Paradox of Deadwood Circular Bioeconomy in Kenya’s Public Forests
Abstract
:1. Introduction
2. Circular Forest-Based Bioeconomy and Deadwood Management Strategies
3. Materials and Methods
- (1)
- Gathering applicable textual data;
- (2)
- Organizing and managing the textual data;
- (3)
- Making back-ups of originals documents for footnotes and reference;
- (4)
- Assessing the genuineness of collected documents and textual data;
- (5)
- Exploring the document’s agenda and biases;
- (6)
- Exploring the contextual material and information (e.g., the purpose, tone, and style of the writing);
- (7)
- Asking investigative questions about the textual data and collected documents (e.g., What is the type of data? Who produced it? Why was it produced, and when? What type of data was used?);
- (8)
- Exploring and analyzing the information to generate themes.
4. Results
4.1. The Context for Forest-Based Deadwood Bioeconomy in Kenya
4.2. The Current Use of Deadwood in Public Forests and Socio-Economic Impacts
4.3. Policy Context for Circular Bioeconomy of Deadwood
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- UNEP. Report of the United Nations Environment Assembly at Its Fifth Session. 2021. Available online: https://www.unep.org/environmentassembly/outcomes-online-session-unea-5 (accessed on 28 February 2021).
- Geneva Network for Environment Website. Briefing on the 5th Session of the United Nations Environment Assembly | GENeva UNEA Briefing. 2021. Available online: https://www.genevaenvironmentnetwork.org/events/briefing-on-the-5th-session-of-the-united-nations-environment-assembly-geneva-unea-briefing/ (accessed on 28 February 2021).
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Vanderwel, M.C.; Malcolm, J.R.; Smith, S.M. An integrated model for snag and downed woody debris decay class transitions. For. Ecol. Manag. 2006, 234, 48–59. [Google Scholar] [CrossRef]
- Hezron, E. Deadwood Production and Decomposition Rate of Acacia tortilis and Acacia nilotica around University of Dodoma, Tanzania: The Ecological Role of Termites in Semi-Arid Regions. Ph.D. Thesis, The University of Dodoma, Dodoma, Tanzania, 2017. [Google Scholar]
- Wu, J.; Guan, D.X.; Han, S.J.; Zhang, M.; Jin, C.J. Ecological Functions of Coarse Woody Debris in Forest Ecosystem. J. For. Res. 2005, 16, 247–252. [Google Scholar] [CrossRef]
- Merganičová, K.; Merganič, J.; Svoboda, M.; Bače, R.; Šebeň, V. Deadwood in forest ecosystems. In Forest Ecosystems—More than Just Trees; Blanco, J., Lo, Y.H., Eds.; InTech Open: London, UK, 2012; pp. 81–108. [Google Scholar]
- Stockland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Müller, J.; Bütler, R. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 2010, 129, 981–992. [Google Scholar] [CrossRef]
- Thorn, S.; Seibold, S.; Leverkus, A.B.; Michler, T.; Müller, J.; Noss, R.F.; Stork, N.; Vogel, S.; Lindenmayer, D.B. The living dead: Acknowledging life after tree death to stop forest degradation. Front. Ecol. Environ. 2020, 18, 505–512. [Google Scholar] [CrossRef]
- Deuffic, P.; Lyser, S. Biodiversity or Bioenergy: Is Deadwood Conversation an Environmental Issue for French Forest Owners? Can. J. For. Res. 2012, 42, 1491–1502. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Linser, S.; Pülzl, H.; Bastrup-Birk, A.; Camia, A.; Marchetti, M. Forest Bioeconomy—A New Scope for Sustainability Indicators. Available online: https://efi.int/publications-bank/forest-bioeconomy-new-scope-sustainability-indicators (accessed on 17 June 2021).
- Kenya National Bureau of Statistics (KNBS). Kenya Population and Housing Census. 2019. Available online: https://www.knbs.or.ke/ (accessed on 3 February 2021).
