Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review
Abstract
:1. Introduction
1.1. Biofloc Technology
1.1.1. Carbon–Nitrogen Ratio
1.1.2. Source of Organic Carbon
2. Bioflocs as a Nutritious Food Source, for Dietary Protein Reduction, Compensatory Growth, and Productivity of Economically Important Aquatic Species
Bioflocs as a Nutritious Feed Source
3. Dietary Protein Reduction
4. Compensatory Growth and Productivity
5. Biofloc-Based Integrated Multi-Trophic Aquaculture
- The absence of competition for food between the co-cultured species;
- The filter feeders should be able to consume the suspended solids and organic matter without detrimental effects on their general wellbeing;
- The filter feeders should not negatively affect the growth performance and general wellbeing of a co-cultured species in the rearing unit.
6. Economic Aspects of BFT Systems
7. Drawbacks, Limitations, and Management Aspects of BFT Systems
- NO2. Nitrite is highly toxic to fish if present in levels above 1 mg L−1. This means the presence of anaerobic regions, which lead to the accumulation of sludge. This will therefore necessitate the changing of aerators to increase levels of dissolved oxygen required by aerobic microbes to convert nitrite to nitrates.
- TAN. Total ammonia nitrogen below 0.5 mg L−1 indicates that the system is working properly. An increase in TAN above this level warrants the addition of carbon into the system.
- DO. Dissolved oxygen should not fall below 5 mg L−1. Below this level, more aerators should be added to the system to provide more oxygen.
- Floc volume (FV) should be in the range of 5 to 50 mL L−1 and this can be monitored using Imhoff cones. When FV concentrations are above 50 mL L−1, sludge should be removed, and if below 5 mL L−1, carbohydrates should be added.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hambrey, J. The 2030 Agenda and the Sustainable Development Goals: The challenge for aquaculture development and management. In FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2017; p. 1141. [Google Scholar]
- El-Sayed, A.F.M. Use of biofloc technology in shrimp aquaculture: A comprehensive review, with emphasis on the last decade. Rev. Aquac. 2021, 13, 676–705. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; Fisheries Department. Total World Fisheries. In The State of World Fisheries and Aquaculture; Food & Agriculture Org.: Rome, Italy, 2010; Volume 3, p. 10. [Google Scholar]
- Martins, M.A.; Poli, M.A.; Legarda, E.C.; Pinheiro, I.C.; Carneiro, R.F.S.; Pereira, S.A.; Martins, M.L.; Gonçalves, P.; Schleder, D.D.; do Nascimento Vieira, F. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture 2020, 514, 734517. [Google Scholar] [CrossRef]
- Gallardo-Collí, A.; Pérez-Fuentes, M.; Pérez-Rostro, C.I.; Hernández-Vergara, M. Compensatory growth of Nile tilapia Oreochromis niloticus, L. subjected to cyclic periods of feed restriction and feeding in a biofloc system. Aquac. Res. 2020, 51, 1813–1823. [Google Scholar] [CrossRef]
- Fauzi, M.; Putra, I.; Rusliadi, R.; Tang, U.M.; Muchlisin, Z.A. Growth performance and feed utilization of African catfish Clarias gariepinus fed a commercial diet and reared in the biofloc system enhanced with probiotic. F1000Research 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Sontakke, R.; Haridas, H. Economic Viability of Biofloc Based System for the Nursery Rearing of Milkfish (Chanos chanos). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2960–2970. [Google Scholar] [CrossRef]
