Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste
Abstract
:1. Introduction
2. Rationale for Research-Data Collection and Processing
2.1. Search Strategy
- Vegetable/Fruits residues/by-products/wastes from fruits (apple tescovina, citrus, cactus, cabbage, artichoke, carrot tescovina.
- Wastes/by-products dietary fibers.
- Wastes/by-products prebiotics.
- Adverse effects of dietary fiber.
- Anti-nutritional compounds in vegetable/fruits residues/wastes/by-products.
2.2. Inclusion and Selection of the Study
3. Extraction and Identification of Dietary Fiber and Prebiotic Compounds from Food Waste
3.1. Dietary Fiber and Prebiotic Compounds from Fruits Wastes
3.1.1. Apple
3.1.2. Cactus
3.1.3. Citrus
3.2. Dietary Fiber and Prebiotic Compounds from Vegetables
3.2.1. Cabbage
3.2.2. Artichoke
3.2.3. Carrot
4. Applications of Dietary Fiber and Prebiotic Compounds from Food Wastes
4.1. Fruits Waste Dietary Fiber and Prebiotic Compounds Applications
4.1.1. Apple
4.1.2. Cactus
4.1.3. Citrus
4.1.4. Exotic Fruits Waste
4.2. Vegetables Waste Dietary Fiber and Prebiotic Compounds Applications Cabbage
4.2.1. Artichoke
4.2.2. Carrot
5. Safety Issues and Anti-Nutritional Compounds of Dietary Fiber and Prebiotic in Food Waste
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAO; WHO. Sustainable Healthy Diets–Guiding Principles; FAO: Rome, Italy, 2019. [Google Scholar]
- Delcour, J.A.; Aman, P.; Courtin, C.M.; Hamaker, B.R.; Verbeke, K. Prebiotics, Fermentable Dietary Fiber, and Health Claims. Adv. Nutr. 2016, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suharoschi, R.; Pop, O.L.; Vlaic, R.A.; Muresan, C.I.; Muresan, C.C.; Cozma, A.; Sitar-Taut, A.V.; Vulturar, R.; Heghes, S.C.; Fodor, A.; et al. Chapter 3—Dietary Fiber and Metabolism. In Dietary Fiber: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 59–77. [Google Scholar] [CrossRef]
- Pop, O.L.; Salanță, L.-C.; Pop, C.R.; Coldea, T.; Socaci, S.A.; Suharoschi, R.; Vodnar, D.C. Prebiotics and dairy applications. In Dietary Fiber: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–277. [Google Scholar]
- Socaci, S.A.; Rugină, D.O.; Diaconeasa, Z.M.; Pop, O.L.; Fărcaș, A.C.; Păucean, A.; Tofană, M.; Pintea, A. Antioxidant compounds recovered from food wastes. Funct. Food Improv. Health Adequate Food 2017. [Google Scholar] [CrossRef] [Green Version]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [Green Version]
- Dhir, A.; Talwar, S.; Kaur, P.; Malibari, A. Food waste in hospitality and food services: A systematic literature review and framework development approach. J. Clean. Prod. 2020, 270, 122861. [Google Scholar] [CrossRef]
- Kaur, P.; Dhir, A.; Talwar, S.; Alrasheedy, M. Systematic literature review of food waste in educational institutions: Setting the research agenda. Int. J. Contemp. Hosp. Manag. 2021, 33, 1160–1193. [Google Scholar] [CrossRef]
- Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food loss and waste in food supply chains. A systematic literature review and framework development approach. J. Clean. Prod. 2021, 295, 126438. [Google Scholar] [CrossRef]
- Ng, H.S.; Kee, P.E.; Yim, H.S.; Chen, P.-T.; Wei, Y.-H.; Lan, J.C.-W. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour. Technol. 2020, 302, 122889. [Google Scholar] [CrossRef]
- Dueñas, M.; García-Estévez, I. Agricultural and Food Waste: Analysis, Characterization and Extraction of Bioactive Compounds and Their Possible Utilization; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020. [Google Scholar]
- Galanakis, C. Food waste valorization opportunities for different food industries. In The Interaction of Food Industry and Environment; Galanakis, C., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 341–422. [Google Scholar] [CrossRef]
- Cecilia, J.A.; García-Sancho, C.; Maireles-Torres, P.J.; Luque, R. Industrial food waste valorization: A general overview. Biorefinery 2019, 253–277. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.-S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 3085. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.C.; Galanakis, C.M.; Socaciu, C.; Pop, O.L.; Tibulca, D.; Paucean, A.; Jimborean, M.A.; Fogarasi, M.; Salanta, L.C.; Tofana, M.; et al. Food Security during the Pandemic and the Importance of the Bioeconomy in the New Era. Sustainability 2021, 13, 150. [Google Scholar] [CrossRef]
