, M.J.; Amin, B.; Ghani, M.I.; Ali, M.; Cheng, Z. Variation in Morphological and Quality Parameters in Garlic (Allium sativum L.) Bulb Influenced by Different Photoperiod, Temperature, Sowing and Harvesting Time. Plants 2020, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Smith, R. Determination of the country of origin of garlic (Allium sativum) using trace metal profiling. J. Agric. Food Chem. 2005, 53, 4041–4045. [Google Scholar] [CrossRef]
- Diriba-Shiferaw, G. Review of Management Strategies of Constraints in Garlic (Allium sativum L.) Production. J. Agric. Sci. 2016, 11, 186–207. [Google Scholar] [CrossRef]
- Naruka, I.S.; Dhaka, R.S. Effect of row spacing and nitrogen fertilization on growth, yield and composition of bulb in garlic (Allium sativum L.) cultivars. J. Spices Aromat. Crop. 2001, 10, 111–117. [Google Scholar]
- Panda, S.C.; Panda, P.C.P.; Nanda, S.S. Nitrogen and phosphorus uptake from Tithonia diversifolia and inorganic fertilizers and their effect on maize yield in Malawi. In Proceedings of the Symposium on Maize Production Technology for the Future: Challenge and Opportunities, Addis Ababa, Ethiopia, 21–25 September 1998; pp. 264–266. [Google Scholar]
- Surendra, S. Effect of sulphur on yields and S uptake by onion and garlic grown in acid alfisol of Ranchi. Agric. Sci. Digest. 2008, 28, 189–191. [Google Scholar]
- Diriba-Shiferaw, G.; Nigussie-Dechassa, R.; Kebede, W.; Getachew, T.; Sharma, J.J. Growth and nutrients content and uptake of garlic (Allium sativum L.) as influenced by different types of fertilizers and soils. Sci. Technol. Arts Res. J. 2013, 2, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Shedeed, S.I.; El-Sayed, S.A.A.; Bash, D.A. Effectiveness of bio-fertilizers with organic matter on the growth, yield and nutrient content of onion (Allium cepa L.) plants. Eur. Inter. J. Sci. Tech. 2014, 3, 115–122. [Google Scholar]
- Durazzo, A. The Close Linkage between Nutrition and Environment through Biodiversity and Sustainability: Local Foods, Traditional Recipes, and Sustainable Diets. Sustainability 2019, 11, 2876. [Google Scholar] [CrossRef] [Green Version]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Loizzo, P.; Gambacorta, G.; Elia, A. Evaluation of Garlic Landraces from Foggia Province (Puglia Region; Italy). Foods 2020, 9, 850. [Google Scholar] [CrossRef]
- Valls, F.; Rancho, M.T.; Fernandez-Muino, M.; Alonso-Torre, S.; Checa, A.M.A. High pressure liquid chromatography determination of ascorbic acid in cooked sausages. J. Food Prot. 2002, 65, 1771–1774. [Google Scholar] [CrossRef]
- Arella, F.; Lahély, S.; Bourguignon, J.B.; Hasselmann, C. Liquid chromatographic determination of vitamins B1 and B2 in foods. A collaborative study. Food Chem. 1996, 56, 81–86. [Google Scholar] [CrossRef]
- Gambelli, L.; Marconi, S. Messa a punto di una metodica HPLC per l’analisi contemporanea di alcune vitamine idrosolubili del gruppo B. In Proceedings of the VIII Congresso Nazionale di Chimica degli Alimenti, Marsala, Italy, 20–24 September 2010; pp. 496–499. [Google Scholar]
- Hacıseferoğulları, H.; Özcan, M.; Demir, F.; Çalışır, S. Some nutritional and technological properties of garlic (Allium sativum L.). J. Food Eng. 2005, 68, 463–469. [Google Scholar] [CrossRef]
- Yusuf, A.; Fagbuaro, S.S.; Fajemilehin, S.O.K. Chemical composition, phytochemical and mineral profile of garlic (Allium sativum). J. Biosci. Biotechnol. Discov. 2018, 3, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Bloem, E.; Haneklaus, S.; Schnug, E. Storage Life of Field-Grown Garlic Bulbs (Allium sativum L.) as Influenced by Nitrogen and Sulfur Fertilization. J. Agric. Food Chem. 2011, 59, 4442–4447. [Google Scholar] [CrossRef]
- Diriba-Shiferaw, G.; Nigussie-Dechassa, R.; Woldetsadik, K.; Tabor, G.; Sharma, J.J. Bulb quality of Garlic (Allium sativum L.) as influenced by the application of inorganic fertilizers. Afr. J. Agric. Res. 2014, 9, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Brandolini, V.; Tedeschi, P.; Cereti, E.; Maietti, A.; Barile, D.; Coisson, J.; Mazzota, D.; Alrorio, M.; Martelli, A. Chemical and genomic combined approach applied to the characterization and identification of Italian Allium sativum L. J. Agric. Food Chem. 2005, 53, 678–683. [Google Scholar] [CrossRef]
- Marletta, L.; Camilli, E. Aggiornamento 2019. Tabelle di Composizione Degli Alimenti. Available online: https://www.alimentinutrizione.it/sezioni/tabelle-nutrizionali (accessed on 28 April 2021).