- Oil Price Website. 2020. Available online: https://oilprice.com/Alternative-Energy/Renewable-Energy/ (accessed on 24 November 2020).
- Kenya Power Lightning Company. Annual Reports and Audited Financial Statements of the Year Ended 30 June 2018; Kenya Power and Lighting Company: Nairobi, Kenya, 2018. [Google Scholar]
- Tigabu, A.; Berkhout, F.; van Beukering, P. Development aid and the diffusion of technology: Improved cookstoves in Kenya and Rwanda. Energy Policy 2017, 102, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Alternative Energy in East Africa: The Case for Solar Power. 2016. Available online: https://www.marsdd.com/news/east-africa-solar-power-innovations/ (accessed on 15 December 2020).
- EPPRA Website. 2020. Available online: https://www.epra.go.ke/download/draft-energy-solar-photovoltaic-systems-regulations-2019/ (accessed on 13 December 2020).
- Ministry of Environment and Forestry Website. 2020. Available online: http://www.environment.go.ke/ (accessed on 13 December 2020).
- Ministry of Energy. Study on Kenya’s Energy Demand, Supply and Policy Strategy for Households, Small scale Industries and Service Establishments; Kamfor Consultants: Nairobi, Kenya, 2002.
- Ministry of Energy. Kenya Household Cooking Study; Ministry of Energy: Nairobi, Kenya, 2019.
- Millenium Ecosystem Assessment. Ecosystem Assessment and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Holmbom, B.; Willfoer, S.; Hemming, J.; Pietarinen, S.; Nisula, L.; Eklund, P.; Sjoeholm, R. Knots in trees: A rich source of bioactive polyphenols. In Materials, Chemicals, and Energy from Forest Biomass; Argyropoulos, D., Ed.; ACS Symposium Series; American Chemical Society: Washingoton, DC, USA, 2007; Volume 954, Chapter 22; pp. 350–362. [Google Scholar]
- Uhari, M.; Kontiokari, T.; Koskela, M.; Niemela, M. Xylitol chewing gum in prevention of acute otitis media: Double blind randomised trial. BMJ 1996, 313, 1180–1183. [Google Scholar] [CrossRef] [Green Version]
- Lindequist, U.; Niedermeyer, T.H.; Jülich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Colfer, C.J.P.; Sheil, D.; Kishi, M. Forests and Human Health: Assessing the Evidence; Cifor: Bogor, Indonesia, 2006; Volume 45. [Google Scholar]
- Johns, T.; Maundu, P. Forest biodiversity, nutrition and population health in market-oriented food systems. Unasylva 2006, 57, 34–40. [Google Scholar]
- Häkkinen, S.; Heinonen, M.; Kärenlampi, S.; Mykkänen, H.; Ruuskanen, J.; Törrönen, R. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 1999, 32, 345–353. [Google Scholar] [CrossRef]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinceti, B.; Eyzaguirre, P.; Johns, T. The nutritional role of forest plant foods for rural communities. Hum. Health For. 2008, 12, 63–96. [Google Scholar]
- Thorn, S.; Bässler, C.; Brandl, R.; Burton, P.J.; Cahall, R.; Campbell, J.L.; Castro, J.; Choi, C.-Y.; Cobb, T.; Donato, D.C.; et al. Impacts of salvage logging on biodiversity: A meta-analysis. J. Appl. Ecol. 2018, 55, 279–289. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Baldrian, P.; Reinhard, L.; Thorn, S.; Ulyshen, M.D.; Weiß, I.; Müller, J. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol. Conserv. 2016, 204, 181–188. [Google Scholar] [CrossRef]
- Griffiths, H.M.; Eggleton, P.; Hemming-Schroeder, N.; Swinfield, T.; Woon, J.S.; Allison, S.D.; Coomes, D.A.; Ashton, L.A.; Parr, C.L. Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest tree-fall canopy gaps. Glob. Chang. Biol. 2021, 27, 1601–1613. [Google Scholar] [CrossRef]
