Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Soil and Crop Residues
2.2. Soil and Residue Analysis
2.3. Incubation Experiment
2.4. Computation of Carbon Mineralization and Its Kinetics
2.5. Model Evaluation
2.6. Statistical Analysis
3. Results
3.1. CO2-C Fluxes during the Period of Incubation
3.2. Cumulative Total C Mineralized during the Period of Incubation
3.3. C Mineralization Kinetics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.C.; Jat, H.S.; Kumar, V.; Gathala, M.K.; Datta, A.; Yaduvanshi, N.P.S.; Choudhary, M.; Sharma, S.; Singh, L.K.; Saharawat, Y.; et al. Sustainable Intensification Opportunities under Current and Future Cereal Systems of North-West India; Technical Bulletin; Central Soil Salinity Research Institute: Karnal, India, 2015; p. 46. [Google Scholar] [CrossRef]
- Sinha, A.K.; Ghosh, A.; Dhar, T.; Bhattacharya, P.M.; Mitra, B.; Rakesh, S.; Paneru, P.; Srestha, S.R.; Manandhar, S.; Beura, K.; et al. Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. Soil Res. 2019, 57, 883–893. [Google Scholar] [CrossRef]
- Sarkar, D.; Kar, S.K.; Chattopadhyay, A.; Shikha; Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecol. Indic. 2020, 115. [Google Scholar] [CrossRef]
- Rakesh, S.; Sinha, A.K.; Sarkar, D.; Sahoo, S.; Roy, D. Key soil attributes as influenced by cropping systems in an entisol of West Bengal, India. Climate Chang. Environ. Sustain. 2020, 8, 226–232. [Google Scholar] [CrossRef]
- Rakesh, S.; Sarkar, D.; Shikha; Sankar, A.; Sinha, A.K.; Mukhopadhyay, P.; Rakshit, A. Protocols for determination and evaluation of organic carbon pools in soils developed under contrasting pedogenic processes and subjected to varying management situations. In Soil Analysis: Recent Trends and Applications; Springer Nature Singapore Pte Ltd.: Singapore, 2020. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lynn, T.M.; Ge, T.; Yuan, H.; Wei, X.; Wu, X.; Xiao, K.; Kumaresan, D.; Yu, S.S.; Wu, J.; Whiteley, A.S. Soil Carbon-Fixation Rates andAssociated Bacterial Diversity and Abundance in Three Natural Ecosystems. Microb. Ecol. 2017, 73, 645–657. [Google Scholar] [CrossRef]
- Videmsek, U.; Hagn, A.; Suhadolc, M.; Radl, V.; Knicker, H.; Schloter, M.; Vodnik, D. Abundance and diversity of CO2-fixingbacteria in grassland soils close to natural carbon dioxidesprings. Microb. Ecol. 2009, 58, 1–9. [Google Scholar] [CrossRef]
- Sarkar, D.; Rakshit, A.; Al-Turki, A.I.; Sayyed, R.Z.; Datta, R. Connecting bio-priming approach with integrated nutrient management for improved nutrient use efficiency in crop species. Agriculture 2021, 11, 372. [Google Scholar] [CrossRef]
- Sarkar, D.; Chattopadhyay, A.; Singh, S.; Devika, O.S.; Pal, S.; Parihar, M.; Pal, S.; Singh, H.B.; Rakshit, A. Modulation of microbiome through seed bio-priming. In Trichoderma: Agricultural Applications and Beyond; Manoharachary, C., Singh, H.B., Varma, A., Eds.; Soil Biology; Springer: Cham, Switzerland, 2020; Volume 61, pp. 209–218. [Google Scholar]
- Wang, W.J.; Chalk, P.M.; Chen, D.; Smith, C.J. Nitrogen mineralization, immobilization and loss, and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils. Soil Biol. Biochem. 2001, 33, 1305–1315. [Google Scholar] [CrossRef]
- Rakesh, S.; Sinha, A.K.; Mukhopadhyay, P. Vertical distribution of TOC, TN and other important soil attributes and their relationship in Alfisol and Entisol of West Bengal. Int. J. Environ. Clim. Change 2020, 10, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, S.J.; Recous, S.; Mary, B.; Aita, C. Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization. Plant Soil 2007, 301, 289–301. [Google Scholar] [CrossRef]
- Nicolardot, B.; Bouziri, L.; Bastian, F.; Ranjard, L. A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol. Biochem. 2007, 39, 1631–1644. [Google Scholar] [CrossRef]
- Rahman, S.M.; Haque, M.E.; Ahmed, S.; Khalil, M.I.; Wahab Mia, A. Organic matter management for increased and sustainable agricultural production in Bangladesh. In Proceedings of the Final RCM of the Joint FAO/IAEA on Coordinated Research Project, Kuala Lumpur, Malaysia, 26–30 March 2001; p. 27. [Google Scholar]
