Drivers of Protein Consumption: A Cross-Country Analysis
Abstract
:1. Introduction
2. Protein Consumption Impacts
3. Income and Other Drivers of Protein Choices
4. Data
5. Method
6. Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Unit | Year | Source | Link |
---|---|---|---|---|
Per capita consumption of protein (animal, from meat, vegetal) | g/capita/day | 2017 | FAO New Food Balance Sheets | http://www.fao.org/faostat/en/#data/FBS (accessed on 25 January 2021) |
GDP per capita PPP | Constant 2017 International $ | 2017 | World Development Indicators Database, World Bank | https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD (accessed on 20 January 2021) |
12-months average temperature | Celsius | 2017 * | Berkley Earth | http://berkeleyearth.lbl.gov/country-list/ (accessed on 10 March 2021) |
Population over 65 | Share of total population | 2017 | World Development Indicators Database, World Bank | https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS (accessed on 1 February 2021) |
Population adhering to Islam | Share of total population | 2015 | Association of Religion Data Archive | https://www.thearda.com/internationalData/index.asp (accessed on 1 February 2021) |
Urban population | Share of total population | 2017 | World Development Indicators Database, World Bank | https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 25 January 2021) |
Appendix B. Estimates without Outliers
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 14.872 ** | 5.288 | 0.431 | 15.519 ** | 4.887 | 13.133 ** | 4.912 | ||
GDP p.c. PPP | 0.504 *** | 0.084 | 1.295 *** | 0.219 | 1.107 | 1.848 *** | 0.359 | 1.578 | |
GDP p.c. PPP2 | −0.011 *** | 0.003 | −0.567 | −0.036 ** | 0.013 | −1.767 | |||
GDP p.c. PPP3 | 0.000 | 0.000 | 0.765 | ||||||
Temperature | −0.298 | 0.167 | −0.124 | −0.324 * | 0.157 | −0.135 | −0.314 * | 0.154 | −0.131 |
Pop. > 65 (%) | 0.874 ** | 0.295 | 0.278 | 0.518 | 0.288 | 0.165 | 0.575 * | 0.285 | 0.183 |
Muslim (%) | −0.033 | 0.022 | −0.058 | −0.031 | 0.022 | −0.054 | −0.028 | 0.022 | –0.048 |
Urban_pop. (%) | 0.177 ** | 0.056 | 0.185 | 0.101 | 0.059 | 0.105 | 0.089 | 0.058 | 0.092 |
R2 | 0.807 | 0.825 | 0.830 | ||||||
Adj. R2 | 0.800 | 0.817 | 0.821 | ||||||
F | 112.3 *** | 104.70 *** | 92.05 *** | ||||||
Obs. | 140 | 140 | 140 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 9.579 * | 4.665 | 11.190 * | 4.305 | 7.938 | 4.057 | |||
GDP p.c. PPP | 0.473 *** | 0.061 | 0.428 | 1.222 *** | 0.220 | 1.108 | 1.898 *** | 0.285 | 1.721 |
GDP p.c. PPP2 | −0.010 *** | 0.003 | −0.564 | −0.037 *** | 0.008 | −2.042 | |||
GDP p.c. PPP3 | 0.000 *** | 0.000 | 0.922 | ||||||
Temperature | −0.111 | 0.143 | −0.046 | −0.141 | 0.131 | −0.059 | −0.131 | 0.124 | −0.055 |
Pop. > 65 (%) | 1.158 *** | 0.258 | 0.381 | 0.777 ** | 0.269 | 0.255 | 0.822 ** | 0.254 | 0.270 |
Muslim (%) | −0.019 | 0.021 | −0.034 | −0.019 | 0.020 | −0.034 | −0.013 | 0.020 | –0.023 |
