Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy
Abstract
:1. Introduction
2. Composition of EVs
3. The Vehicle Model
3.1. Tractive Force
3.2. Decomposition of the Traction System
3.2.1. Electrical Motor
3.2.2. Battery Model
3.2.3. Buck-Boost Converter
4. Hybrid Recharge System
4.1. Wireless Power Transfer Model
4.2. PV Generator Model
4.3. FC Generator Model
4.4. The Proposed Power Management Strategy
Algorithm 1. The proposed power management algorithm. |
if (vehicle will start) {Battery is the main source of power (100% power from the battery)} else if (vehicle is in motion) {Extract the maximum power from the PV generator (PV generator contribute by 100% in the energy sources) if (acceleration ratio is between 0 and 0.4%) - Use 10% of FC generator - Use 100% of power from the WR else if (acceleration ratio is between 0.4 and 0.6%) - Use 50% of FC power - Use 50% of WR power else (acceleration ratio > 0.6%) -Use 100% of power from the FC -Use 20% of WR power } else if (Deceleration or Brake) { - FC is not used - WR power contribute by: { if (vehicle speed < 20 km/h) -Use all the power from the WR else if (20 km/h < vehicle speed < 40 km/h) -Use 50% of WR power else (40 km/h < vehicle speed) -Use 20% of WR power } } |
5. Results and Discussion
5.1. Simulated Drive Cycle
5.2. Hybrid System Efficiency
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Air density | |
Aerodynamic drag coefficient | |
Rolling resistance coefficient | |
v | Vehicle speed |
Vehicle frontal area | |
mv | Vehicle mass |
g | Acceleration due to gravity |
ang | Angle |
Rs | Stator resistance |
ωm | Mechanical speed of the electrical motor |
λm | Permanent magnet flux linkage |
Rbatt | Cell’s ohmic resistance |
Ib | Cell load current |
Ro | Battery cell charging or discharging resistance |
W | Charge/discharge coefficient |
Nb | Stands of the battery self-discharge |
SOCmax | Maximum state of charge |
Vfc | Voltage of fuel cell (V) |
Pfuel | Pressure of fuel (atm) |
Pair | Pressure of air (atm) |
Vfuel | Fuel flow rate (l/min) |
Vair | Air flow rate (l/min) |
N | Cells number |
Td | Response time |
ifc | Fuel cell current (A) |
x | Hydrogen in the fuel (%) |
y | Oxygen in the oxidant (%) |
Rfc | Internal resistance (Ω) |
z | Moving electrons |
Kc | Voltage of nominal operation conditions (V) |
k | Boltzmann’s constant [J K-1] |
ηnom | Nominal efficiency (%) |
Enthalpy of water vapor (J mol-1) | |
Nominal voltage (V) | |
Inom | Nominal current (A) |
Paimom | Nominal absolute pressure of air (Pa) |
Q | Battery capacity (Ah) |
Qmax | Maximum Battery capacity (Ah) |
SOC | State of charge (%) |
Tnom | Nominal operating temperature (K) |
Water pressure (bar) | |
R | Constant (8.3145 J/(mol K)) |
h | Planck constant (6.626 × 10−34 J s) |
α | Charge transfer coefficient |
ωfc | Percentage of water vapor % |
M | Mutual inductance (H) |
ω | Oscillation angular frequency (rad/s) |
kWR | Magnetic coupling constant |
Ls | Secondary inductance (H) |
Lp | Primary inductance (H) |
Zp | Primary impedance (Ω) |
Zs | Secondary impedance (Ω) |
Ip | Primary current (A) |
Is | Secondary current (A) |
Vp | Primary voltage (V) |
Vs | Secondary voltage (V) |
References