- Mohammed, A.M.; Naab, J.B.; Nartey, E.; Adiku, S.G.K. Carbon mineralization from plant residue-amended soils under varying moisture conditions. J. Exp. Biol. Agric. Sci. 2014, 1, 491–498. [Google Scholar]
- Mengel, K. Turnover of organic nitrogen in soils and its availability to crops. Plant Soil 1996, 181, 83–93. [Google Scholar] [CrossRef]
- Llorente, M.; Turrion, M.B. Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur. J. For. Res. 2010, 129, 73–81. [Google Scholar] [CrossRef]
- Riffaldi, R.; Saviozzi, A.; Levi-Minzi, R. Carbon mineralization kinetics as influenced by soil properties. Biol. Fert. Soils. 1996, 22, 293–298. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Y.; Zhao, J.; Fu, S.; Li, Z.; Xia, H.; Zhou, L. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China. Sci. Total Environ. 2017, 607, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Staben, M.L.; Bezdicek, D.F.; Smith, J.L.; Fauci, M.F. Assessment of soil quality in conversation reserve program and wheat–fallow soils. Soil Sci. Soc. Am. J. 1997, 61, 124–130. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Zimmerman, A.R.; Comerford, N.B.; Sickman, J.O.; Grunwald, S. Carbon Mineralization and Labile Organic Carbon Pools in the Sandy Soils of a North Florida Watershed. Ecosystems 2009, 12, 672–685. [Google Scholar] [CrossRef]
- Cenkseven, S.; Kizildag, N.; Kocak, B.; Sagliker, H.A.; Darici, C. Soil Organic Matter Mineralization under Different Temperatures and Moisture Conditions in Kızıldağ Plateau, Turkey. Sains Malays. 2017, 46, 763–771. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India. Pvt. Ltd.: New Delhi, India, 1967. [Google Scholar]
- Anonymous. Official Methods of the Association of Official Analytical Chemists, 12th ed.; Horwitz, W., Ed.; AOAC International: Washington, DC, USA, 1975; pp. 15–18. [Google Scholar]
- Baker, K.F. The determination of organic carbon in soil using a probe-colorimeter. Lab. Practice. 1976, 25, 82–83. [Google Scholar]
- Dewis, J.; Freitas, F. Physical and Chemical Methods of Soil and Water Analysis; FAO United Nations: Rome, Italy, 1984; p. 10. [Google Scholar]
- Rey, A.; Petsikos, C.; Jarvis, P.G.; Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 2005, 56, 589–599. [Google Scholar] [CrossRef]
- Datta, A.; Jat, H.S.; Yadav, A.K.; Choudhary, M.; Sharma, P.C.; Rai, M.; Singh, L.K.; Majumder, S.P.; Choudhary, V.; Jat, M.L. Carbon mineralization in soil as influenced by crop residue type and placement in an Alfisols of Northwest India. Carbon Manag. 2019, 10, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Alef, K. Soil Respiration. Methods in Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press Inc.: San Diego, CA, USA, 1995; pp. 214–215. [Google Scholar]
- Curtin, D.; Selles, F.; Wang, H.; Campbell, C.A.; Biederbeck, V.O. Carbon dioxide emissions and transformation of soil carbon and nitrogen during wheat straw decomposition. Soil Sci. Soc. Am. J. 1998, 62, 1035–1041. [Google Scholar] [CrossRef]
- Jin, K.; Steven, S.; Stefaan, D.N.; Donald, G.; Dianxiong, C.; Jiyun, J.; Georges, H. Nitrogen and carbon mineralization of surface-applied and incorporated winter wheat and peanut residues. Biol. Fert. Soils. 2008, 44, 661–665. [Google Scholar] [CrossRef]
- de Gerenyu, V.O.L.; Kurganova, I.N.; Kuzyakov, Y. Carbon pool and sequestration in former arable Chernozems depending on restoration period. Ekologija 2008, 54, 232–238. [Google Scholar] [CrossRef]
- Lal, J.K.; Mishra, B.; Sarkar, A.K. Effect of plant residues incorporation on specific microbial groups and availability of some plant nutrient in soil. J. Indian Soc. Soil Sci. 2000, 48, 67–71. [Google Scholar]
- Pare, T.; Dinel, H.; Schnitzer, M.; Dumontel, S. Transformation of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fert. Soils. 1997, 26, 173–178. [Google Scholar] [CrossRef]