- Khasanah, N.R.; Utomo, N.B.P.; Setiawati, M.; Yuhana, M. The evaluation of different levels diets protein for growth performance of Clarias sp. fry cultured in biofloc-based system. J. Akuakultur Indones. 2017, 16, 136. [Google Scholar] [CrossRef][Green Version]
- Kaya, D.; Genc, M.A.; Aktas, M.; Yavuzcan, H.; Ozmen, O.; Genc, E. Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquac. Res. 2019, 50, 2760–2768. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Xu, D.H.; Qiao, G.; Zhang, J.; Qi, Z.; Li, Q. Effect of different water biofloc contents on the growth and immune response of gibel carp cultured in zero water exchange and no feed addition system. Aquac. Res. 2018, 49, 1647–1656. [Google Scholar] [CrossRef]
- Emerenciano, M.; Cuzon, G.; Arévalo, M.; Gaxiola, G. Biofloc technology in intensive broodstock farming of the pink shrimp Farfantepenaeus duorarum: Spawning performance, biochemical composition and fatty acid profile of eggs. Aquac. Res. 2014, 45, 1713–1726. [Google Scholar] [CrossRef]
- Costa, L.C.d.; Poersch, L.H.d.; Abreu, C. Biofloc removal by the oyster Crassostrea gasar as a candidate species to an Integrated Multi-Trophic Aquaculture (IMTA) system with the marine shrimp Litopenaeus vannamei. Aquaculture 2021, 540, 736731. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Bossier, P.; Ekasari, J. Biofloc technology application in aquaculture to support sustainable development goals. Microb. Biotechnol. 2017, 10, 1012–1016. [Google Scholar] [CrossRef]
- Xu, W.J.; Morris, T.C.; Samocha, T.M. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture 2016, 453, 169–175. [Google Scholar] [CrossRef]
- Pérez-Fuentes, J.A.; Hernández-Vergara, M.; Pérez-Rostro, C.I.; Fogel, I. C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture 2016, 452, 247–251. [Google Scholar] [CrossRef]
- Silva, U.L.; Falcon, D.R.; Pessôa, M.N.D.C.; Correia, E.D.S. Carbon sources and C:N ratios on water quality for Nile tilapia farming in biofloc system. Rev. Caatinga 2017, 30, 1017–1027. [Google Scholar] [CrossRef][Green Version]
- Dauda, A.B.; Romano, N.; Ebrahimi, M.; Teh, J.C.; Ajadi, A.; Chong, C.M.; Karim, M.; Natrah, I.; Kamarudin, M.S. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture 2018, 483, 120–130. [Google Scholar] [CrossRef]
- Bakar, N.S.A.; Nasir, N.M.; Lananan, F.; Hamid, S.H.A.; Lam, S.S.; Jusoh, A. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int. Biodeterior. Biodegrad. 2015, 102, 100–106. [Google Scholar] [CrossRef]
- Yu, Z.; Li, L.; Zhu, R.; Li, M.; Duan, J.; Wang, J.Y.; Liu, Y.H.; Wu, L.F. Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquac. Rep. 2020, 16, 100283. [Google Scholar] [CrossRef]
- Haghparast, M.M.; Alishahi, M.; Ghorbanpour, M.; Shahriari, A. Evaluation of hemato-immunological parameters and stress indicators of common carp (Cyprinus carpio) in different C/N ratio of biofloc system. Aquac. Int. 2020, 28, 2191–2206. [Google Scholar] [CrossRef]
- Wang, G.; Yu, E.; Xie, J.; Yu, D.; Li, Z.; Luo, W.; Qiu, L.; Zheng, Z. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture 2015, 443, 98–104. [Google Scholar] [CrossRef]
- Bakhshi, F.; Najdegerami, E.H.; Manaffar, R.; Tokmechi, A.; Farah, K.R.; Jalali, A.S. Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquac. Res. 2018, 49, 393–403. [Google Scholar] [CrossRef]