- Salanță, L.C.; Uifălean, A.; Iuga, C.-A.; Tofană, M.; Cropotova, J.; Pop, O.L.; Pop, C.R.; Rotar, M.A.; Bautista-Ávila, M.; González, C.V. Valuable food molecules with potential benefits for human health. In The Health Benefits of Foods-Current Knowledge and Further Development; IntechOpen: London, UK, 2020. [Google Scholar]
- Benito-González, I.; Martínez-Sanz, M.; Fabra, M.J.; López-Rubio, A. Health effect of dietary fibers. In Dietary Fiber: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 125–163. [Google Scholar] [CrossRef]
- DA Silva, L.M.R.; de Sousa, P.H.M.; de Sousa Sabino, L.B.; do Prado, G.M.; Torres, L.B.V.; Maia, G.A.; de Figueiredo, R.W.; Ricardo, N.M.P.S. Brazilian (North and Northeast) Fruit By-Products. Food Wastes By-Prod. Nutraceutical Health Potential 2020, 127–158. [Google Scholar]
- Fermoso, F.G.; Serrano, A.; Alonso-Fariñas, B.; Fernández-Bolaños, J.; Borja, R.; Rodríguez-Gutiérrez, G. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. J. Agri. Food Chem. 2018, 66, 8451–8468. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Obidizinski, S.; Dolzynska, M.; Lewicka, S. Analysis of Physical Properties of Dietary Fiber From Apple Waste; Uniwersytet Przyrodniczy w Lublinie: Lublin, Poland, 2017; pp. 272–277. [Google Scholar] [CrossRef]
- Liang, X.; Ran, J.; Sun, J.; Wang, T.; Jiao, Z.; He, H.; Zhu, M. Optimización de la extracción de fibra dietética soluble de la pulpa de manzana modificada por explosión de vapor y usando la metodología de superficies de respuesta. CYTA J. Food 2018, 16, 20–26. [Google Scholar] [CrossRef]
- Schmid, V.; Trabert, A.; Schäfer, J.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Modification of Apple Pomace by Extrusion Processing: Studies on the Composition, Polymer Structures, and Functional Properties. Foods 2020, 9, 1385. [Google Scholar] [CrossRef] [PubMed]
- Singha, P.; Singh, S.K.; Muthukumarappan, K. Textural and structural characterization of extrudates from apple pomace, defatted soy flour and corn grits. J. Food Process Eng. 2019, 42, e13046. [Google Scholar] [CrossRef]
- Sharma, P.C.; Gupta, A.; Issar, K. Effect of Packaging and Storage on Dried Apple Pomace and Fiber Extracted from Pomace. J. Food Process. Preserv. 2017, 41, e12913. [Google Scholar] [CrossRef]
- Hsu, C.T.; Chang, Y.H.; Shiau, S.Y. Color, antioxidation, and texture of dough and Chinese steamed bread enriched with pitaya peel powder. Cereal Chem. 2019, 96, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Rosiana, N.M.; Suryana, A.L.; Olivia, Z. The mixture of soybean powder and dragon fruit peel powder as high fiber functional drink. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Tokyo, Japan, 2020; Volume 411. [Google Scholar]
- Wichienchot, S.; Ishak, W.R.B.W. Prebiotics and Dietary Fibers from Food Processing By-Products. Food Process. By-Prod. Util. 2017, 137–174. [Google Scholar] [CrossRef] [Green Version]
- Peerakietkhajorn, S.; Jeanmard, N.; Chuenpanitkit, P.; Sakena, K.D.A.; Bannob, K.; Khuituan, P. Effects of plant oligosaccharides derived from dragon fruit on gut microbiota in proximal and distal colon of mice. Sains Malays. 2020, 49, 603–611. [Google Scholar] [CrossRef]
- Pansai, N.; Chakree, K.; Takahashi Yupanqui, C.; Raungrut, P.; Yanyiam, N.; Wichienchot, S. Gut microbiota modulation and immune boosting properties of prebiotic dragon fruit oligosaccharides. Int. J. Food Sci. Technol. 2020, 55, 55–64. [Google Scholar] [CrossRef]
- Sangkuanun, T.; Wichienchot, S.; Kato, Y.; Watanabe, H.; Peerakietkhajorn, S. Oligosaccharides derived from dragon fruit modulate gut microbiota, reduce oxidative stress and stimulate toll-pathway related gene expression in freshwater crustacean Daphnia magna. Fish Shellfish Immunol. 2020, 103, 126–134. [Google Scholar] [CrossRef]