- Islam, D.; Lina, N.N.; Roy, R.K.; Lyzu, C.; Ahamed, Z.; Akhter, S.; Mohanta, L.C.; Lipy, E.P.; Hakim, M.; Roy, D.C. Relative Proximate Composition and Mineral Analysis of Three Garlic Varieties Available in Bangladesh. Eur. J. Med. Plants 2020, 1–9. [Google Scholar] [CrossRef]
- Otunola, G.A.; Oloyede, O.B.; Oladiji, A.T.; Afolayan, A.J. Comparative analysis of the chemical composition of three spices—Allium sativum L. Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in Nigeria African. J. Biotechnol. 2011, 9, 6927–6931. [Google Scholar]
- Cardelle-Cobas, A.; Soria, A.C.; Corzo-Martinez, M.; Villamiel, M. A Comprehensive Survey of Garlic Functionality. In Garlic Consumption and Health; Pacurar, M., Karejci, G., Eds.; Nova Science Publisher: Hauppage, NY, USA, 2010; pp. 1–60. [Google Scholar]
- Standard Tables of Food Composition in Japan-2015-(Seventh Revised Edition). Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/sdetail01/sdetail01/1385122.htm (accessed on 12 May 2021).
- Fratianni, F.; Ombra, M.N.; Cozzolino, A.; Riccardi, R.; Spigno, P.; Tremonte, P.; Coppola, R.; Nazzaro, F. Phenolic constituents; antioxidant; antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.). J. Funct. Foods 2016, 21, 240–248. [Google Scholar] [CrossRef]
- Kyureghia, G.; Flores, R. Meta-Analysis of Studies on Vitamin C Contents of Fresh and Processed Fruits and Vegetables. J. Food Nutr. Disor. 2012, 1, 2. [Google Scholar] [CrossRef]
- Locato, V.; Cimini, S.; DeGara, L. Strategies to increase Vitamin C in plants: From plant defense perspective to food biofortification. Front. Plant Sci. 2013, 4, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Agronomic Trail | |
---|---|
Basal dressing (kg/ha) | 250 (potassium sulphate) 250 (DAP 18/46) |
Top dressing (kg/ha) | In the first decade of March 150 (ammonium nitrate)- in the second decade of April 250 (ammonium nitrate) |
Fertilisation Unit for proposed technique | 143 N |
115 P | |
125 K | |
44 S | |
3 Mg | |
Fertilisation Unit for conventional technique | 97 N |
115 P | |
44 S | |
Antiparasitic treatment (number) | 1 (melody compact -Iprovalicarb + oxychloride-) |
Antiparasitic inspection (number) | 6 (copper-based products -bordeaux mixture and copper oxychloride- in spring) |
Pest check (L/ha) | 3—Stomp—Pendimetalin based in pre-emergency 1.5—Setossidim in post-emergency |
Parameter (Unit) | Viterbo | Alvito |
---|---|---|
pH (1:2.5 in water) | 6.6 | 7.7 |
Total N (% of soil d.w.) | 0.09 | 0.20 |
Assimilable P (ppm. Olsen’s method) | 33 | 78 |
Exchangeable K (ppm. Intern’s method) | 421 | 342 |