- Bakhshi, F.; Najdegerami, E.H.; Manaffar, R.; Tukmechi, A.; Farah, K.R. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 2018, 484, 259–267. [Google Scholar] [CrossRef]
- Romano, N.; Dauda, A.B.; Ikhsan, N.; Karim, M.; Kamarudin, M.S. Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac. Res. 2018, 49, 3691–3701. [Google Scholar] [CrossRef]
- Dauda, A.B.; Romano, N.; Chen, W.W.; Natrah, I.; Kamarudin, M.S. Differences in feeding habits influence the growth performance and feeding efficiencies of African catfish (Clarias gariepinus) and lemon fin barb hybrid (Hypsibarbus wetmorei ♂ × Barboides gonionotus ♀) in a glycerol-based biofloc technology system versu. Aquac. Eng. 2018, 82, 31–37. [Google Scholar] [CrossRef]
- Dauda, A.B.; Romano, N.; Ebrahimi, M.; Karim, M.; Natrah, I.; Kamarudin, M.S.; Ekasari, J. Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fish. Sci. 2017, 83, 1037–1048. [Google Scholar] [CrossRef]
- De Lima, E.C.R.; de Souza, R.L.; Girao, J.M.; Braga, Í.F.M.; Correia, E.D.S. Culture of Nile tilapia in a biofloc system with different sources of carbon. Rev. Cienc. Agron. 2018, 49, 458–466. [Google Scholar] [CrossRef]
- García-Ríos, L.; Miranda-Baeza, A.; Coelho-Emerenciano, M.G.; Huerta-Rábago, J.A.; Osuna-Amarillas, P. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture 2019, 502, 26–31. [Google Scholar] [CrossRef]
- Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac. Eng. 2007, 36, 184–191. [Google Scholar] [CrossRef]
- Liu, W.; Luo, G.; Chen, W.; Tan, H.; Wu, S.; Zhang, N.; Yu, Y. Effect of no carbohydrate addition on water quality, growth performance and microbial community in water-reusing biofloc systems for tilapia production under high-density cultivation. Aquac. Res. 2018, 49, 2446–2454. [Google Scholar] [CrossRef]
- Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky, W. The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. J. World Aquac. Soc. 2014, 45, 3–14. [Google Scholar] [CrossRef]
- Hisano, H.; Parisi, J.; Cardoso, I.L.; Ferri, G.H.; Ferreira, M.F. Dietary protein reduction for Nile tilapia fingerlings reared in biofloc technology. J. World Aquac. Soc. 2020, 51, 452–462. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Alternative dietary protein sources for farmed. Aquaculture 1999, 179, 149–168. [Google Scholar] [CrossRef]
- Narimbi, J.; Mazumder, D.; Sammut, J. Stable isotope analysis to quantify contributions of supplementary feed in Nile Tilapia Oreochromis niloticus (GIFT strain) aquaculture. Aquac. Res. 2018, 49, 1866–1874. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Kochba, M. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture 2009, 287, 163–168. [Google Scholar] [CrossRef]
- Moreno-Arias, A.; López-Elías, J.A.; Martínez-Córdova, L.R.; Ramírez-Suárez, J.C.; Carvallo-Ruiz, M.G.; García-Sánchez, G.; Lugo-Sánchez, M.E.; Miranda-Baeza, A. Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture 2018, 483, 53–62. [Google Scholar] [CrossRef]
- Ray, A.J.; Lewis, B.L.; Browdy, C.L.; Leffler, J.W. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture 2010, 299, 89–98. [Google Scholar] [CrossRef]
- Emerenciano, M.; Ballester, E.L.C.; Cavalli, R.O.; Wasielesky, W. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res. 2012, 43, 447–457. [Google Scholar] [CrossRef]