- Mahmoudi, C.; Flah, A.; Lassaad Sbita, P. An Overview of Electric Vehicle Concept and Power Management Strategies. In Proceedings of the 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 3–6 November 2014. [Google Scholar]
- Flah, A.; Irfan, A.K.; Agarwal, A.; Sbita, L.; Marcelo, G. simoes Field-oriented control strategy for double-stator single-rotor and double-rotor single-stator permanent magnet machine: Design and operation. Comput. Electr. Eng. 2021, 90, 1–15. [Google Scholar] [CrossRef]
- Kolmanovsky, I.; Dextreit, C. Approaches to energy management of hybrid electric vehicles: Experimental comparison. J. Hydrol. 2013, 277–282. [Google Scholar] [CrossRef]
- Mahmoudi, C.; Flah, A.; Sbita, L. Smart database concept for power management in an electrical vehicle. Int. J. Power Electron. Drive Syst. 2019, 10, 160–169. [Google Scholar] [CrossRef]
- Soltis, A.; Chen, X. A new control strategy for hybrid electric vehicles. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 1398–1403. [Google Scholar] [CrossRef]
- Braune, S.; Liu, S.; Mercorelli, P. Design and control of an electromagnetic valve actuator. In Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, Control Applications, Intelligent Control, Munich, Germany, 4–6 October 2006; pp. 1657–1662. [Google Scholar]
- Kandasamy, K.; Vilathgamuwa, M.; Tseng, K.J. Inter-module state-of-charge balancing and fault-tolerant operation of cascaded H-bridge converter using multi-dimensional modulation for electric vehicle application. IET Power Electron. 2015, 8, 1912–1919. [Google Scholar] [CrossRef]
- Paganelli, G.; Tateno, M.; Brahma, A.; Rizzoni, G.; Guezennec, Y. Control development for a hybrid-electric sport-utility vehicle: Strategy, implementation and field test results. IEEE Trans. Control Syst. Technol. 2002, 5064–5069. [Google Scholar] [CrossRef]
- Longo, M.; Zaninelli, D.; Viola, F.; Romano, P.; Miceli, R.; Caruso, M.; Pellitteri, F. Recharge stations: A review. In Proceedings of the 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 6–8 April 2016; pp. 1–8. [Google Scholar]
- Chellaswamy, C.; Ramesh, R. Future renewable energy option for recharging full electric vehicles. Renew. Sustain. Energy Rev. 2017, 76, 824–838. [Google Scholar] [CrossRef]
- Tie, S.S.F.; Tan, C.W.C. A review of energy sources and energy management system in electric vehicles. Renew Sustain Energy Rev 2013, 20, 82–102. [Google Scholar] [CrossRef]
- Monteiro, V.; Pinto, J.G.; Afonso, J.L. Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes. IEEE Trans. Veh. Technol. 2016, 65, 1007–1020. [Google Scholar] [CrossRef] [Green Version]
- Lawhorn, D.; Rallabandi, V.; Ionel, D.M. Power Electronics Powertrain Architectures for Hybrid and Solar Electric Airplanes with Distributed Propulsion. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 12–14 July 2018; pp. 1–6. [Google Scholar]
- Werachet, K.; Heinz, Z. Wirless power charging on electric vehicles. In Proceedings of the International Electrical Engineering Congress, Pattaya, Tayland, 19–21 March 2014; pp. 6–9. [Google Scholar]
- Cholakov, G.S. Electric vehicles. In Pollution Control Technoplogies; Nath, B., Cholakov, G.S., Eds.; Eolss Publishers: Oxford, UK, 2009; Available online: http://www.eolss.net (accessed on 24 May 2021).