- Kortmann, M.; Hurst, J.; Brinkmann, R.; Heurich, M.; Silveyra González, R.; Müller, J.; Thorn, S. Beauty and the beast: How a bat utilizes forests shaped by outbreaks of an insect pest. Anim. Conserv. 2018, 21, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Tillon, L.; Bouget, C.; Paillet, Y.; Aulagnier, S. How does deadwood structure temperate forest bat assemblages? Eur. J. For. Res. 2016, 135, 433–449. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Ough, K. Salvage logging in the montane ash eucalypt forests of the Central Highlands of Victoria and its potential impacts on biodiversity. Conserv. Biol. 2006, 20, 1005–1015. [Google Scholar] [CrossRef]
- Jaroszewicz, B.; Cholewińska, O.; Chećko, E.; Wrzosek, M. Predictors of diversity of deadwood-dwelling macrofungi in a European natural forest. For. Ecol. Manag. 2021, 490, 119123. [Google Scholar] [CrossRef]
- Puletti, N.; Giannetti, F.; Chirici, G.; Canullo, R. Deadwood distribution in European forests. J. Maps 2017, 13, 733–736. [Google Scholar] [CrossRef]
- Barua, M.; Gurdak, D.J.; Ahmed, R.A.; Tamuly, J. Selecting flagships for invertebrate conservation. Biodivers. Conserv. 2012, 21, 1457–1476. [Google Scholar] [CrossRef]
- Webler, T.; Tuler, S.; Krueger, R. What is a good participation process? Five perspectives from the public. Environ. Manag. 2001, 27, 435–450. [Google Scholar]
- Eckelt, A.; Müller, J.; Bense, U.; Brustel, H.; Bußler, H.; Chittaro, Y.; Cizek, L.; Frei, A.; Holzer, E.; Kadej, M.; et al. “Primeval forest relict beetles” of Central Europe: A set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 2018, 22, 15–28. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Brandl, R.; Gossner, M.M.; Thorn, S.; Ulyshen, M.D.; Müller, J. Experimental studies of dead-wood biodiversity—A review identifying global gaps in knowledge. Biol. Conserv. 2015, 191, 139–149. [Google Scholar] [CrossRef]
- Müller, J.; Jarzabek-Müller, A.; Bussler, H.; Gossner, M.M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 2014, 17, 154–162. [Google Scholar] [CrossRef]
- Bouget, C.; Brin, A.; Larrieu, L. The use of sentinel logs to assess host shifts in early beetle colonisers of deadwood under climate-and forestry-induced tree species substitutions. Insect Conserv. Divers. 2021, 14, 117–131. [Google Scholar] [CrossRef]
- Hodge, S.J.; Peterken, G.F. Deadwood in British forests: Priorities and strategy. Forestry 1998, 71, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Shackleton, C.M. Annual production of harvestable deadwood in semi-arid savannas, South Africa. For. Ecol. Manag. 1998, 112, 139–144. [Google Scholar] [CrossRef]
- Bunnell, F.L.; Houde, I.; Johnston, B.; Wind, E. How dead trees sustain live organisms in western forests. In Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, Reno, NV, USA, 2–4 November 2002; United States Department of Agriculture, Forest Service General Technical Report PSW-GTR-181. USDA: Berkeley, CA, USA, 2002; pp. 291–318. [Google Scholar]
- Prokofieva, I.; Lovrić, M.; Pettenella, D.; Weiss, G.; Wolfslehner, B.; Wong, J. What is the potential contribution of non-wood forest products to the European forest-based bioeconomy? In Toward a Sustainable European Forest-Based Bioeconomy—Assessment and the Way Forward; Winkel, G., Ed.; What the Science can Tell Us nº 8; European Forest Institute: Joensuu, Finland, 2017. [Google Scholar]
- Schütte, G. What kind of innovation policy does the bioeconomy need? New Biotechnol. 2018, 40, 82–86. [Google Scholar] [CrossRef]
- Ronzon, T.; Lusser, M.; Klinkenberg, M.; Landa, L.; Sanchez Lopez, J.; M’Barek, R.; Hadjamu, G.; Belward, A.; Camia, A.; Giuntoli, J.; et al. Bioeconomy Report 2016; JRC Scientific and Policy Report. EUR 28468 EN.JRC; Publications Office of the European Union: Ispra, Italy, 2017.