- Emerenciano, M.; Ballester, E.L.C.; Cavalli, R.O.; Wasielesky, W. Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquac. Int. 2011, 19, 891–901. [Google Scholar] [CrossRef]
- Promthale, P.; Pongtippatee, P.; Withyachumnarnkul, B.; Wongprasert, K. Bioflocs substituted fishmeal feed stimulates immune response and protects shrimp from Vibrio parahaemolyticus infection. Fish. Shellfish Immunol. 2019, 93, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ren, Y.; Wang, G.; Xia, B.; Li, Y. Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish. Shellfish Immunol. 2018, 72, 143–152. [Google Scholar] [CrossRef]
- Bauer, W.; Prentice-Hernandez, C.; Tesser, M.B.; Wasielesky, W.; Poersch, L.H.S. Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture 2012, 342–343, 112–116. [Google Scholar] [CrossRef]
- Prabu, E.; Rajagopalsamy, C.B.T.; Ahilan, B.; Santhakumar, R.; Jemila, A. Influence of Biofloc meal and Lysine supplementation on the growth performances of GIFT tilapia. J. Entomol. Zool. Stud. 2017, 5, 35–39. [Google Scholar]
- Megahed, M.E.; Mohamed, K. Sustainable Growth of Shrimp Aquaculture through Biofloc Production as Alternative to Fishmeal in Shrimp Feeds. J. Agric. Sci. 2014, 6. [Google Scholar] [CrossRef][Green Version]
- Valle, B.C.S.; Dantas, E.M., Jr.; Silva, J.F.X.; Bezerra, R.S.; Correia, E.S.; Peixoto, S.R.M.; Soares, R.B. Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of Litopenaeus vannamei postlarvae. Aquac. Nutr. 2015, 21, 105–112. [Google Scholar] [CrossRef]
- Shao, J.; Liu, M.; Wang, B.; Jiang, K.; Wang, M.; Wang, L. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway. Aquaculture 2017, 479, 516–521. [Google Scholar] [CrossRef]
- Dantas, E.M.; Valle, B.C.S.; Brito, C.M.S.; Calazans, N.K.F.; Peixoto, S.R.M.; Soares, R.B. Partial replacement of fishmeal with biofloc meal in the diet of postlarvae of the Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr. 2016, 22, 335–342. [Google Scholar] [CrossRef]
- Ferreira, M.G.; Melo, F.; Lima, J.V.; Andrade, H.A.; Severi, W.; Correia, E.S. Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc. Lat. Am. J. Aquat. Res. 2017, 45, 167–176. [Google Scholar] [CrossRef]
- Aguilera-Rivera, D.; Prieto-Davó, A.; Escalante, K.; Chávez, C.; Cuzon, G.; Gaxiola, G. Probiotic effect of FLOC on Vibrios in the pacific white shrimp Litopenaeus vannamei. Aquaculture 2014, 424–425, 215–219. [Google Scholar] [CrossRef][Green Version]
- Panigrahi, A.; Das, R.R.; Sivakumar, M.R.; Saravanan, A.; Saranya, C.; Sudheer, N.S.; Vasagam, K.K.; Mahalakshmi, P.; Kannappan, S.; Gopikrishna, G. Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish. Shellfish Immunol. 2020, 98, 477–487. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Bolívar, N.C.; Pereira, S.A.; Guertler, C.; do Nascimento Vieira, F.; Mouriño, J.L.P.; Seiffert, W.Q. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture 2015, 448, 273–279. [Google Scholar] [CrossRef]
- Hu, X.; Cao, Y.; Wen, G.; Zhang, X.; Xu, Y.; Xu, W.; Xu, Y.; Li, Z. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems. Aquac. Res. 2017, 48, 2691–2705. [Google Scholar] [CrossRef]
- Hapsari, F. The effect of fermented and non fermented biofloc inoculated with bacterium Bacillus cereus for catfish (Clarias gariepinus) juveniles. AACL Bioflux 2016, 9, 334–339. [Google Scholar]
- Cienfugos, K.; Dosta, M.C.M.; Hamdan, A.; Aguirre, F. Aquat. Stud. 2018, 6, 525–533. Available online: www.fisheriesjournal.com (accessed on 18 May 2021).