- Welti-Chanes, J.; Serna-Saldívar, S.O.; Campanella, O.; Tejada-Ortigoza, V. Science and Technology of Fibers in Food Systems; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Remes-Troche, J.M.; Taboada-Liceaga, H.; Gill, S.; Amieva-Balmori, M.; Rossi, M.; Hernández-Ramírez, G.; García-Mazcorro, J.F.; Whelan, K. Nopal fiber (Opuntia ficus-indica) improves symptoms in irritable bowel syndrome in the short term: A randomized controlled trial. Neurogastroenterol. Motil. 2021, 33. [Google Scholar] [CrossRef]
- Ilce Gabriela, M.-M.; Girish, G. Fruit Processing By-Products: A Rich Source for Bioactive Compounds and Value Added Products. Food Process. By-Prod. Util. 2017, 11–26. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dellacassa, E.; Medrano-Fernandez, A.; Del Castillo, M.D. Citrus Waste Recovery for Sustainable Nutrition and Health. Food Wastes By-Prod. 2020, 193–222. [Google Scholar] [CrossRef]
- He, C.; Sampers, I.; Raes, K. Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocoll. 2021, 111, 106175. [Google Scholar] [CrossRef]
- Zhang, M.; Juraschek, S.P.; Appel, L.J.; Pasricha, P.J.; Miller, E.R.; Mueller, N.T. Effects of High-Fiber Diets and Macronutrient Substitution on Bloating: Findings From the OmniHeart Trial. Clin. Transl. Gastroenterol. 2020, 11, e00122. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, J.; Zeng, W.; Huang, Y.; Yang, X. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment. Food Chem. 2020, 311. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, T.A.A.; Matin, M.A. Valorization of Vegetable Wastes. Food Process. By-Prod. Util. 2017, 53–88. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoon, K.Y. Enzymatic production of soluble dietary fiber from the cellulose fraction of Chinese cabbage waste and potential use as a functional food source. Food Sci. Biotechnol. 2015, 24, 529–535. [Google Scholar] [CrossRef]
- Von Ulardt, I.; Springer, M.; Valbuena, R. Structural characteristics and functional properties of fiber-rich by-products of white cabbage modified by high-energy wet media milling. Food Sci. Appl. Biotechnol. 2020, 3, 85–91. [Google Scholar] [CrossRef]
- Siriwattananon, L.; Maneerate, J. Effect of drying methods on dietary fiber content in dried fruit and vegetable from non-toxic agricultural field. Int. J. 2016, 11, 2896–2900. [Google Scholar] [CrossRef]
- Bharat Helkar, P.; Sahoo, A.K. Review: Food Industry By-Products used as a Functional Food Ingredients. Int. J. Waste Resour. 2016, 6. [Google Scholar] [CrossRef]
- Domingo, C.S.; Rojas, A.M.; Fissore, E.N.; Gerschenson, L.N. Rheological behavior of soluble dietary fiber fractions isolated from artichoke residues. Eur. Food Res. Technol. 2019, 245, 1239–1249. [Google Scholar] [CrossRef]
- Domingo, C.S.; Soria, M.; Rojas, A.M.; Fissore, E.N.; Gerschenson, L.N. Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. Int. J. Mol. Sci. 2015, 16, 6057–6075. [Google Scholar] [CrossRef] [Green Version]
- Fissore, E.N.; Santo Domingo, C.; Gerschenson, L.N.; Giannuzzi, L. A study of the effect of dietary fiber fractions obtained from artichoke (Cynara cardunculus L. var. scolymus) on the growth of intestinal bacteria associated with health. Food Funct. 2015, 6, 1667–1674. [Google Scholar] [CrossRef]
- Machado, M.T.C.; Eça, K.S.; Vieira, G.S.; Menegalli, F.C.; Martínez, J.; Hubinger, M.D. Prebiotic oligosaccharides from artichoke industrial waste: Evaluation of different extraction methods. Ind. Crop. Prod. 2015, 76, 141–148. [Google Scholar] [CrossRef]
- Medhe, S.; Anand, M.; Anal, A.K. Dietary Fibers, Dietary Peptides and Dietary Essential Fatty Acids from Food Processing By-Products. Food Process. By-Prod. Util. 2017, 111–136. [Google Scholar] [CrossRef]
- Dong, R.; Yu, Q.; Liao, W.; Liu, S.; He, Z.; Hu, X.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chem. 2021, 339. [Google Scholar] [CrossRef]
- Liu, S.; Jia, M.; Chen, J.; Wan, H.; Dong, R.; Nie, S.; Xie, M.; Yu, Q. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocoll. 2019, 93, 284–292. [Google Scholar] [CrossRef]
- Sucheta; Misra, N.N.; Yadav, S.K. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocoll. 2020, 102. [Google Scholar] [CrossRef]