- Baskar, C.; Baskar, S.; Dhillon, R.S. (Eds.) Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ciccarese, L.; Pellegrino, P.; Pettenella, D. A new principle of the European Union forest policy: The cascading use of wood products. Ital. J. For. Mt. Environ. 2014, 69, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; De Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Gustafsson, L.; Baker, S.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lõhmus, A.; Pastur, G.J.M.; Messier, C.; et al. Retention Forestry to Maintain Multifunctional Forests: A World Perspective. Bioscience 2012, 62, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmit, D.; Arts, B.; Giurca, A.; Mustalahti, I.; Sergent, A.; Pülzl, H. Environmental concerns in political bioeconomy discourses. Int. For. Rev. 2017, 19, 41–55. [Google Scholar] [CrossRef]
- BÖR. Bioeconomy Policy—Synopsis and Analysis of Strategies in the G7; German Bioeconomy Council (Bioökonomierat—BÖR): Berlin, Germany, 2015. [Google Scholar]
- BÖR. Bioeconomy Policy (Part II)—Synopsis of National Strategies around the World; German Bioeconomy Council (Bioökonomierat—BÖR): Berlin, Germany, 2015. [Google Scholar]
- Porter, M. The Competitive Advantage of Nations; Free Press: New York, NY, USA, 1990. [Google Scholar]
- de Arano, I.M.; Muys, B.; Topi, C.; Pettenella, D.; Feliciano, D.; Rigolot, E.; Lefevre, F.; Prokofieva, I.; Labidi, J.; Carnus, J.-M.; et al. A Forest-Based Circular Bioeconomy for Southern Europe: Visions, Opportunities and Challenges; European Forest Institute: Joensuu, Finland, 2018. [Google Scholar]
- BÖR. Bioeconomy Policies and Strategies Established by 2017; German Bioeconomy Council (Bioökonomierat—BÖR): Berlin, Germany, 2017. [Google Scholar]
- Ceballos, G.; Ehrlich, P. Global Biodiversity Hotspots and Conservation: Insights from Mammal Distributions. Proc. Natl. Acad. Sci. USA 2007, 103, 19374–19379. [Google Scholar] [CrossRef] [Green Version]
- Sechrest, W.; Brooks, T.M.; da Fonseca, G.A.; Konstant, W.R.; Mittermeier, R.A.; Purvis, A.; Rylands, A.B.; Gittleman, J.L. Hotspots and the conservation of evolutionary history. Proc. Natl. Acad. Sci. USA 2002, 99, 2067–2071. [Google Scholar] [CrossRef] [Green Version]
- Virchow, D.; Beuchelt, T.D.; Kuhn, A.; Denich, M. Biomass-based value webs: A novel perspective for emerging bioeconomies in Sub-Saharan Africa. In Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development; Gatzweiler, F.W., von Braun, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 225–238. [Google Scholar]
- Scheiterle, L.; Ulmer, A.; Birner, R.; Pyka, A. From commodity-based value chains to biomass-based value webs: The case of sugarcane in Brazil’s bioeconomy. J. Clean. Prod. 2017, 172, 3851–3863. [Google Scholar] [CrossRef]
- WWF. Living Planet Report 2020—Bending the Curve of Biodiversity Loss; Almond, R.E.A., Grooten, M., Peterson, T., Eds.; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Malav, L.C.; Kumar, S.; Malav, P.K. Global Status of Biodiversity and Threats. Biot. Res. Today 2020, 2, 330–332. [Google Scholar]
- Hochkirch, A.; Samways, M.J.; Gerlach, J.; Böhm, M.; Williams, P.; Cardoso, P.; Cumberlidge, N.; Stephenson, P.J.; Seddon, M.B.; Clausnitzer, V.; et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 2021, 35, 502–509. [Google Scholar] [CrossRef]
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Chisika, S.N.; Yeom, C. Enhancing Ecologically Sustainable Management of Deadwood in Kenya’s Natural Forests. Int. J. For. Res. 2021, 2021, 6647618. [Google Scholar]
- FAO. Forests and Energy Key Issues; FAO Forestry Paper No. 154; FAO: Rome, Italy, 2008. [Google Scholar]
- FAO. Industrial Charcoal Making; FAO Forestry paper 63; FAO: Rome, Italy, 1985; Available online: http://www.fao.org/docrep/x5555e/x5555e00.htm#Contents (accessed on 21 February 2021).