- Mohammadi, G.; Rafiee, G.; Tavabe, K.R.; Abdel-Latif, H.M.R.; Dawood, M.A.O. The enrichment of diet with beneficial bacteria (single- or multi- strain) in biofloc system enhanced the water quality, growth performance, immune responses, and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 539, 736640. [Google Scholar] [CrossRef]
- Aly, S.M.; Ahmed, Y.A.G.; Ghareeb, A.A.A.; Mohamed, M.F. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish. Shellfish Immunol. 2008, 25, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Damusaru, J.H.; Park, Y.; Kim, K.; Seong, M.; Je, H.W.; Kim, S.; Bai, S.C. Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal Res. 2017, 27, 259–264. [Google Scholar] [CrossRef]
- Dash, P.; Tandel, R.S.; Bhat, R.A.H.; Mallik, S.; Pandey, N.N.; Singh, A.K.; Sarma, D. The addition of probiotic bacteria to microbial floc: Water quality, growth, non-specific immune response and disease resistance of Cyprinus carpio in mid-Himalayan altitude. Aquaculture 2018, 495, 961–969. [Google Scholar] [CrossRef]
- Xia, S.; Li, Y.; Wang, W.; Rajkumar, M.; Vasagam, K.K.; Wang, H. Influence of dietary protein levels on growth, digestibility, digestive enzyme activity and stress tolerance in white-leg shrimp, Litopenaeus vannamei (Boone, 1931), reared in high-density tank trials. Aquac. Res. 2010, 41, 1845–1854. [Google Scholar] [CrossRef]
- ATacon, G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.; Decamp, O.E. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquac. Nutr. 2002, 8, 121–137. [Google Scholar] [CrossRef][Green Version]
- Xu, W.J.; Pan, L.Q. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquac. Res. 2014, 45, 1842–1851. [Google Scholar] [CrossRef]
- Ogello, E.O.; Musa, S.M.; Aura, C.M.; Abwao, J.O. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology: A review. Int. J. Aquat. Sci. 2014, 5, 21–39. [Google Scholar]
- Ekasari, J.; Angela, D.; Waluyo, S.H.; Bachtiar, T.; Surawidjaja, E.H.; Bossier, P.; de Schryver, P. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 2014, 426–427, 105–111. [Google Scholar] [CrossRef]
- Prangnell, D.I.; Castro, L.F.; Ali, A.S.; Browdy, C.L.; Samocha, T.M. The performance of juvenile Litopenaeus vannamei fed commercial diets of differing protein content, in a super-intensive biofloc-dominated system. J. Appl. Aquac. 2020, 1–22. [Google Scholar] [CrossRef]
- Braga, A.; Lopes, D.L.A.; Magalhães, V.; Poersch, L.H.; Wasielesky, W. Use of biofloc technology during the pre-maturation period of Litopenaeus vannamei males: Effect of feeds with different protein levels on the spermatophore and sperm quality. Aquac. Res. 2015, 46, 1965–1973. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Yavari, V.; Hoseini, S.J.; Nafisi, M.; Mozanzadeh, M.T. Effects of different carbon sources and dietary protein levels in a biofloc system on growth performance, immune response against white spot syndrome virus infection and cathepsin L gene expression of Litopenaeus vannamei. Aquac. Res. 2019, 50, 1162–1176. [Google Scholar] [CrossRef]
- WXu, J.; Pan, L.Q.; Zhao, D.H.; Huang, J. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture 2012, 350–353, 147–153. [Google Scholar] [CrossRef]
- SPinho, M.; Emerenciano, M.G.C. Sensorial attributes and growth performance of whiteleg shrimp (Litopenaeus vannamei) cultured in biofloc technology with varying water salinity and dietary protein content. Aquaculture 2021, 540, 736727. [Google Scholar] [CrossRef]
- Kumar, S.; Anand, P.S.S.; De, D.; Deo, A.D.; Ghoshal, T.K.; Sundaray, J.K.; Ponniah, A.G.; Jithendran, K.P.; Raja, R.A.; Biswas, G.; et al. Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquac. Res. 2017, 48, 1168–1182. [Google Scholar] [CrossRef]