Urban_pop. (%) | 0.158 ** | 0.051 | 0.169 | 0.072 | 0.056 | 0.077 | 0.062 | 0.054 | 0.066 |
R2 | 0.827 | 0.845 | 0.855 | ||||||
Adj. R2 | 0.820 | 0.838 | 0.847 | ||||||
F | 127.10 *** | 120.50 *** | 110.00 *** | ||||||
Obs. | 139 | 139 | 139 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 5.175 | 3.215 | 5.704 * | 2.862 | 4.884 | 2.793 | |||
GDP p.c. PPP | 0.212 *** | 0.053 | 0.366 | 0.857 *** | 0.144 | 1.467 | 1.047 *** | 0.245 | −2.413 |
GDP p.c. PPP2 | −0.009 *** | 0.002 | −0.932 | −0.018 * | 0.008 | 3.337 | |||
GDP p.c. PPP3 | 0.000 | 0.000 | −1.503 | ||||||
Temperature | −0.068 | 0.104 | −0.057 | −0.090 | 0.093 | −0.075 | −0.086 | 0.093 | 0.070 |
Pop. > 65 (%) | 0.167 | 0.163 | 0.107 | −0.124 | 0.158 | −0.079 | −0.105 | 0.156 | −0.087 |
Muslim (%) | −0.060 *** | 0.013 | −0.201 | −0.058 *** | 0.013 | −0.204 | −0.057 *** | 0.012 | 0.185 |
Urban_pop. (%) | 0.14 ** | 0.04 | 0.304 | 0.082 | 0.04 | 0.172 | 0.078 | 0.04 | −0.112 |
R2 | 0.650 | 0.698 | 0.700 | ||||||
Adj. R2 | 0.637 | 0.685 | 0.685 | ||||||
F | 49.79 *** | 51.32 *** | 44.13 *** | ||||||
Obs. | 140 | 140 | 140 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 2.801 | 2.886 | 4.166 | 2.566 | 2.778 | 2.544 | |||
GDP p.c. PPP | 0.214 *** | 0.046 | 0.387 | 0.820 *** | 0.139 | 1.483 | 1.125 *** | 0.204 | 2.034 |
GDP p.c. PPP2 | −0.008 *** | 0.002 | −0.907 | −0.020 *** | 0.006 | −2.229 | |||
GDP p.c. PPP3 | 0.000 * | 0.000 | 0.821 | ||||||
Temperature | 0.023 | 0.096 | 0.019 | 0.001 | 0.082 | −0.001 | 0.005 | 0.082 | 0.004 |
Pop. > 65 (%) | 0.298 | 0.154 | 0.193 | −0.007 | 0.148 | −0.004 | 0.011 | 0.144 | 0.007 |
Muslim (%) | −0.054 *** | 0.012 | −0.191 | −0.055 *** | 0.012 | −0.193 | −0.052 *** | 0.012 | −0.184 |
Urban_pop. (%) | 0.130 ** | 0.043 | 0.272 | 0.058 | 0.043 | 0.121 | 0.053 | 0.042 | 0.110 |
R2 | 0.664 | 0.710 | 0.718 | ||||||
Adj. R2 | 0.651 | 0.697 | 0.703 | ||||||
F | 52.54 *** | 53.98 *** | 47.67 *** | ||||||
Obs. | 139 | 139 | 139 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 77.126 *** | 5.206 | 76.264 *** | 4.517 | 79.896 *** | 4.851 | |||
GDP p.c. PPP | −0.293 *** | 0.060 | −0.323 | −1.345 *** | 0.194 | −1.484 | −2.187 *** | 0.354 | −2.413 |
GDP p.c. PPP2 | 0.015 *** | 0.003 | 0.975 | 0.052 *** | 0.012 | 3.337 | |||
GDP p.c. PPP3 | 0.000 ** | 0.000 | −1.503 | ||||||
Temperature | 0.111 | 0.163 | 0.060 | 0.146 | 0.145 | 0.078 | 0.131 | 0.155 | 0.070 |
Pop. > 65 (%) | −0.601 * | 0.234 | −0.247 | −0.126 | 0.221 | −0.051 | −0.212 | 0.234 | −0.087 |
Muslim (%) | 0.090 *** | 0.022 | 0.203 | 0.087 *** | 0.021 | 0.196 | 0.083 *** | 0.023 | 0.185 |
Urban_pop. (%) | −0.204 *** | 0.05 | −0.275 | −0.102 ** | 0.05 | −0.137 | −0.084 | 0.052 | −0.112 |
R2 | 0.739 | 0.799 | 0.810 | ||||||
Adj. R2 | 0.729 | 0.782 | 0.800 | ||||||
F | 75.88 *** | 84.28 *** | 80.46 *** | ||||||
Obs. | 140 | 140 | 140 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 80.901 *** | 4.686 | 78.745 *** | 4.088 | 82.548 *** | 4.322 | |||