- Richter, D.; Jenkins, D.H.; Karakash, J.T.; Knight, J.; McCreery, L.R.; Nemestothy, K.P. Wood energy in America. Science 2009, 323, 1432–1433. [Google Scholar] [CrossRef]
- Odegard, I.; Croezen, H.; Bergsma, G. Cascading of Biomass: 13 Solutions for a Sustainable Bio-Based Economy—Making Better Choices for Use of Biomass Residues, Byproducts and Waste; CE Delft: Delft, The Netherlands, 2012. [Google Scholar]
- Finland Scientists Turn Dead Wood into Cheap Biofuels. 2021. Available online: https://www.climatechangenews.com/2013/08/05/finland-scientists-turn-dead-wood-into-cheap-biofuels/ (accessed on 1 March 2021).
- Dill, I.; Kraepelin, G. Palo podrido: Model for extensive delignification of wood by Ganoderma applanatum. Appl. Environ. Microbiol. 1986, 52, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chidumayo, E.N.; Gumbo, D.J. The environmental impacts of charcoal production in tropical ecosystems of the world: A synthesis. Energy Sustain. Dev. 2013, 17, 86–94. [Google Scholar] [CrossRef]
- Trossero, M.A. Wood energy: The way ahead. Unasylva 2002, 53, 3–12. [Google Scholar]
- Rothman, D.S.; Agard, J.; Alcamo, J.; Alder, J.; Al-Zubari, W.K.; aus der Beek, T.; Chenje, M.; Eickhout, B.; Flörke, M.; Galt, M.; et al. The future today. In Global Environment Outlook GEO 4. Environment for Development; UNEP: Nairobi, Kenya, 2007; Section E, Chapter 9; pp. 397–454. [Google Scholar]
- Jung, J.; Huxham, M. Firewood usage and indoor air pollution from traditional cooking fires in Gazi Bay, Kenya. Biosci. Horiz. Int. J. Stud. Res. 2018, 11, hzy014. [Google Scholar] [CrossRef]
- Birch, K. The neoliberal underpinnings of the bioeconomy: The ideological discourses and practices of economic competitiveness. Genom. Soc. Policy 2006, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Birch, K.; Levidow, L.; Papaioannou, T. Sustainable capital? The neoliberalization of nature and knowledge in the European “knowledge-based bio-economy”. Sustainability 2010, 2, 2898–2918. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.A. Document analysis as a qualitative research method. Qual. Res. J. 2009, 9, 27–40. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, Z. The Essential Guide to Doing Your Research Project, 2nd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- FAO. Kenya—Global Forest Resources Assessment, 2015—Country Report; FAO: Rome, Italy, 2014. [Google Scholar]
- Republic of Kenya Ministry of Environment and Forestry. National Strategy for Achieving and Maintaining 10% Tree Cover. 2019. Available online: http://extwprlegs1.fao.org/docs/pdf/ken189997.pdf (accessed on 20 February 2021).