- Brito, L.O.; Junior, L.C.; Abreu, J.L.; Severi, W.; Moraes, L.B.S.; Galvez, A.O. Effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei raised in an integrated biofloc system with the seaweed Gracilaria birdiae. Span. J. Agric. Res. 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Da Silva, M.A.; de Alvarenga, É.R.; Alves, G.F.D.O.; Manduca, L.G.; Turra, E.M.; de Brito, T.S.; de Sales, S.C.M.; da Silva Junior, A.F.; Borges, W.J.; Teixeira, E.D.A. Crude protein levels in diets for two growth stages of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquac. Res. 2018, 49, 2693–2703. [Google Scholar] [CrossRef]
- Amany, A.G.; Elnady, M.A.; Salem, M.A.I.; Metwally, N.E. Influence of dietary protein level and feed inputs on growth and feeding performance of the Nile tilapia under biofloc conditions. Egypt. J. Aquat. Biol. Fish. 2019, 23, 483–491. [Google Scholar] [CrossRef][Green Version]
- Azim, M.E.; Little, D.C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Nguyen, H.Y.N.; Trinh, T.L.; Baruah, K.; Lundh, T.; Kiessling, A. Growth and feed utilisation of Nile tilapia (Oreochromis niloticus) fed different protein levels in a clear-water or biofloc-RAS system. Aquaculture 2021, 536, 736404. [Google Scholar] [CrossRef]
- Mansour, A.T.; Esteban, M.Á. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish. Shellfish Immunol. 2017, 64, 202–209. [Google Scholar] [CrossRef]
- Aalimahmoudi, M.; Mohammadiazarm, H. Dietary protein level and carbon/nitrogen ratio manipulation in bioflocs rearing of Cyprinus carpio juvenile: Evaluation of growth performance, some blood biochemical and water parameters. Aquaculture 2019, 513, 734408. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, Q.; Luo, L.; Qiao, G.; Wang, L.; Li, J.; Wang, C. Effect of bio-floc on water quality and the production performance of bottom and filter feeder carp fed with different protein levels in a pond polyculture system. Aquaculture 2021, 531, 735906. [Google Scholar] [CrossRef]
- Sawant, K.; Meshram, S.; Dhamagaye, H.; Chavan, B.R. Growth and Survival of Labeo rohita (HAMILTON, 1822) fry in biofloc system using various dietary protein levels. J. Exp. Zool. India 2020, 23, 765–769. [Google Scholar]
- Yu, Z.; Huang, Z.Q.; Du, H.L.; Li, H.J.; Wu, L.F. Influence of differential protein levels of feed on growth, copper-induced immune response and oxidative stress of Rhynchocypris lagowski in a biofloc-based system. Aquac. Nutr. 2020, 26, 2211–2224. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Lin, X.T.; Pan, J.X.; Xu, Z.N. Effect of cyclical feeding on compensatory growth, nitrogen and phosphorus budgets in juvenile Litopenaeus vannamei. Aquac. Res. 2016, 47, 283–289. [Google Scholar] [CrossRef]
- Maciel, J.C.; Francisco, C.J.; Miranda-Filho, K.C. Compensatory growth and feed restriction in marine shrimp production, with emphasis on biofloc technology. Aquac. Int. 2018, 26, 203–212. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Cui, Y.; Yang, Y.; Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicus x O. niloticus, reared in seawater. Aquaculture 2000, 189, 101–108. [Google Scholar] [CrossRef]
- Wasielesky, W.; Froes, C.; Fóes, G.; Krummenauer, D.; Lara, G.; Poersch, L. Nursery of Litopenaeus vannamei reared in a biofloc system: The effect of stocking densities and compensatory growth. J. Shellfish Res. 2013, 32, 799–806. [Google Scholar] [CrossRef]
- Ali, M.; Nicieza, A.; Wootton, R.J. Compensatory growth in fishes: A response to growth depression. Fish. Fish. 2003, 4, 147–190. [Google Scholar] [CrossRef]
- Lara, G.; Hostins, B.; Bezerra, A.; Poersch, L.; Wasielesky, W. The effects of different feeding rates and re-feeding of Litopenaeus vannamei in a biofloc culture system. Aquac. Eng. 2017, 77, 20–26. [Google Scholar] [CrossRef]
- Rocha, J.V.; Silva, J.F.; Barros, C.; Peixoto, S.; Soares, R. Compensatory growth and digestive enzyme activity of Litopenaeus vannamei submitted to feeding restriction in a biofloc system. Aquac. Res. 2019, 50, 3653–3662. [Google Scholar] [CrossRef]