GDP p.c. PPP | −0.296 *** | 0.051 | −0.341 | −1.253 *** | 0.198 | −1.444 | −2.088 *** | 0.326 | −2.407 |
GDP p.c. PPP2 | 0.013 *** | 0.003 | 0.914 | 0.046 *** | 0.011 | 3.222 | |||
GDP p.c. PPP3 | 0.000 ** | 0.000 | −1.436 | ||||||
Temperature | −0.022 | 0.146 | −0.012 | 0.012 | 0.125 | 0.006 | 0.001 | 0.130 | 0.000 |
Pop. > 65 (%) | −0.787 *** | 0.212 | −0.325 | −0.306 | 0.200 | −0.126 | −0.356 | 0.202 | −0.147 |
Muslim (%) | 0.081 *** | 0.021 | 0.183 | 0.082 *** | 0.020 | 0.185 | 0.075 *** | 0.021 | 0.169 |
Urban_pop. (%) | −0.187 *** | 0.05 | −0.249 | −0.073 | 0.05 | −0.098 | −0.059 | 0.049 | −0.078 |
R2 | 0.755 | 0.802 | 0.826 | ||||||
Adj. R2 | 0.746 | 0.793 | 0.816 | ||||||
F | 82.13 *** | 89.43 *** | 88.80 *** | ||||||
Obs. | 139 | 139 | 139 |
References
- Drewnowski, A.; Poulain, J.-P. What Lies Behind the Transition from Plant-Based to Animal Protein? AMA J. Ethics 2018, 20, E987–E993. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [Green Version]
- Aiking, H. Protein production: Planet, profit, plus people? Am. J. Clin. Nutr. 2014, 100, 483S–489S. [Google Scholar] [CrossRef] [Green Version]
- Machovina, B.; Feeley, K.J.; Ripple, W.J. Biodiversity conservation: The key is reducing meat consumption. Sci. Total Environ. 2015, 536, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.; Blomqvist, L.; McNamara, J.; Ripple, W.J. Reducing the environmental impact of global diets. Sci. Total Environ. 2018, 610-611, 1207–1209. [Google Scholar] [CrossRef]
- Richi, E.B.; Baumer, B.; Conrad, B.; Darioli, R.; Schmid, A.; Keller, U. Health Risks Associated with Meat Consumption: A Review of Epidemiological Studies. Int. J. Vitam. Nutr. Res. 2015, 85, 70–78. [Google Scholar] [CrossRef]
- Henneberg, W.Y.A.M. Meat in Modern Diet, Just as Bad as Sugar, Correlates with Worldwide Obesity: An Ecological Analysis. J. Nutr. Food Sci. 2016, 6, 517. [Google Scholar] [CrossRef] [Green Version]
- Aiking, H.; de Boer, J. The next protein transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef]
- Chai, B.C.; Van Der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J.A. Which Diet Has the Least Environmental Impact on Our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef] [Green Version]
- Speedy, A.W. Global Production and Consumption of Animal Source Foods. J. Nutr. 2003, 133, 4048S–4053S. [Google Scholar] [CrossRef]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 1, 1–28. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement; Working Paper No. 3914; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development. In World Employment Programme Research Working Paper, WEP 2-22, Technology and Employment Programme; International Labour Organization: Geneva, Switzerland, 1993; Available online: https://EconPapers.repec.org/RePEc:ilo:ilowps:992927783402676 (accessed on 2 February 2021).