- KFS. Report on National Forest Resource Mapping and Capacity Development for the Republic of Kenya; Forest Preservation Programme, Report No. KEF09/11494/01; Kenya Forest Service: Nairobi, Kenya, 2013; Volume 2. [Google Scholar]
- FAO. State of the World’s Forests 2014: Enhancing the Socioeconomic Benefits from Forests; FAO: Rome, Italy, 2014. [Google Scholar]
- UNEP. The Role and Contribution of Montane Forests and Related Ecosystem Services to the Kenyan Economy; UNEP: Nairobi, Kenya, 2012. [Google Scholar]
- Global Waters Homepage. Available online: https://www.globalwaters.org/us-global-water-strategy-stories/degradation-kenyas-water-towers-contribute-growing-water-crisis (accessed on 16 March 2021).
- Muthike, G.; Shitanda, D.; Kanali, C.; Muisu, F. Chainsaw Milling in Kenya. Available online: https://www.semanticscholar.org/paper/7-chainsaw-milling-in-kenya-Muthike-Shitanda/96cf30d5f4a349517668fa9fe3090035066db032 (accessed on 23 June 2021).
- Kenya Forest Service. Forest Law Enforcement and Governance in Kenya: A Paper Prepared for the East African Community-Led Regional Process in the Framework of the Ministerial Declaration, Yaoundé, Cameroon, 16 October 2003 on the Africa Forest Law Enforcement and Governance (AFLEG). 2007. Available online: http://theredddesk.org/sites/default/files/resources/pdf/2012/kfs_2007_forest_law_enforcement_and_governance_in_kenya.pdf (accessed on 23 April 2021).
- Kagombe, J.K.; Kiprop, J.; Langat, D.; Cheboiwo, J.K.; Wekesa, L.; Ongugo, P.O.; Mbuvi, M.T.E.; Nereoh, L. Socio-Economic Impact of Forest Harvesting Moratorium in Kenya; KEFRI: Nairobi, Kenya, 2020. [Google Scholar]
- Ministry of Environment, Water and Natural Resources. Analysis of Demand and Supply of Wood Products in Kenya. 2013. Available online: http://www.kenyaforestservice.org/documents/redd/Analysis%20of%20Demand%20and%20Supply%20of%20Wood%20Products%20in%20Kenya.pdf (accessed on 23 April 2021).
- Kituyi, E. Climate Change Mitigation by Schools in Kenya: Policy Options for Scaling up Sustainable Fuel Wood Consumption and Production. 2008. Available online: https://scholar.google.com.hk/scholar?hl=zh-TW&as_sdt=0%2C5&q=Climate+Change+Mitigation+by+Schools+in+Kenya%3A+Policy+Options+for+Scaling+up+Sustainable+Fuel+Wood+Consumption+and+Production&btnG= (accessed on 22 June 2021).
- Mugo, F.W. The role of woodfuel conservation in sustainable supply of the resource: The case for Kenya. In Proceedings of the Charcoal Stakeholders Workshop, Nairobi, Kenya, 15 October 2001; p. 4. [Google Scholar]
- Mugo, F.; Ong, C. Lessons of Eastern Africa’s Unsustainable Charcoal Trade; ICRAF Working Paper No. 20; World Agroforestry Centre: Nairobi, Kenya, 2006. [Google Scholar]
- Mugo, E.; Nyandiga, C.; Gachanja, M. Development of Forestry in Kenya (1900–2007): Challenges and Lessons Learnt; Kenya Forestry Working Group: Nairobi, Kenya, 2010. [Google Scholar]
- Ngui, D.; Mutua, J.; Osiolo, H.; Aligula, E. Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS). Energy Policy 2011, 39, 7084–7094. [Google Scholar] [CrossRef]
- ESDA. National Charcoal Survey: Exploring the Potential for a Sustainable Charcoal Industry; ESDA: Nairobi, Kenya, 2005.