- Jafari, F.; Khodaiyan, F.; Kiani, H.; Hosseini, S.S. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydr. Polym. 2017, 157, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Ren, B.; Diao, Z.; Chen, Y.; Qiao, Q.; Liu, X. Physicochemical properties and intestinal protective effect of ultra-micro ground insoluble dietary fibre from carrot pomace. Food Funct. 2016, 7, 3902–3909. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Serna-Saldivar, S.O.; Welti-Chanes, J. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food Bioprocess Technol. 2018, 11, 1439–1463. [Google Scholar] [CrossRef]
- Ahmed, A.; Abid, H.M.R.; Ahmad, A.; Khalid, N.; Shibli, S.; Amir, R.M.; Malik, A.M.; Asghar, M. Utilization of mango peel in development of instant drink. Asian J. Agric. Biol. 2020, 8, 260–267. [Google Scholar] [CrossRef]
- Masood, F.; Haque, A.; Ahmad, S.; Malik, A. Potential of Food Processing By-products as Dietary Fibers. In Functional Food Products and Sustainable Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 51–67. [Google Scholar]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 91, pp. 157–225. [Google Scholar]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Jukić, M.; Komlenić, D.K.; Lukinac, J. Influence of apple peel powder addition on the physico-chemical characteristics and nutritional quality of bread wheat cookies. Food Sci. Technol. Int. 2020, 26, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, A.E.; Pyanikova, E.A.; Bykovskaya, E.I.; Ovchinnikova, E.V. The effect of apple powder on the consumption of crispbread. Proc. Voronezh State Univ. Eng. Technol. 2020, 81, 122–130. [Google Scholar] [CrossRef]
- Lauková, M.; Kohajdová, Z.; Karovičová, J. Effect of hydrated apple powder on dough rheology and cookies quality. Potravinarstvo 2016, 10, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Azari, M.; Shojaee-Aliabadi, S.; Hosseini, H.; Mirmoghtadaie, L.; Marzieh Hosseini, S. Optimization of physical properties of new gluten-free cake based on apple pomace powder using starch and xanthan gum. Food Sci. Technol. Int. 2020, 26, 603–613. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Younis, K.; Ahmad, S. Quality evaluation of buffalo meat patties incorporated with apple pomace powder. Buffalo Bull. 2018, 37, 389–401. [Google Scholar]
- Choi, Y.S.; Kim, Y.B.; Hwang, K.E.; Song, D.H.; Ham, Y.K.; Kim, H.W.; Sung, J.M.; Kim, C.J. Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poult. Sci. 2016, 95, 1465–1471. [Google Scholar] [CrossRef]
- Yadav, S.; Malik, A.; Pathera, A.; Islam, R.U.; Sharma, D. Development of dietary fibre enriched chicken sausages by incorporating corn bran, dried apple pomace and dried tomato pomace. Nutr. Food Sci. 2016, 46, 16–29. [Google Scholar] [CrossRef]
- Pawde, S.; Talib, M.I.; Parate, V.R. Development of Fiber-Rich Biscuit by Incorporating Dragon Fruit Powder. Int. J. Fruit Sci. 2020, 20, S1620–S1628. [Google Scholar] [CrossRef]
- Faridah, R.; Mangalisu, A.; Maruddin, F. Antioxidant effectiveness and pH value of red dragon fruit skin powder (Hylocereus polyrhizus) on pasteurized milk with different storage times. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Tokyo, Japan, 2020; Volume 492. [Google Scholar]
- Díaz-Vela, J.; Totosaus, A.; Pérez-Chabela, M.L. Integration of Agroindustrial Co-Products as Functional Food Ingredients: Cactus Pear (Opuntia ficus indica) Flour and Pineapple (Ananas comosus) Peel Flour as Fiber Source in Cooked Sausages Inoculated with Lactic Acid Bacteria. J. Food Process. Preserv. 2015, 39, 2630–2638. [Google Scholar] [CrossRef]
- Moser, S.E.; Shin, J.E.; Kasturi, P.; Hamaker, B.R.; Ferruzzi, M.G.; Bordenave, N. Formulation of orange juice with dietary fibers enhances bioaccessibility of orange flavonoids in juice but limits their ability to inhibit in vitro glucose transport. J. Agric. Food Chem. 2020, 68, 9387–9397. [Google Scholar] [CrossRef] [PubMed]
- Chomto, P.; Nunthanid, J. Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets. Carbohydr. Polym. 2017, 174, 25–31. [Google Scholar] [CrossRef]
- Gül, H.; Şen, H. Efectos de la harina de semilla de granada en la reología de la masa y en la calidad del pan. CYTA J. Food 2017, 15, 622–628. [Google Scholar] [CrossRef]