- Panayotou, T. Demystifying the environmental Kuznets curve: Turning a black box into a policy tool. Environ. Dev. Econ. 1997, 2, 465–484. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M. Pollution and growth: What Do We Know? In The Economics of Sustainable Development; Goldin, I., Winters, L.A., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 19–50. [Google Scholar]
- Kaufmann, R.K.; Davidsdottir, B.; Garnham, S.; Pauly, P. The determinants of atmospheric SO2 concentrations: Reconsidering the environmental Kuznets curve. Ecol. Econ. 1998, 25, 209–220. [Google Scholar] [CrossRef]
- Torras, M.; Boyce, J.K. Income, inequality and pollution: A reassessment of the environmnental Kuznets curve. Ecol. Econ. 1998, 25, 147–160. [Google Scholar] [CrossRef]
- Islam, N.; Vincent, J. Unveiling the Income-Environment Relationship: An Exploration into the Determinants of Environmental Quality; Working Paper No. 701; Harvard Institute for International Development: Cambridge, MA, USA, 1999. [Google Scholar]
- Cole, J.R.; McCoskey, S. Does global meat consumption follow an environmental Kuznets curve? Sustain. Sci. Pract. Policy 2013, 9, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Vranken, L.; Avermaete, T.; Petalios, D.; Mathijs, E. Curbing global meat consumption: Emerging evidence of a second nutrition transition. Environ. Sci. Policy 2014, 39, 95–106. [Google Scholar] [CrossRef]
- Milford, A.B.; Le Mouël, C.; Bodirsky, B.L.; Rolinski, S. Drivers of meat consumption. Appetite 2019, 141, 104313. [Google Scholar] [CrossRef] [PubMed]
- York, R.; Gossard, M.H. Cross-national meat and fish consumption: Exploring the effects of modernization and ecological context. Ecol. Econ. 2004, 48, 293–302. [Google Scholar] [CrossRef]
- Gossard, M.; York, R. Social structural influences on meat consumption. Res. Hum. Ecol. 2003, 10, 1–9. [Google Scholar]
- De Vries, M.; De Boer, I. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Health and ecological implications of fish consumption: A deeper insight. Mediterr. J. Nutr. Metab. 2016, 9, 7–22. [Google Scholar] [CrossRef]
- Xin, H.; Gates, R.S.; Green, A.R.; Mitloehner, F.M.; Moore, P.A.; Wathes, C.M. Environmental impacts and sustainability of egg production systems. Poult. Sci. 2011, 90, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Aiking, H. Future protein supply. Trends Food Sci. Technol. 2011, 22, 112–120. [Google Scholar] [CrossRef]
- OECD. Dairy and Dairy Products; OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Westhoek, H.J.; Rood, G.A.; Berg, M.; Janse, J.H.; Nijdam, D.S.; Reudink, M.A.; Stehfest, E.E. The Protein Puzzle: The Consumption and Production of Meat, Dairy and Fish in the European Union. Eur. J. Nutr. Food Saf. 2011, 1, 123–144. [Google Scholar]
- World Health Organization; FAO; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNO Expert Consultation; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). New Food Balances; FAO: Rome, Italy, 2021. [Google Scholar]