- Correa, A.D.S.; Pinho, S.M.; Molinari, D.; Pereira, K.D.R.; Gutiérrez, S.M.; Monroy-Dosta, M.D.C.; Emerenciano, M.G.C. Rearing of Nile tilapia (Oreochromis niloticus) juveniles in a biofloc system employing periods of feed deprivation. J. Appl. Aquac. 2020, 32, 139–156. [Google Scholar] [CrossRef]
- Borges, B.A.A.; Rocha, J.L.; Pinto, P.H.O.; Zacheu, T.; Chede, A.C.; Magnotti, C.C.F.; Cerqueira, V.R.; Arana, L.A.V. Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio sp. reduction. Aquaculture 2020, 524, 735234. [Google Scholar] [CrossRef]
- Poli, M.A.; Martins, M.A.; Pereira, S.A.; Jesus, G.F.A.; Martins, M.L.; Mouriño, J.L.P.; do Nascimento Vieira, F. Increasing stocking densities affect hemato-immunological parameters of Nile tilapia reared in an integrated system with Pacific white shrimp using biofloc technology. Aquaculture 2021, 536, 736497. [Google Scholar] [CrossRef]
- Poli, M.A.; Legarda, E.C.; de Lorenzo, M.A.; Martins, M.A.; Vieira, F.D.N. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture 2019, 498, 83–89. [Google Scholar] [CrossRef]
- Pinheiro, I.; Arantes, R.; do Espírito Santo, C.M.; do Nascimento Vieira, F.; Lapa, K.R.; Gonzaga, L.V.; Fett, R.; Barcelos-Oliveira, J.L.; Seiffert, W.Q. Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol. Eng. 2017, 100, 261–267. [Google Scholar] [CrossRef]
- Poli, M.A.; Legarda, E.C.; de Lorenzo, M.A.; Pinheiro, I.; Martins, M.A.; Seiffert, W.Q.; do Nascimento Vieira, F. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture 2019, 511, 734274. [Google Scholar] [CrossRef]
- Holanda, M.; Santana, G.; Furtado, P.; Rodrigues, R.V.; Cerqueira, V.R.; Sampaio, L.A.; Wasielesky, W., Jr.; Poersch, L.H. Evidence of total suspended solids control by Mugil liza reared in an integrated system with Pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquac. Rep. 2020, 18, 100479. [Google Scholar] [CrossRef]
- Hoang, M.N.; Nguyen, P.N.; Bossier, P. Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture 2020, 515, 734610. [Google Scholar] [CrossRef]
- Legarda, E.C.; da Silva, D.; Miranda, C.S.; Pereira, P.K.M.; Martins, M.A.; Machado, C.; de Lorenzo, M.A.; Hayashi, L.; do Nascimento Vieira, F. Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture 2021, 534, 736265. [Google Scholar] [CrossRef]
- Pinheiro, I.; Carneiro, R.F.S.; do Nascimento Vieira, F.; Gonzaga, L.V.; Fett, R.; de Oliveira Costa, A.C.; Magallon-Barajas, F.J.; Seiffert, W.Q. Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities. Aquaculture 2020, 519, 734918. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M. Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquac. 2020, 12, 1836–1850. [Google Scholar] [CrossRef]
- Browdy, C.L.; Bratvold, D.; Stokes, A.D.; McIntosh, R. Perspectives on the application of closed shrimp culture systems. In The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001; Browdy, C.L., Jory, D.E., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2001; pp. 20–34. [Google Scholar]
- Megahed, M.E. The Effect of Microbial Biofloc on Water Quality, Survival and Growth of the Green Tiger Shrimp (Penaeus Semisulcatus) Fed with Different crude Protein Levels. I: Sustainable Solution to the Dependency on Fish Oil, Fishmeal and Environmental Problems. J. Arab. Aquac. Soc. 2010, 5, 119–142. [Google Scholar]
- De Schryver, P.; Verstraete, W. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol. 2009, 100, 1162–1167. [Google Scholar] [CrossRef]
- Luo, G.; Chen, X.; Tan, J.; Abakari, G.; Tan, H. Effects of carbohydrate addition strategy and biofloc levels on the establishment of nitrification in biofloc technology aquaculture systems. Aquaculture 2020, 514, 734441. [Google Scholar] [CrossRef]