- Zepeda-Ruiz, G.C.; Domínguez-Avila, J.A.; Ayala-Zavala, J.F.; Robles-Sánchez, M.; Salazar-López, N.J.; López-Díaz, J.A.; González-Aguilar, G.A. Supplementing corn chips with mango cv. “Ataulfo” peel improves their sensory acceptability and phenolic profile, and decreases in vitro dialyzed glucose. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Hu, K.; Dars, A.G.; Liu, Q.; Xie, B.; Sun, Z. Phytochemical profiling of the ripening of Chinese mango (Mangifera indica L.) cultivars by real-time monitoring using UPLC-ESI-QTOF-MS and its potential benefits as prebiotic ingredients. Food Chem. 2018, 256, 171–180. [Google Scholar] [CrossRef]
- Maneerat, N.; Tangsuphoom, N.; Nitithamyong, A. Effect of extraction condition on properties of pectin from banana peels and its function as fat replacer in salad cream. J. Food Sci. Technol. 2017, 54, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Montalvo-González, E.; Aguilar-Hernández, G.; Hernández-Cázares, A.S.; Ruiz-López, I.I.; Pérez-Silva, A.; Hernández-Torres, J.; Vivar-Vera, M.d.l.Á. Production, chemical, physical and technological properties of antioxidant dietary fiber from pineapple pomace and effect as ingredient in sausages. CYTA J. Food 2018, 16, 831–839. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, J.d.S.O.; Dias, C.O.; Arriola, N.D.A.; de Freitas, B.S.M.; de Francisco, A.; Petkowicz, C.L.O.; Araujo, L.; Guerra, M.P.; Nodari, R.O.; Amboni, R.D.M.C. Feijoa (Acca sellowiana) peel flours: A source of dietary fibers and bioactive compounds. Food Biosci. 2020, 38. [Google Scholar] [CrossRef]
- Prokopov, T.; Goranova, Z.; Baeva, M.; Slavov, A.; Galanakis, C.M. Effects of powder from white cabbage outer leaves on sponge cake quality. Int. Agrophys. 2015, 29, 493–500. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Bae, S.M.; Yoon, J.; Jeong, D.h.; Gwak, S.H. Investigating the effects of Chinese cabbage powder as an alternative nitrate source on cured color development of ground pork sausages. Food Sci. Anim. Resour. 2020, 40, 990–1000. [Google Scholar] [CrossRef]
- Rubel, I.A.; Pérez, E.E.; Manrique, G.D.; Genovese, D.B. Fibre enrichment of wheat bread with Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Struct. 2015, 3, 21–29. [Google Scholar] [CrossRef]
- Oztürk, B.; Serdarolu, M. Effects of Jerusalem artichoke powder and sodium carbonate as phosphate replacers on the quality characteristics of emulsified chicken meatballs. Korean J. Food Sci. Anim. Resour. 2018, 38, 26–42. [Google Scholar] [CrossRef]
- Guo, X.; Xie, Z.; Wang, G.; Zou, Q.; Tang, R. Effect on nutritional, sensory, textural and microbiological properties of low-fat yoghurt supplemented with Jerusalem artichoke powder. Int. J. Dairy Technol. 2018, 71, 167–174. [Google Scholar] [CrossRef]
- Baltacıoğlu, H.; Baltacıoğlu, C.; Tangüler, H. Atık Fermente Havuç Tozu İlavesinin Bisküvi Kalitesine Etkisi. Turk. J. Agric. Food Sci. Technol. 2019, 7, 1237–1244. [Google Scholar] [CrossRef]
- Phebean, I.O.; Akinyele, O.; Toyin, A.; Folasade, O.; Olabisi, A.; Nnenna, E. Development and quality evaluation of carrot powder and cowpea flour enriched biscuits. Int. J. Food Sci. Biotechnol. 2017, 2, 67–72. [Google Scholar]
- Nouri, M.; Nasehi, B.; Samavati, V.; Mehdizadeh, S.A. Optimizing the effects of Persian gum and carrot pomace powder for development of low-fat donut with high fibre content. Bioact. Carbohydr. Diet. Fibre 2017, 9, 39–45. [Google Scholar] [CrossRef]
- Majzoobi, M.; Poor, Z.V.; Jamalian, J.; Farahnaky, A. Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. Int. J. Food Sci. Technol. 2016, 51, 1369–1377. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Pérez-Carrillo, E.; Velázquez-Reyes, H.H.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Application of wounding stress to produce a nutraceutical-rich carrot powder ingredient and its incorporation to nixtamalized corn flour tortillas. J. Funct. Foods 2016, 27, 655–666. [Google Scholar] [CrossRef]
- Vénica, C.I.; Spotti, M.J.; Pavón, Y.L.; Molli, J.S.; Perotti, M.C. Influence of carrot fibre powder addition on rheological, microstructure and sensory characteristics of stirred-type yogurt. Int. J. Food Sci. Technol. 2020, 55, 1916–1923. [Google Scholar] [CrossRef]