- Coppens, F.; Garnier, P.; De Gryze, S.; Merckx, R.; Recous, S. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. Eur. J. Soil Sci. 2006, 57, 894–905. [Google Scholar] [CrossRef]
- Li, J.L.; Han, X.Z.; You, M.Y.; Yuan, Y.R.; Ding, X.L.; Qiao, Y.F. Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of residue type and placement in soils. Eur. J. Soil Biol. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Raiesi, F. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agric. Ecosys. Environ. 2006, 112, 13–20. [Google Scholar] [CrossRef]
- Li, L.J.; Zeng, D.H.; Yu, Z.Y.; Fan, Z.P.; Yang, D.; Liu, Y.X. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J. Arid Environ. 2011, 75, 787–792. [Google Scholar] [CrossRef]
- Dinesh, R.; Chaudhuri, S.; Ganeshamurthy, A.; Pramanik, S. Biochemical properties of soils of undisturbed and disturbed mangrove forests of South Andaman (India). Wetl. Ecol. Manag. 2004, 12, 309–320. [Google Scholar] [CrossRef]
- Vestgarden, L.S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: Effect of internal and external nitrogen. Soil Biol. Biochem. 2001, 33, 465–474. [Google Scholar] [CrossRef]
- Zheng, B.; Marschner, P. Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition. Geoderma 2017, 285, 217–224. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Khera, T.S.; Doran, J.W. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil II. Effect of organic manures varying in N content and C: N ratio. Biol. Fert. Soils. 2000, 31, 168–174. [Google Scholar] [CrossRef]
- Thonnissen, C.; Midmore, D.J.; Ladha, J.K.; Olk, D.C.; Schmidhalter, U. Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agron. J. 2000, 92, 253–260. [Google Scholar] [CrossRef]
- Gartner, T.B.; Cardon, Z. Decomposition dynamics in mixed-species leaf litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
- Stemmer, M.; Gerzabek, M.; Kandeler, E. Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biol. Biochem. 1999, 31, 9–18. [Google Scholar] [CrossRef]
- Smith, P.; Smith, J.; Flynn, H.; Killham, K. ECOSSE: Estimating Carbon in Organic Soils-Sequestration and Emissions; Scottish Executive: Edinburgh, Scotland, 2007.
- Coppens, F. Water, Carbon and Nitrogen Dynamics in Soil: Influence of Crop Residue Location and Quality. Ph.D. Thesis, Leuven University, Leuven, Belgium, 2005; pp. 11–22. [Google Scholar]
- Mande, K.H.; Abdullah, A.M.; Zaharin, A.A.; Ainuddin, A.N. Drivers of soil carbon dioxide efflux in a 70 years mixed trees species of tropical lowland forest, Peninsular Malaysia. Sains Malays. 2014, 43, 1843–1853. [Google Scholar] [CrossRef]
- Salvator, K.; Basil, T.; Ongor, I.; Chantal, K.; Menus, N.; Elie, K. carbon mineralization kinetics from legume residues applied to a high altitude acidic soil. Int. J. Adv. Sci. Res. Eng. 2019, 5, 4. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, G.S.; El-Esawi, M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Fahad, S.; Datta, R.; Abbas, M.; Rahi, A.A.; Brtnicky, M.; Holátko, J.; Tarar, Z.H.; et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments 2020, 7, 54. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-ul-Hye, M.; Fahad, S.; Saud, S.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. sustainability 2020, 12, 6286. [Google Scholar] [CrossRef]
- Pathan, S.I.; Větrovský, T.; Giagnoni, L.; Datta, R.; Baldrian, P.; Nannipieri, P.; Renella, G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 2018, 433, 401–413. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Q.; Zhou, W.; Ding, H.; Wang, X.; Qi1, L.; Wang, Y.; Li, S.; Dai, L. Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China. J. For. Sci. 2011, 57, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Goh, K.M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun. Soil Sci. Plant Anal. 2003, 34, 2441–2460. [Google Scholar] [CrossRef]
- Abiven, S.; Recous, S. Mineralisation of crop residues on the soil surface or incorporated in the soil under controlled conditions. Biol. Fert. Soils. 2007, 43, 849–852. [Google Scholar] [CrossRef] [Green Version]