- Ndegwa, G.M. Woodfuel Value Chains in Kenya and Rwanda: Economic Analysis of the Market Oriented Woodfuel Sector. Master’s Thesis, Cologne University of Applied Sciences, Cologne, Germany, 2010. [Google Scholar]
- Agevi, H.; Adamba, M.K.; Koros, H.; Mulinya, C.; Kawawa, R.C.; Kimutai, D.K.; Wabusya, M.; Khanyufu, M.; Jawuoro, S. PELIS Forestry Programme as a Strategy for Increasing Forest Cover and Improving Community Livelihoods: Case of Malava Forest, Western Kenya. Am. J. Agric. For. 2006, 4, 128–135. [Google Scholar]
- Mbugua, D. Forest Outlook studies in Africa (FOSA), Kenya. 2000. Available online: ftp://ftp.fao.org/docrep/fao/003/AB569E/AB569E00.pdf (accessed on 21 April 2021).
- The East African Newspaper. As Fuel Prices Rise, Firewood Thieves Vex Rural Kenyans. 2019. Available online: https://www.theeastafrican.co.ke/tea/science-health/as-fuel-prices-rise-firewood-thieves-vex-rural-kenyans-1422572 (accessed on 11 March 2021).
- Ngetich, K.A.; Birech, R.J.; Bett, K.E.; Freyer, B. Caught between energy demands and food needs: Dilemmas of smallholder farmers in Njoro, Kenya. J. Agric. Rural Dev. Trop. Subtrop. 2009, 110, 23–28. [Google Scholar]
- Wambua, S.M. Household Energy Consumption and Dependency on Common Pool Forest Resources: The Case of Kakamega Forest, Western Kenya. Ph.D. Thesis, Georg-August-University Göttingen, Göttingen, Germany, 2011. [Google Scholar]
- Boulkaid, Y. Quantifying the Potential Impact of Improved Stoves in Nyeri County, Kenya. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015. [Google Scholar]
- Jepng’etich, K.S. Sustainable Fuelwood Production in Kenya: Potential Role of Community Forest Associations. In Proceedings of the 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE), Pattaya City, Thailand, 20–22 October 2020; pp. 1–6. [Google Scholar]
- United Nations Environment Programme. Improving Efficiency in Forestry Operations and Forest Product Processing in Kenya: A Viable REDD+ Policy and Measure? United Nations Environment Programme: Nairobi, Kenya, 2017. [Google Scholar]
- Kenya Forest Service. Forest Fires. 2021. Available online: http://www.kenyaforestservice.org/index.php?option=com_content&view=article&id=474:forest-fires&catid=140&Itemid=633 (accessed on 7 March 2021).
- Kenya’s Ministry of Energy Unveils Bioenergy Strategy. 2020. Available online: https://www.standardmedia.co.ke/business/business-news/article/2001394951/ministry-of-energy-unveils-bioenergy-strategy (accessed on 21 March 2021).
- Draft National Energy Policy for Kenya. 2014. Available online: https://www.greengrowthknowledge.org/sites/default/files/downloads/policy-database/KENYA%29%20National%20Energy%20Policy%2C%202014.pdf (accessed on 21 March 2021).
- Ministry of Environment and Forestry (MEF), Kenya. Updated Nationally Determined Contribution (NDC). 2020. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Kenya%20First/Kenya%27s%20First%20%20NDC%20(updated%20version).pdf (accessed on 23 January 2021).
- Global Oil Price Website. Kenya Electricity Prices. Available online: https://www.globalpetrolprices.com/Kenya/electricity_prices/ (accessed on 3 March 2021).