- Madora, E.P.; Takalani, T.K.; Mashau, M.E. Physicochemical, microbiological and sensory properties of low fat yoghurt fortified with carrot powder. Int. J. Agric. Biol. Eng. 2016, 9, 118–124. [Google Scholar] [CrossRef]
- Öztürk-Kerimoğlu, B.; Kara, A.; Urgu-Öztürk, M.; Serdaroğlu, M. A new inverse olive oil emulsion plus carrot powder to replace animal fat in model meat batters. LWT 2021, 135, 110044. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, M.; Santana-Gálvez, J.; Santacruz, A.; Carranza-Montealvo, L.D.; Ortega-Hernández, E.; Tirado-Escobosa, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Using a Functional Carrot Powder Ingredient to Produce Sausages with High Levels of Nutraceuticals. J. Food Sci. 2018, 83, 2351–2361. [Google Scholar] [CrossRef]
- Ben Jeddou, K.; Bouaziz, F.; Zouari-Ellouzi, S.; Chaari, F.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R.; Nouri-Ellouz, O. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 2017, 217, 668–677. [Google Scholar] [CrossRef]
- Koca, I.; Tekguler, B.; Yilmaz, V.A.; Hasbay, I.; Koca, A.F. The use of grape, pomegranate and rosehip seed flours in Turkish noodle (erişte) production. J. Food Process. Preserv. 2018, 42. [Google Scholar] [CrossRef] [Green Version]
- Utpott, M.; Ramos de Araujo, R.; Galarza Vargas, C.; Nunes Paiva, A.R.; Tischer, B.; de Oliveira Rios, A.; Hickmann Flôres, S. Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. J. Food Process. Preserv. 2020, 44, e14420. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, X.; Wang, L.; Regenstein, J.M. Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydr. Polym. 2021, 254, 117415. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Acan, B.G.; Kilicli, M.; Bursa, K.; Toker, O.S.; Palabiyik, I.; Gulcu, M.; Yaman, M.; Gunes, R.; Konar, N. Effect of grape pomace usage in chocolate spread formulation on textural, rheological and digestibility properties. LWT 2021, 138. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Oliveira, A.; Coelho, M.; Veiga, M.; Costa, E.M.; Silva, S.; Nunes, J.; Vicente, A.A.; Pintado, M. Are olive pomace powders a safe source of bioactives and nutrients? J. Sci. Food Agric. 2021, 101, 1963–1978. [Google Scholar] [CrossRef]
- Srikaeo, K.; Poungsampao, P.; Phuong, N.T. Utilization of the fine particles obtained from cold pressed vegetable oils: A case study in organic rice bran, sunflower and sesame oils. J. Oleo Sci. 2017, 66, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Jahan, K.; Qadri, O.S.; Younis, K. Dietary Fiber as a Functional Food. In Functional Food Products and Sustainable Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 155–167. [Google Scholar]
- Wright-McNaughton, M.; Ten Bokkel Huinink, S.; Frampton, C.M.A.; McCombie, A.M.; Talley, N.J.; Skidmore, P.M.L.; Gearry, R.B. Measuring Diet Intake and Gastrointestinal Symptoms in Irritable Bowel Syndrome: Validation of the Food and Symptom Times Diary. Clin. Transl. Gastroenterol. 2019, 10, e00103. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Ganapathy, P.K.; Sikder, M.O.F.; Elmassry, M.; Ramachandran, S.; Kottapalli, K.R.; Ganapathy, V. Deficiency of Dietary Fiber in Slc5a8-Null Mice Promotes Bacterial Dysbiosis and Alters Colonic Epithelial Transcriptome towards Proinflammatory Milieu. Can. J. Gastroenterol. Hepatol. 2019, 2019, 2543082. [Google Scholar] [CrossRef] [Green Version]
- Hess, M.W.; De Baaij, J.H.F.; Gommers, L.M.M.; Hoenderop, J.G.J.; Bindels, R.J.M. Dietary inulin fibers prevent proton-pump inhibitor (PPI)-induced hypocalcemia in mice. PLoS ONE 2015, 10, e0138881. [Google Scholar] [CrossRef] [Green Version]
- Skiba, M.B.; Kohler, L.N.; Crane, T.E.; Jacobs, E.T.; Shadyab, A.H.; Kato, I.; Snetselaar, L.; Qi, L.; Thomson, C.A. The association between prebiotic fiber supplement use and colorectal cancer risk and mortality in the Women’s Health Initiative. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1884–1890. [Google Scholar] [CrossRef] [Green Version]
- Sahu, P.; Tripathy, B.; Rout, S. Significance of anti-nutritional compounds in vegetables. Agric. Rural Dev. Spat. Issues Chall. Approaches 2020, 98. Available online: http://jkpublications.com/wp-content/uploads/2020/08/1.-Dr.-N-B-Pawar-Sir-2.pdf#page=102 (accessed on 27 June 2021).