- Lu, W.; Chen, H.; Niu, Y.; Wu, H.; Xia, D.; Wu, Y. Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutr. J. 2016, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Jiang, C.Q.; Zhang, W.S.; Zhu, F.; Jin, Y.L.; Woo, J.; Cheng, K.K.; Lam, T.H.; Xu, L. Milk consumption and risk of mortality from all-cause, cardiovascular disease and cancer in older people. Clin. Nutr. 2020, 39, 3442–3451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, G.E.; Jaceldo-Siegl, K.; Orlich, M.; Mashchak, A.; Sirirat, R.; Knutsen, S. Dairy, soy, and risk of breast cancer: Those confounded milks. Int. J. Epidemiol. 2020, 49, 1526–1537. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, F.; Mao, L.; Zhu, F.; Zhang, Y.; Chen, X.; Jiao, J.; Zhang, Y. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLoS Med. 2021, 18, e1003508. [Google Scholar] [CrossRef]
- Vianna, G.M.S.; Zeller, D.; Pauly, D. Fisheries and Policy Implications for Human Nutrition. Curr. Environ. Health Rep. 2020, 7, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake with All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
- Foscolou, A.; D’Cunha, N.M.; Naumovski, N.; Tyrovolas, S.; Chrysohoou, C.; Rallidis, L.; Polychronopoulos, E.; Matalas, A.-L.; Sidossis, L.S.; Panagiotakos, D. The association between the level of adherence to the Mediterranean diet and successful aging: An analysis of the ATTICA and MEDIS (MEDiterranean Islands Study) epidemiological studies. Arch. Gerontol. Geriatr. 2020, 89, 104044. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Hedenus, F.; Wirsenius, S.; Johansson, D.J.A. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim. Chang. 2014, 124, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzym. Microb. Technol. 2002, 30, 305–311. [Google Scholar] [CrossRef]
- Muhammad, A.; D’Souza, A.; Meade, B.; Micha, R.; Mozaffarian, D. How income and food prices influence global dietary intakes by age and sex: Evidence from 164 countries. BMJ Glob. Health 2017, 2, e000184. [Google Scholar] [CrossRef] [Green Version]
- Regmi, A.; Deepak, M.S.; Seale, J.L.; Bernstein, J. Cross Country Analysis of Food Consumption Patterns; Market and Trade Economics Division, Economic Research Service, U.S. Department of Agriculture, Agriculture and Trade: Washington, DC, USA, 2001; pp. 14–22.
- Drewnowski, A.; Popkin, B.M. The Nutrition Transition: New Trends in the Global Diet. Nutr. Rev. 1997, 55, 31–43. [Google Scholar] [CrossRef]
- Delgado, C.L. Rising Consumption of Meat and Milk in Developing Countries Has Created a New Food Revolution. J. Nutr. 2003, 133, 3907S–3910S. [Google Scholar] [CrossRef] [Green Version]
- Vinnari, M.; Vehmas, J.; Luukkanen, J. Animal based food consumption in the EU: Do we decrease our meat consumption when income levels rise? In Lifestyles and Social Change: Essays in Economic Sociology; ESA Print: Tampere, Finland, 2005; pp. 229–252. Available online: https://www.utupub.fi/bitstream/handle/10024/113599/Kre11_2005.pdf?sequence=1&isAllowed=y#page=229 (accessed on 15 January 2021).
- The World Bank. World Development Indicators Database; The World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Popkin, B.M. Technology, transport, globalization and the nutrition transition food policy. Food Policy 2006, 31, 554–569. [Google Scholar] [CrossRef]