- Zandi, M.; Payman, A.; Martin, J.; Pierfederici, S.; Davat, B.; Meibody-Tabar, F. Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications. IEEE Trans. Veh. Technol. 2011, 60, 433–443. [Google Scholar] [CrossRef]
- Xu, L.; Hua, J.; Li, X.; Meng, Q.; Li, J.; Ouyang, M. Control strategy optimization of a hybrid fuel cell vehicle with braking energy regeneration. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008. [Google Scholar]
- Flah, A.; Majed, A.; Bajaj, M.; Naveen, K.S.; Mishra, S.; Sharma, S.K. Electric Vehicle Model Based on Multiple Recharge System and a Particular Traction Motor Conception. IEEE Access 2021, 9, 49308–49324. [Google Scholar] [CrossRef]
- Rawat, T.; Niazi, K.R.; Gupta, N.; Sharma, S. Impact assessment of electric vehicle charging/discharging strategies on the operation management of grid accessible and remote microgrids. Int. J. Energy Res. 2019, 43, 9034–9048. [Google Scholar] [CrossRef]
- Datta, U. A price-regulated electric vehicle charge-discharge strategy. Energy Res. 2019, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Hofmann, H.; Li, J.; Wang, Y.; Lu, D.; Ouyang, M.; Du, J. Torque Distribution Strategy for Multi-PMSM Applications and Optimal Acceleration Control for Four-Wheel-Drive Electric Vehicles. J. Dyn. Syst. Meas. Control 2020, 142. [Google Scholar] [CrossRef]
- Miroslaw, T.; Szlagowski, J.; Zawadzki, A.; Zebrowski, Z. Simulation model of an off-road four-wheel-driven electric vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2019, 233, 1248–1262. [Google Scholar] [CrossRef]
- Minh, V.T.; Mohd Hashim, F.B.; Awang, M. Development of a real-time clutch transition strategy for a parallel hybrid electric vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2012, 226, 188–203. [Google Scholar] [CrossRef]
- Ye, J.; Huang, X.; Zhao, K.; Liu, Y. Optimal coordinating control for the overlapping shift of a seamless 2-speed transmission equipped in an electric vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2017, 231, 797–811. [Google Scholar] [CrossRef]
- Cunha, H.E.; Kyprianidis, K.G. Investigation of the Potential of Gas Turbines for Vehicular Applications. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenghagen, Denmark, 11–15 June 2012; Volume 3, pp. 51–64. [Google Scholar]
- An, Q.; Sun, L. On-line parameter identification for vector controlled PMSM drives using adaptive algorithm. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; pp. 8–13. [Google Scholar] [CrossRef]
- Xu, J.; Wang, F.; Xie, S.; Xu, J.; Feng, J. A new control method for permanent magnet synchronous machines with observer. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004; Volume 2, pp. 1404–1408. [Google Scholar] [CrossRef]
- Mercorelli, P. Parameters identification in a permanent magnet three-phase synchronous motor of a city-bus for an intelligent drive assistant. Int. J. Model. Identif. Control 2014, 21, 352–361. [Google Scholar] [CrossRef]
- Tremblay, O.; Dessaint, L. Experimental Validation of a Battery Dynamic Model for EV Applications. World Electr. Veh. J. 2009, 3, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Rothenberger, M.J.; Safi, J.; Liu, J.; Anstrom, J.; Brennan, S.; Fathy, H.K. Improving Lithium-Ion Battery Pack Diagnostics by Optimizing the Internal Allocation of Demand Current for Parameter Identifiability. J. Dyn. Syst. Meas. Control 2017, 139. [Google Scholar] [CrossRef]
- Mohamed, N.; Aymen, F.; Ben Hamed, M.; Lassaad, S. Analysis of battery-EV state of charge for a dynamic wireless charging system. Energy Storage 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, N.; Aymen, F.; Hamed, M. Ben Characteristic Of Photovoltaic Generator For The Electric Vehicle. Int. J. Sci. Technol. Res. 2019, 8, 871–876. [Google Scholar]