- Sinha, K.; Khare, V. Review on: Antinutritional factors in vegetable crops. Pharma Innov. J. 2017, 6, 353–358. [Google Scholar]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Ayona, J.; Athira, U. Comparative analysis of nutritional and anti nutritional components of selected citrus fruit species. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 309–312. [Google Scholar]
- Ani, P.N.; Abel, H.C. Nutrient, phytochemical, and antinutrient composition of Citrus maxima fruit juice and peel extract. Food Sci. Nutr. 2018, 6, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Abou-Arab, A.A.; Abu-Salem, F.M. Nutritional and anti-Nutritional composition of banana peels as influenced by microwave drying methods. Int. J. Nutr. Food Eng. 2018, 11, 845–852. [Google Scholar]
- Oyeyinka, B.O.; Afolayan, A.J. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) fruit compartments. Plants 2019, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Shivamathi, C.; Moorthy, I.G.; Kumar, R.V.; Soosai, M.R.; Maran, J.P.; Kumar, R.S.; Varalakshmi, P. Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydr. Polym. 2019, 225, 115240. [Google Scholar] [CrossRef]
- Ferrentino, G.; Giampiccolo, S.; Morozova, K.; Haman, N.; Spilimbergo, S.; Scampicchio, M. Supercritical fluid extraction of oils from apple seeds: Process optimization, chemical characterization and comparison with a conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 2020, 64, 102428. [Google Scholar] [CrossRef]
- Madalageri, D.M.; Bharati, P.; Kage, U. Physicochemical properties, nutritional and antinutritional composition of pulp and peel of three mango varieties. Int. J. Educ. Sci. Res. 2017, 7, 81–94. [Google Scholar]
- Ben-Ali, S.; Akermi, A.; Mabrouk, M.; Ouederni, A. Optimization of extraction process and chemical characterization of pomegranate peel extract. Chem. Pap. 2018, 72, 2087–2100. [Google Scholar] [CrossRef]
- Bakri, N.F.M.; Ishak, Z.; Jusoh, A.Z.; Hadijah, H. Quantification of Nutritional Composition and Some Antinutrient Factors of Banana Peels and Pineapple Skins. Asian Food Sci. J. 2020, 1–10. [Google Scholar] [CrossRef]
- Reda, T.H.; Atsbha, M.K. Nutritional composition, antinutritional factors, antioxidant activities, functional properties, and sensory evaluation of cactus pear (Opuntia ficus-indica) seeds grown in tigray region, Ethiopia. Int. J. Food Sci. 2019, 2019, 5697052. [Google Scholar] [CrossRef]
- Ananda, T.D.; Srihardyastutie, A.; Prasetyawan, S.; Safitri, A. Effect of Mixed Inoculums Volume and pH on Anti Nutritional Level in Cabbage Fermentation using Saccharomyces cerevisiae and Lactobacillus plantarum. In Proceedings of IOP Conference Series: Materials Science and Engineering; IOP Publishing: Tokyo, Japan, 2019; p. 062004. [Google Scholar]
- Jaiswal, A.K. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Abbas, Y.; Ahmad, A. Impact of processing on nutritional and anti-nutritional factors of legumes: A review. Ann. Food Sci. Technol. 2018, 19, 99–215. [Google Scholar]
- Sharma, K.; Kumar, V.; Kaur, J.; Tanwar, B.; Goyal, A.; Sharma, R.; Gat, Y.; Kumar, A. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2019, 1–13. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmahdi, R.S.; Zoghi, A.; Zijlstra, R.T.; Roopesh, M.; Vasanthan, T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res. Int. 2021, 110284. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Y.H.; Chi, Z.P.; Huang, R.; Huang, H.; Liu, G.; Zhang, Y.; Yang, H.; Lin, J.; Yang, T. The handling of oxalate in the body and the origin of oxalate in calcium oxalate stones. Urol. Int. 2020, 104, 167–176. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Fărcaș, A.C.; Socaci, S.A.; Tofană, M.; Diaconeasa, Z.M.; Pop, O.L.; Salanță, L.C. An Overview of Saponins–A Bioactive Group. Bull. Uasvm Food Sci. Technol. 2020, 77, 1. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. Phenolic Compd. Nat. Sources Importance Appl. 2017, 419–443. [Google Scholar] [CrossRef] [Green Version]
- Hamid, N.; Kumar, P. Anti-nutritional factors, their adverse effects and need for adequate processing to reduce them in food. Agric. Int. 2017, 4, 56–60. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical constituents and pharmacological effects of Lathyrus sativus-A review. IOSR J. Pharm. 2019, 9, 51–58. [Google Scholar]
- Prabhakar, P.K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation pote. LWT Food Sci. Technol. 2021, 138, 110796. [Google Scholar]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Diouf, A.; Sarr, F.; Sene, B.; Ndiaye, C.; Fall, S.M.; Ayessou, N.C. Pathways for reducing anti-nutritional factors: Prospects for Vigna unguiculata. J. Nutr. Health Food Sci. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 1–14. [Google Scholar] [CrossRef]
Key Outcome Information | |||||||
---|---|---|---|---|---|---|---|
Food Product | By-Product | Formulation/Storage Conditions | Dietary Fiber/Prebiotic Compound | Optimal Dosage (s) | Impact on Senzorial Characteristics | Other Impacts | References |
Bread | Pomegranate seeds | Powder | Dietary fiber: lignin, cellulose. | 5% | The biggest changes were noticed in the color of the crust, smell and taste. | The rheological characteristics were slightly modified. | [76] |
Cake | Potato peels | Powder (dryinggrinding) | Dietary fiber | 5% | No major changes in the product were noticed, just more darkness color. | Increasing the strength and elasticity of the dough. | [96] |
Donut | Carrot pomace | Powder (dryinggrindingsift) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 6.45% | The sample showed a smaller volume. Consumers have suggested adding a glaze. | Significant impairment of physico-chemical properties. | [89] |