- Masters, W.A.; Hall, A.; Martinez, E.; Shi, P.; Singh, G.; Webb, P.; Mozaffarian, D. The nutrition transition and agricultural transformation: A Preston curve approach. Agric. Econ. 2016, 47 (Suppl. S1), 97–114. [Google Scholar] [CrossRef]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Time Series and Cross-Country Evidence; The World Bank: Washington, DC, USA, 1992. [Google Scholar]
- Sterpu, M.; Soava, G.; Mehedintu, A. Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries. Sustainability 2018, 10, 3327. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, E.M.; Di Giacomo, M.; Vannoni, D. Climate Change and Economic Growth: The Role of Environmental Policy Stringency. Sustainability 2019, 11, 2273. [Google Scholar] [CrossRef] [Green Version]
- Brajer, V.; Mead, R.W.; Xiao, F. Health benefits of tunneling through the Chinese environmental Kuznets curve (EKC). Ecol. Econ. 2008, 66, 674–686. [Google Scholar] [CrossRef]
- Koc, S.; Bulus, G.C. Testing validity of the EKC hypothesis in South Korea: Role of renewable energy and trade openness. Environ. Sci. Pollut. Res. 2020, 27, 29043–29054. [Google Scholar] [CrossRef] [PubMed]
- Kleiber, C.; Zeileis, A. Applied Econometrics with R, Proceedings of the useR, Vienna, Austria, 2–6 September 2006; Springer: Cham, Switzerland, 2008. [Google Scholar]
- Osborne, J.W.; Overbay, A. The Power of Outliers (and Why Researchers Should Always Check for Them). Pract. Assess. Res. Eval. 2004, 9. [Google Scholar] [CrossRef]
- Cook, R.D. Influential Observations in Linear Regression. J. Am. Stat. Assoc. 1979, 74, 169. [Google Scholar] [CrossRef]
Mean | Std. Deviation | Minimum | Maximum | Cases | |
---|---|---|---|---|---|
Animal protein | 37.07 | 20.65 | 6.62 | 105.31 | 142 |
Meat protein | 16.80 | 10.18 | 1.39 | 44.90 | 142 |
Vegetal protein (%) | 57.94 | 15.88 | 27.28 | 90.01 | 142 |
GDP p.c. PPP (000 Int$) | 20.56 | 19.64 | 0.91 | 112.82 | 142 |
Temperature | 19.37 | 8.55 | −3.54 | 30.10 | 142 |
Pop. > 65 (%) | 9.22 | 6.49 | 1.03 | 27.11 | 142 |
Muslim (%) | 24.50 | 35.43 | 0.00 | 99.65 | 142 |
Urban_pop. (%) | 59.63 | 21.32 | 16.35 | 100.00 | 142 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 13.634 *** | 5.180 | 15.866 *** | 4.94 | 15.112 *** | 4.782 | |||
GDP p.c. PPP | 0.399 *** | 0.086 | 0.379 | 0.995 *** | 0.152 | 0.947 | 1.523 *** | 0.274 | 1.449 |
GDP p.c. PPP2 | −0.006 *** | 0.001 | −0.467 | −0.02 *** | 0.006 | −1.434 | |||
GDP p.c. PPP3 | 0.000 ** | 0.000 | 0.571 | ||||||
Temperature | −0.298 ** | 0.168 | 0.123 | −0.313 * | 0.161 | −0.129 | −0.324 ** | 0.155 | −0.134 |
Pop. > 65 (%) | 1.026 *** | 0.293 | 0.322 | 0.611 ** | 0.292 | 0.192 | 0.506 * | 0.278 | 0.159 |
Muslim (%) | −0.029 | 0.022 | 0.049 | −0.034 | 0.022 | −0.058 | −0.031 | 0.022 | −0.052 |
Urban_pop. (%) | 0.206 *** | 0.056 | 0.212 | 0.121 ** | 0.055 | 0.124 | 0.087 | 0.059 | 0.090 |
R2 | 0.804 | 0.827 | 0.833 | ||||||
Adj. R2 | 0.797 | 0.819 | 0.824 | ||||||
F | 111.83 *** | 107.40 *** | 95.39 *** | ||||||
Obs. | 142 | 142 | 142 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 4.484 | 3.183 | 5.883 * | 3.001 | 5.187 ** | 2.813 | |||
GDP p.c. PPP | 0.158 ** | 0.047 | 0.304 | 0.532 *** | 0.103 | 1.026 | 1.020 *** | 0.185 | 1.967 |
GDP p.c. PPP2 | −0.004 *** | 0.001 | −0.594 | −0.016 *** | 0.004 | −2.406 | |||