CaCO3 (% of soil d.w.) | 5.1 | 11.2 |
Sand (% of soil d.w.) | 65 | 6 |
Silt (% of soil d.w.) | 23 | 48 |
Clay (% of soil d.w.) | 12 | 46 |
Area | Bianco Piacentino | Rosso di Sulmona | Rosso di Castelliri | Rosso di Proceno | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Area | C × A | ||||||||||
Na | Viterbo | 5 ± 0.3 | § | 18 ± 0.1 | § | 4 ± 0.4 | 4 ± 0.4 | § | * | *** | *** | |
Alvito | 13 ± 0.4 | 6 ± 0.6 | 22 ± 5.2 | 23 ± 0.5 | ||||||||
Mean | 9 ± 5.0 a | 12 ± 6.4 ab | 13 ± 13.7 ab | 14 ± 10.7 b | ||||||||
K | Viterbo | 866 ± 18.7 | § | 723 ± 9.9 | 1016 ± 35.4 | § | 1049 ± 143.1 | n.s. | ** | *** | ||
Alvito | 645 ± 20.7 | 1057 ± 130.4 | 710 ± 19.6 | 694 ± 6.5 | ||||||||
Mean | 755 ± 128.2 | 890 ± 207.3 | 863 ± 178.5 | 871 ± 221.1 | ||||||||
Ca | Viterbo | 27 ± 0.7 | § | 46 ± 0.8 | 40 ± 0.0 | 40 ± 1.0 | § | *** | * | *** | ||
Alvito | 23 ± 0.4 | 38 ± 1.8 | 50 ± 2.5 | 50 ± 0.2 | ||||||||
Mean | 25 ± 2.1 a | 42 ± 4.74 b | 45 ± 6.0 c | 45 ± 5.8 c | ||||||||
Mg | Viterbo | 47 ± 0.0 | § | 48 ± 0.6 | 54 ± 0.2 | 50 ± 6.4 | * | ** | n.s. | |||
Alvito | 37 ± 0.9 | 49 ± 3.4 | 45 ± 1.9 | 42 ± 0.1 | ||||||||
Mean | 42 ± 5.5 a | 49 ± 2.0 b | 50 ± 5.2 bc | 46 ± 5.5 abc | ||||||||
P | Viterbo | 296 ± 1.2 | 293 ± 4.7 | 347 ± 0.2 | 301 ± 24.5 | * | ** | * | ||||
Alvito | 219 ± 32.4 | 303 ± 20.3 | 263 ± 6.7 | 261 ± 0.5 | ||||||||
Mean | 257 ± 48.1 a | 298 ± 13.5 a | 305 ± 50.1 b | 281 ± 27.3 a | ||||||||
Fe | Viterbo | 1.54 ± 0.136 | 3.48 ± 1.178 | 2.56 ± 0.039 | 3.21 ± 1.446 | n.s. | n.s. | n.s. | ||||
Alvito | 1.54 ± 0.132 | 3.05 ± 1.366 | 2.77 ± 0.190 | 2.98 ± 0.103 | ||||||||
Mean | 1.54 ± 0.109 | 3.26 ± 1.070 | 2.67 ± 0.165 | 3.10 ± 0.848 | ||||||||
Cu | Viterbo | 0.60 ± 0.096 | 0.53 ± 0.006 | 0.61 ± 0.002 | 0.52 ± 0.000 | n.s. | n.s. | n.s. | ||||
Alvito | 0.46 ± 0.027 | 0.66 ± 0.020 | 0.55 ± 0.015 | 0.46 ± 0.009 | ||||||||
Mean | 0.53 ± 0.102 | 0.60 ± 0.075 | 0.58 ± 0.040 | 0.49 ± 0.034 | ||||||||
Zn | Viterbo | 1.84 ± 0.016 | § | 1.54 ± 0.017 | 1.85 ± 0.009 | 1.49 ± 0.106 | * | * | * | |||
Alvito | 1.51 ± 0.041 | 1.68 ± 0.100 | 1.60 ± 0.084 | 1.43 ± 0.004 | ||||||||
Mean | 1.67 ± 0.192 a | 1.61 ± 0.101 ab | 1.73 ± 0.155 a | 1.46 ± 0.071 b | ||||||||
Mn | Viterbo | 0.53 ± 0.005 | § | 0.64 ± 0.003 | 0.60 ± 0.002 | 0.63 ± 0.088 | ** | n.s. | n.s. | |||
Alvito | 0.44 ± 0.001 | 0.58 ± 0.065 | 0.61 ± 0.043 | 0.65 ± 0.009 | ||||||||
Mean | 0.49 ± 0.054 a | 0.61 ± 0.050 b | 0.61 ± 0.025 a | 0.64 ± 0.053 b |
Area | Bianco Piacentino | Rosso di Sulmona | Rosso di Castelliri | Rosso di Proceno | ANOVA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Area | C × A | ||||||||