- Paula, A.; de Morais, M.; Cesar, P.; Wasielesky, W. Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and clear water systems. Aquaculture 2020, 514, 734516. [Google Scholar] [CrossRef]
- Jiménez-Ordaz, F.J.; Cadena-Roa, M.A.; Pacheco-Vega, J.M.; Rojas-Contreras, M.; Tovar-Ramírez, D.; Arce-Amezquita, M. Microalgae and probiotic bacteria as biofloc inducers in a hyper-intensive Pacific white shrimp (Penaeus vannamei) culture. Lat. Am. J. Aquat. Res. 2021, 49, 155–168. [Google Scholar] [CrossRef]
- Schrader, K.K.; Green, B.W.; Perschbacher, W. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac. Eng. 2011, 45, 118–126. [Google Scholar] [CrossRef]
- Lauderdale, C.V.; Aldrich, H.C.; Lindner, A.S. Isolation and characterization of a bacterium capable of removing taste- and odor-causing 2-methylisoborneol from water. Water Res. 2004, 38, 4135–4142. [Google Scholar] [CrossRef] [PubMed]
- Guttman, L.; van Rijn, J. Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources. Appl. Environ. Microbiol. 2012, 78, 363–370. [Google Scholar] [CrossRef] [PubMed][Green Version]
Aquatic Species | Probiotic Species | Dosage and Duration of Study | Observation | Reference |
---|---|---|---|---|
Litopenaeus vannamei | Altai™, Providencia, Santiago, Chile (Bacillus subtilis, Bacillus natto, Bacillus megaterium, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus casei, and Saccharomyces cerevisiae) | 109 CFU g−1–45 days | ↑ Growth and survival. ↓ Severe lesions in shrimp tissues. ↓ Abundance of pathogenic bacteria. | Aguilera-Rivera et al. [50] |
Penaeus indicus | Bacillus sp. | 5.4 × 109 CFU mL−1–90 days | ↑ Immunity | Panigrahi et al. [51] |
Litopenaeus vannamei | Bacillus spp. | 1 × 104 CFU mL−1–42 days | ↓ Abundance of pathogenic bacteria Vibrio alginolyticus (BCCM 2068). ↑ Immunity. | Ferreira et al. [52] |
Litopenaeus vannamei | Bacillus sp. | 1.5 × 108 CFU L−1–95 days | ↑ Microbial diversity of beneficial bacteria. ↓ Abundance of pathogenic bacteria. | Hu et al. [53] |
Clarias gariepinus | Bacillus sp. | 5 × 1010 CFU–60 days | ↑ Growth performance, survival rate, and feed utilization. | Putra et al. [6] |
Clarias gariepinus | Bacillus cereus | 5 mg L−1–35 days | ↑ Growth performance. | Hapsari [54] |
Oreochromis niloticus | Bacillus sp. Rhodococcus sp. | 1 × 107 CFU mL−1–60 days | ↑ Survival. | Kathia et al. [55] |
Oreochromis niloticus | Multi strain probiotics (B. subtilis, L. plantarum, L. Rhamnosus, L. acidophilus, L. delbrueckii) | 108 CFU g−1–112 days | ↑ Immune response (serum protease, SOD, CAT, AP, MPO, and RBA activities). ↓ Mortality against Aeromonas hydrophila infection challenge. | Mohammadi et al. [56] |
Oreochromis niloticus | Bacillus sp. L. acidophilus | 107 bacteria mL−1–8 weeks | ↑ Survival percent and weight in fish fed on Bacillus sp. alone or probiotic mixture. ↑ Resistance against pathogenic bacteria. | Aly et al. [57] |
Oreochromis niloticus | Chlorella vulgaris Scenedesmus obliquus | 0.014 g L−1–12 days | ↔ Growth performance. ↑ Immune response. | Jung et al. [58] |
Cyprinus carpio | B. pumilus L. delbrueckii | 12.8 × 108 cells ml−1 and 13.5 × 108 cells mL−1–60 days | ↑ Development of suspended biomass in the BFT system. ↑ Immunity and disease resistance. | Dash et al. [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugwanya, M.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review. Sustainability 2021, 13, 7255. https://doi.org/10.3390/su13137255
Mugwanya M, Dawood MAO, Kimera F, Sewilam H. Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review. Sustainability. 2021; 13(13):7255. https://doi.org/10.3390/su13137255
Chicago/Turabian StyleMugwanya, Muziri, Mahmoud A. O. Dawood, Fahad Kimera, and Hani Sewilam. 2021. "Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review" Sustainability 13, no. 13: 7255. https://doi.org/10.3390/su13137255