GDP p.c. PPP3 | 0.000 *** | 0.000 | 1.069 | ||||||
Temperature | −0.068 | 0.105 | −0.057 | −0.078 | 0.098 | −0.065 | −0.087 | 0.093 | −0.073 |
Pop. > 65 (%) | 0.245 | 0.166 | 0.156 | −0.015 | 0.159 | −0.009 | −0.113 | 0.154 | −0.071 |
Muslim (%) | −0.058 *** | 0.013 | −0.200 | −0.061 *** | 0.012 | −0.211 | −0.058 *** | 0.013 | −0.200 |
Urban_pop. (%) | 0.160 *** | 0.042 | 0.335 | 0.107 ** | 0.044 | 0.223 | 0.076 ** | 0.044 | 0.159 |
R2 | 0.649 | 0.685 | 0.706 | ||||||
Adj. R2 | 0.636 | 0.671 | 0.691 | ||||||
F | 50.18 *** | 48.88 *** | 46.02 *** | ||||||
Obs. | 142 | 142 | 142 |
GDP p.c. at the Turning Point (Int$ PPP) | Consumption (g/day) at the Turning Point with the Other Variables at Their: | |||
---|---|---|---|---|
Mean | Mean − SD | Mean + SD | ||
Animal proteins | ||||
All sample | 77,229 | 60.2 | 57.6 | 62.9 |
IQR sample | 56,809 | 55.9 | 54.3 | 57.6 |
CD sample | 60,157 | 56.1 | 51.4 | 60.8 |
Meat proteins | ||||
All sample | 65,808 | 26.6 | 27.3 | 26.0 |
IQR sample | 46,108 | 26.0 | 27.9 | 24.1 |
CD sample | 50,154 | 26.8 | 27.6 | 26.0 |
Linear | Quadratic | Cubic | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | Coeff. | White Robust St. Err. | Stand. Coeff. | |
Constant | 78.074 *** | 5.142 | 75.924 *** | 4.859 | 77.281 *** | 5.266 | |||
GDP p.c. PPP | −0.217 *** | 0.059 | −0.268 | −0.791 *** | 0.156 | −0.978 | −1.741 *** | 0.405 | −2.152 |
GDP p.c. PPP2 | 0.006 *** | 0.002 | 0.584 | 0.030 * | 0.016 | 2.846 | |||
GDP p.c. PPP3 | 0.000 | 0.000 | −1.334 | ||||||
Temperature | 0.111 | 0.163 | 0.059 | 0.126 | 0.154 | 0.067 | 0.145 | 0.158 | 0.078 |
Pop. > 65 (%) | −0.709 *** | 0.235 | −0.289 | −0.309 | 0.233 | −0.126 | −0.120 | 0.241 | −0.049 |
Muslim (%) | 0.087 *** | 0.022 | 0.194 | 0.092 *** | 0.021 | 0.205 | 0.086 *** | 0.023 | 0.191 |
Urban_pop. (%) | −0.225 *** | 0.051 | −0.302 | −0.143 *** | 0.051 | −0.192 | −0.083 | 0.053 | −0.111 |
R2 | 0.737 | 0.772 | 0.806 | ||||||
Adj. R2 | 0.728 | 0.762 | 0.795 | ||||||
F | 76.27 *** | 76.29 *** | 79.27 *** | ||||||
Obs. | 142 | 142 | 142 |
GDP p.c. at the Turning Point (Int$ PPP) | Share (%) at the Turning Point with the Other Variables at Their: | |||
---|---|---|---|---|
Mean | Mean − SD | Mean + SD | ||
All sample | 63,762 | 44.0 | 44.7 | 43.3 |
IQR sample | 44,336 | 44.3 | 42.9 | 45.6 |
CD sample | 48,509 | 43.4 | 44.0 | 42.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreoli, V.; Bagliani, M.; Corsi, A.; Frontuto, V. Drivers of Protein Consumption: A Cross-Country Analysis. Sustainability 2021, 13, 7399. https://doi.org/10.3390/su13137399
Andreoli V, Bagliani M, Corsi A, Frontuto V. Drivers of Protein Consumption: A Cross-Country Analysis. Sustainability. 2021; 13(13):7399. https://doi.org/10.3390/su13137399
Chicago/Turabian StyleAndreoli, Vania, Marco Bagliani, Alessandro Corsi, and Vito Frontuto. 2021. "Drivers of Protein Consumption: A Cross-Country Analysis" Sustainability 13, no. 13: 7399. https://doi.org/10.3390/su13137399
APA StyleAndreoli, V., Bagliani, M., Corsi, A., & Frontuto, V. (2021). Drivers of Protein Consumption: A Cross-Country Analysis. Sustainability, 13(13), 7399. https://doi.org/10.3390/su13137399