- Mousa, A.G.E.; Abdel Aleem, S.H.E.; Ibrahim, A.M. Mathematical analysis of maximum power points and currents based maximum power point tracking in solar photovoltaic system: A solar powered water pump application. Int. Rev. Electr. Eng. 2016, 11, 97–108. [Google Scholar] [CrossRef]
- Ćalasan, M.; Abdel Aleem, S.H.E.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Fathy, A.; Abdel Aleem, S.H.E.; Rezk, H. A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm. Int. J. Energy Res. 2021, 45, 6922–6942. [Google Scholar] [CrossRef]
- Hwang, J.J.; Chen, C.K.; Savinell, R.F.; Liu, C.C.; Wainright, J. A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC. J. Appl. Electrochem. 2004, 34, 217–224. [Google Scholar] [CrossRef]
- Nentwig, M.; Mercorelli, P. Throttle valve control using an inverse local linear model tree based on a fuzzy neural network. In Proceedings of the 2008 7th IEEE International Conference on Cybernetic Intelligent Systems, London, UK, 9–10 September 2008; pp. 1–6. [Google Scholar]
- Mostafa, M.H.; Aleem, S.H.E.A.; Ali, S.G.; Abdelaziz, A.Y.; Ribeiro, P.F.; Ali, Z.M. Robust energy management and economic analysis of microgrids considering different battery characteristics. IEEE Access 2020, 8, 54751–54775. [Google Scholar] [CrossRef]
- Dharmakeerthi, C.H.; Mithulananthan, N.; Saha, T.K. Impact of electric vehicle fast charging on power system voltage stability. Int. J. Electr. Power Energy Syst. 2014, 57, 241–249. [Google Scholar] [CrossRef]
- Wei, Z.; Peng, K.; Chen, J.; Yan, X.; Wan, Q. Stability Analysis of A DC Distribution System for Power System Integration of Plug-In Electric Vehicles. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; Volume 5, pp. 2450–2455. [Google Scholar] [CrossRef]
- Mandrile, F.; Cittanti, D.; Mallemaci, V.; Bojoi, R. Electric vehicle ultra-fast battery chargers: A boost for power system stability? World Electr. Veh. J. 2021, 12, 16. [Google Scholar] [CrossRef]
- Sierra, A.; Reinders, A. Designing innovative solutions for solar-powered electric mobility applications. Prog. Photovolt. Res. Appl. 2020, 1–17. [Google Scholar] [CrossRef]
Parameters | Symbol | Values |
---|---|---|
Shaft power (w) | Pu | 50,000 |
Pole pairs | Pm | 2 |
Resistance of stator (Ω) | Rs | 2.63 |
Resistance of rotor (Ω) | Rr | 2.42 |
Mutual inductance (H) | M | 0.253 |
Rotor and stator self-inductance (H) | Ls = Lr | 0.214 |
Inertia moment (kgm2) | J | 0.03 |
Viscous friction (Nms2) | f | 0.0002 |
Parameters | Values |
---|---|
i1 (A) | 20.0 |
Uref (V) | 480.0 |
Coil diameter (cm) | 40.0 |
Distance between coils (cm) | 140.0 |
Width of winding, W (cm) | 19.0 |
Average winding radius, r (cm) | 15.5 |
Number of turns, N (turns) | 17.0 |
Parameters | |||||
Expression |
Parameter | Symbol | Value |
---|---|---|
Vehicle weight (kg) | m | 20.0 |
Rolling resistance | fr | 480.0 |
Frontal surface area of the EV (m2) | Af | 40.0 |
Tire radius (m) | R | 140.0 |
Aerodynamic drag coefficient | Cd | 19.0 |
Index/Metric | FC | PV+FC | WR+FC | PV+WR+FC |
---|---|---|---|---|
Energy gain | + | ++ | + | +++ |
Efficiency | + | ++ | + | +++ |
Renewable energy use | + | ++ | ++ | +++ |
Profitability | ++ | +++ | ++ | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, N.; Aymen, F.; Ali, Z.M.; Zobaa, A.F.; Abdel Aleem, S.H.E. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability 2021, 13, 7351. https://doi.org/10.3390/su13137351
Mohamed N, Aymen F, Ali ZM, Zobaa AF, Abdel Aleem SHE. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability. 2021; 13(13):7351. https://doi.org/10.3390/su13137351
Chicago/Turabian StyleMohamed, Naoui, Flah Aymen, Ziad M. Ali, Ahmed F. Zobaa, and Shady H. E. Abdel Aleem. 2021. "Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy" Sustainability 13, no. 13: 7351. https://doi.org/10.3390/su13137351
APA StyleMohamed, N., Aymen, F., Ali, Z. M., Zobaa, A. F., & Abdel Aleem, S. H. E. (2021). Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability, 13(13), 7351. https://doi.org/10.3390/su13137351