- Fruit, L.; Recous, S.; Richard, G. Plant residue decomposition: Effect of soil porosity and particle size. In Effect of Mineral-Organic-Microorganisms Interactions on Soil and Freshwater Environments; Berthelin, J., Huang, J.M., Bollag, J.-M., Andreux, F., Eds.; Lewis: New York, NY, USA, 1999; pp. 189–196. [Google Scholar]
- Danso Marfo, T.; Datta, R.; Vranová, V.; Ekielski, A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Marfo, T.D.; Datta, R.; Pathan, S.I.; Vranová, V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Angers, D.A.; Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 1997, 189, 197–203. [Google Scholar] [CrossRef]
Soil | |||||||
Site | pH | TOC | TN | C:N ratio | Texture (%) | ||
g/kg | Clay | Silt | Sand | ||||
S1 | 6.6 | 12.1 | 0.98 | 12.35:1 | 11 | 51 | 38 |
S2 | 7.1 | 10.5 | 1.35 | 7.78:1 | 10 | 66 | 24 |
S3 | 6.8 | 14.8 | 1.62 | 9.14:1 | 31 | 59 | 10 |
S4 | 8.25 | 16.9 | 1.81 | 9.34:1 | 20 | 66 | 14 |
Residue | |||||||
Site | Total C (%) | Total N (%) | C:N Ratio | ||||
Rice | Maize | Rice | Maize | Rice | Maize | ||
S1 | 38.4 | 41.6 | 0.56 | 0.38 | 68.7 | 109.6 | |
S2 | 40.1 | 40.4 | 0.55 | 0.41 | 73 | 98.7 | |
S3 | 40.5 | 42.1 | 0.58 | 0.46 | 69.9 | 91.6 | |
S4 | 38.9 | 40.3 | 0.62 | 0.45 | 62.8 | 89.7 |
Soil | Residue | Incorporated | Surface Applied | ||||
---|---|---|---|---|---|---|---|
MSE | R2 | Best Fit Model | MSE | R2 | Best Fit Model | ||
Soil-1 | Rice | 40.41 | 0.794 | Exponential | 68.47 | 0.673 | Exponential |
Maize | 79.6 | 0.693 | 47.6 | 0.772 | |||
Soil-2 | Rice | 25.3 | 0.902 | 12.65 | 0.817 | ||
Maize | 33.48 | 0.859 | 8.47 | 0.943 | |||
Soil-3 | Rice | 53.92 | 0.731 | 44.73 | 0.764 | ||
Maize | 57.53 | 0.776 | 28.62 | 0.819 | |||
Soil-4 | Rice | 32.94 | 0.766 | 25.74 | 0.767 | ||
Maize | 39.11 | 0.723 | 43.86 | 0.706 |
Treatment | Incorporated | Surface Applied | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Residue | Mineralization Potential (C0, %) | Rate Constant (k, %/day) | Rate of Potential Mineralizable Residue C (C0k, %/day) | % C Lost @ 126 Days | * % C Lost @ 156 Days | Mineralization Potential (C0, %) | Rate Constant (k, %/day) | Rate of Potential Mineralizable Residue C (C0k, %/day) | % C Lost @ 126 Days | * % C Lost @ 156 Days |
1 | Rice | 22.08 | 0.008 | 0.177 | 54.10 | 76.91 | 26.25 | 0.007 | 0.184 | 54.19 | 78.23 |
Maize | 25.86 | 0.007 | 0.181 | 58.10 | 77.06 | 19.52 | 0.008 | 0.156 | 50.49 | 67.99 | |
2 | Rice | 20.29 | 0.009 | 0.183 | 62.02 | 82.61 | 15.76 | 0.007 | 0.110 | 36.36 | 46.96 |
Maize | 16.66 | 0.010 | 0.167 | 55.79 | 79.28 | 11.83 | 0.010 | 0.118 | 46.08 | 56.29 | |
3 | Rice | 22.2 | 0.008 | 0.178 | 52.56 | 77.33 | 21.03 | 0.008 | 0.168 | 51.99 | 73.25 |
Maize | 20.53 | 0.009 | 0.185 | 57.02 | 83.58 | 16.27 | 0.009 | 0.146 | 46.53 | 66.24 | |
4 | Rice | 23.29 | 0.007 | 0.163 | 49.90 | 69.41 | 20.9 | 0.007 | 0.146 | 44.90 | 62.28 |
Maize | 23.26 | 0.007 | 0.163 | 48.09 | 69.32 | 23.27 | 0.007 | 0.163 | 50.05 | 69.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
S, R.; Sarkar, D.; Sinha, A.K.; Shikha; Mukhopadhyay, P.; Danish, S.; Fahad, S.; Datta, R. Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types. Sustainability 2021, 13, 7212. https://doi.org/10.3390/su13137212
S R, Sarkar D, Sinha AK, Shikha, Mukhopadhyay P, Danish S, Fahad S, Datta R. Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types. Sustainability. 2021; 13(13):7212. https://doi.org/10.3390/su13137212
Chicago/Turabian StyleS, Rakesh, Deepranjan Sarkar, Abhas Kumar Sinha, Shikha, Prabir Mukhopadhyay, Subhan Danish, Shah Fahad, and Rahul Datta. 2021. "Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types" Sustainability 13, no. 13: 7212. https://doi.org/10.3390/su13137212
APA StyleS, R., Sarkar, D., Sinha, A. K., Shikha, Mukhopadhyay, P., Danish, S., Fahad, S., & Datta, R. (2021). Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types. Sustainability, 13(13), 7212. https://doi.org/10.3390/su13137212