Thiamine | Viterbo | 0.27 ± 0.077 | 0.20 ± 0.005 | 0.26 ± 0.005 | 0.21 ± 0.036 | n.s. | n.s. | n.s. | ||
Alvito | 0.25 ± 0.073 | 0.19 ± 0.017 | 0.22 ± 0.020 | 0.24 ± 0.010 | ||||||
Mean | 0.26 ± 0.062 | 0.19 ± 0.011 | 0.24 ± 0.025 | 0.22 ± 0.025 | ||||||
Riboflavin | Viterbo | 0.02 ± 0.001 | 0.01 ± 0.001 | § | 0.04 ± 0.002 | § | 0.02 ± 0.001 | *** | * | *** |
Alvito | 0.02 ± 0.002 | 0.02 ± 0.000 | 0.02 ± 0.002 | 0.02 ± 0.001 | ||||||
Mean | 0.02 ± 0.002 a | 0.02 ± 0.004 a | 0.03 ± 0.011 b | 0.02 ± 0.001 a | ||||||
Niacin | Viterbo | 0.91 ± 0.000 | 0.80 ± 0.060 | 0.66 ±0.040 | 0.62 ± 0.020 | *** | n.s | n.s | ||
Alvito | 0.77 ± 0.030 | 0.91 ± 0.030 | 0.60 ±0.040 | 0.56 ± 0.030 | ||||||
Mean | 0.84 ± 0.084 a | 0.86 ± 0.075 a | 0.63 ± 0.047 b | 0.59 ± 0.039 b | ||||||
Vitamin B6 | Viterbo | 1.60 ± 0.010 | 1.37 ± 0.090 | 2.04 ± 0.230 | § | 1.03 ± 0.052 | *** | n.s. | n.s. | |
Alvito | 0.98 ± 0.097 | 1.37 ± 0.026 | 0.99 ± 0.056 | 0.88 ± 0.072 | ||||||
Mean | 1.29 ± 0.357 a | 1.37 ± 0.054 a | 1.52 ± 0.609 b | 0.96 ± 0.099 c | ||||||
Vitamin C | Viterbo | 11.4 ± 2.23 | 12.6 ± 3.61 | 13.0 ± 3.97 | 9.7 ± 1.85 | n.s. | n.s. | n.s. | ||
Alvito | 12.4 ± 2.93 | 15.6 ± 8.48 | 14.6 ± 6.16 | 10.5 ± 6.03 | ||||||
Mean | 11.9 ± 2.21 | 14.1 ± 5.60 | 13.8 ± 4.32 | 10.1 ± 3.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambelli, L.; Marconi, S.; Durazzo, A.; Camilli, E.; Aguzzi, A.; Gabrielli, P.; Marletta, L.; Lisciani, S. Vitamins and Minerals in Four Traditional Garlic Ecotypes (Allium sativum L.) from Italy: An Example of Territorial Biodiversity. Sustainability 2021, 13, 7405. https://doi.org/10.3390/su13137405
Gambelli L, Marconi S, Durazzo A, Camilli E, Aguzzi A, Gabrielli P, Marletta L, Lisciani S. Vitamins and Minerals in Four Traditional Garlic Ecotypes (Allium sativum L.) from Italy: An Example of Territorial Biodiversity. Sustainability. 2021; 13(13):7405. https://doi.org/10.3390/su13137405
Chicago/Turabian StyleGambelli, Loretta, Stefania Marconi, Alessandra Durazzo, Emanuela Camilli, Altero Aguzzi, Paolo Gabrielli, Luisa Marletta, and Silvia Lisciani. 2021. "Vitamins and Minerals in Four Traditional Garlic Ecotypes (Allium sativum L.) from Italy: An Example of Territorial Biodiversity" Sustainability 13, no. 13: 7405. https://doi.org/10.3390/su13137405
APA StyleGambelli, L., Marconi, S., Durazzo, A., Camilli, E., Aguzzi, A., Gabrielli, P., Marletta, L., & Lisciani, S. (2021). Vitamins and Minerals in Four Traditional Garlic Ecotypes (Allium sativum L.) from Italy: An Example of Territorial Biodiversity. Sustainability, 13(13), 7405. https://doi.org/10.3390/su13137405