Biscuits | Carrot pomace | Powder (whiteninggrindingsif) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 10% | - | Neutralization of free radicals. | [88] |
Eriste (Turkish noodle) | Grapes, pomegranates, rosehips seeds | Powder (grindingsift) | Dietary fiber | 10% | The sample enriched with pomegranate seed powder obtained the highest appreciations from a sensory point of view. | Increase in antioxidant activity. | [97] |
Corn chips | Mango peels | Powder (freeze drying) | Dietary fiber | 10–15% | Improving and maintaining the smell, texture, color and aroma. | Increasing the content of total phenolic compounds. | [77] |
Ice cream | Red pitaya peels | Powder (grindingsift) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 1% | Melting rate and color were not affected. | Improving rheological qualities and increasing nutritional value. | [98] |
Ice cream | Grapefruit peels | Stem-shaped crystals | Nanofibril cellulose | 0.4% | Texture improvement. | Reducing caloric intake. | [99] |
Agitated type yogurt | Carrot pomace | Powder | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 1% | The color and smell of the sample were affected and strawberry flavor was added to improve them. | Reducing syneresis. | [92] |
Agitated type yogurt | Apple pomace | Powder (lyophilized) | Dietary fiber: pectin | 1–3% | Increasing firmness and viscosity. | Reducing the release of whey. | [100] |
Salad cream | Banana peels | Solvent extraction | Pectin | 2% | The sauce incorporated with pectin extracted with acid, showed a higher acceptability and a decrease in viscosity. | Decreased rheological properties. | [79] |
Chocolate | Grapes pomace | Powder (dryinggrindingsift) | Dietary fiber and prebiotic compound: lignin, cellulose, oligosaccharide | 3–5% | At a higher dosage there is a slightly bitter taste due to phenols. The greatest impact on the product occurred in the particle size. | Water activity and stability increased. | [101] |
Instant drinks | Mango peels | Powder (bleachingdrying with hot air) | Prebiotic compound | 5 g/250 mL | During storage, the sensory characteristics decrease. | Improvement of phytochemical parameters and stability increases during storage. | [60] |
Vienna sausages | Pineapple pomace | Powder (pressure steaminglyophilized or hot air dried) | Dietary fiber: lignin, cellulose, hemicellulose | - | - | The reducing effect on nitrites, moisture, shear strength and shrinkage was obtained in sausages, while carotenoids and antioxidant polyphenols increased. | [80] |
Buffalo meat | Apple pomace | Powder | Dietary fiber: lignin, cellulose, hemicellulose | 6% | The firmness increased, and the color became redder and darker. | Increased cooking efficiency, water retention capacity, pasta diameter. | [68] |
Flour | Feijoa peels | Steam discolorationice bathdrying in a convective ovengrinding | Dietary fiber: lignin, cellulose, hemicellulose | - | - | Alternative source of bioactive ingredients. | [81] |
Powder | Olive pomace | Liquid-enriched pomace powder(the liquid fraction was lyophilized and the solid fraction was dried) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | - | - | Food preservative and source of mannitol. | [102] |
Powder | Fine particles obtained from cold processing of vegetable oils | Degreasingdrying | Dietary fiber | - | - | Source of dietary fiber with strong antioxidant properties. | [103] |
Phytochemical Factors | Human Body Reactions | Anti-Nutritional Effects | References |
---|---|---|---|
Tannins | Binding of bacterial enzymes form indigestible complexes with carbohydrates | decreased taste intensity, affects digestion | [125,126] |
Phytic acid | Forms insoluble complexes with zinc, copper, calcium and iron resulting bad absorption | - | [126] |
Oxalates | In the body they combine with divalent metal cations such as calcium and iron to form oxalate crystals that are excreted in the urine | tissue damage, kidney stones form | [127] |
Saponins | Erythrocyte rupture and hemoglobin release | - | [128] |
Phenols | After ingestion, they are part of the xenobiotic metabolism and are conjugated with glutathione, sulfate, glycine or glucuronic acid | nausea, vomiting, headache, abdominal pain, sore throat, mouth ulcers and dark urine, as well as respiratory and cardiovascular effects may occur | [129] |
Processing Method | Working Parameters | Reference |
---|---|---|
Bleaching | Soft boiling at 75–95 °C | [130,131] |
Autoclaving | Working temperature above 100 °C or 121 °C | [130,132] |
Extrusion | Careful control of humidity, temperature and speed of the mold and screw | [133] |
Frying | Dry heating at 120–150 °C | [132] |
Dipping | Use of water and salt solutions with or without additives to facilitate the process | [132,134] |
Chemical processing | Treatment with thiols, sulphites or calcium salts | [132,135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pop, C.; Suharoschi, R.; Pop, O.L. Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability 2021, 13, 7219. https://doi.org/10.3390/su13137219
Pop C, Suharoschi R, Pop OL. Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability. 2021; 13(13):7219. https://doi.org/10.3390/su13137219
Chicago/Turabian StylePop, Corina, Ramona Suharoschi, and Oana Lelia Pop. 2021. "Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste" Sustainability 13, no. 13: 7219. https://doi.org/10.3390/su13137219
APA StylePop, C., Suharoschi, R., & Pop, O. L. (2021). Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability, 13(13), 7219. https://doi.org/10.3390/su13137219