- Kenyan Government Blamed for Sluggish Progress of Solar. 2020. Available online: https://www.pv-magazine.com/2019/09/02/kenyan-government-blamed-for-sluggish-progress-of-solar/ (accessed on 20 January 2021).
- NETFUND Green Innovations Award. 2021. Available online: https://www.netfund.go.ke/about-netfund-environmental-awards/ (accessed on 6 March 2021).
- The Constitution of Kenya. 2010. Available online: http://kenyalaw.org/kl/index.php?id=398 (accessed on 16 March 2021).
- Kenya Law. The Constitution of Kenya: 2010; Chief Registrar of the Judiciary: Nairobi, Kenya, 2013. [Google Scholar]
- Kenya Vision 2030. Available online: https://vision2030.go.ke/publication/kenya-vision-2030-popular-version/ (accessed on 17 March 2021).
- Forest Conservation and Management Act. 2016. Available online: http://kenyalaw.org/kl/fileadmin/pdfdownloads/Acts/ForestConservationandManagementActNo34of2016.pdf (accessed on 20 March 2021).
- Ministry of Environment and Forestry. Draft Forest Policy. 2020. Available online: http://www.environment.go.ke/?p=7733 (accessed on 21 March 2021).
- Environmental Management and Coordination Act. 1999. Available online: http://kenyalaw.org/kl/fileadmin/pdfdownloads/Acts/EnvironmentalManagementandCo-ordinationAct_No8of1999.pdf (accessed on 12 March 2021).
- National Biosafety Authority. National Biosafety Act. 2009. Available online: https://www.biosafetykenya.go.ke/index.php?option=com_content&view=article&id=16&Itemid=121 (accessed on 12 March 2021).
- The National Council for Law Reporting with the Authority of the Attorney-General. Science Innovation and Technology Act. 2013. Available online: https://www.nacosti.go.ke/images/docs/2018/november/Science-Technology-and-Innovation-Act-No.-28-of-20131.pdf (accessed on 13 March 2021).
- Energy Efficiency and Conservation Strategy. 2020. Available online: https://unepdtu.org/wp-content/uploads/2020/09/kenya-national-energy-efficiency-and-conservation-strategy-2020-1.pdf (accessed on 11 March 2021).
- Ministry of Environment and Natural Resources. National Biodiversity Strategy and Action Plan Whose Provisions for the Period 2019–2030. Available online: https://www.cbd.int/doc/world/ke/ke-nbsap-01-en.pdf (accessed on 16 March 2021).
- NEMA. National Solid Waste Management Strategy. 2015. Available online: https://www.nema.go.ke/images/Docs/Media%20centre/Publication/National%20Solid%20Waste%20Management%20Strategy%20.pdf (accessed on 18 February 2021).
- Republic of Kenya Ministry of Energy and Petroleum. Draft Energy Policy. 2014. Available online: https://www.greengrowthknowledge.org/sites/default/files/downloads/policy-database/KENYA%29%20National%20Energy%20Policy%2C%202014.pdf (accessed on 21 April 2021).
Strategy Name | Theme | Drivers and Focus |
---|---|---|
Bioeconomy strategy for France (2017) | Promotion of the photosynthesis economy | Implement climate change Agreement reached at COP 21 Address the growing demand for proteins Create more value chains for existing bioproducts |
Bioeconomy in Italy (2017) | Reconnecting economy, society, and the environment | Reduce dependency on fossil fuels through a circular approach |
Portugal’s green growth commitment (2014) | Environmental sustainability | Climate change |
Spanish Strategy on Bioeconomy 2030 | Sustainability | Change global consumption patterns Climate change Improving competitiveness |
Forest Management Approach | Naturalness | Tree Improvement | Type of Regeneration | Integration of Nature Protection | Tree Removal | Final Harvest | Maturity |
---|---|---|---|---|---|---|---|
Passive Unmanaged Nature Reserve | Natural Vegetation | None | Natural regeneration/succession | High | None | None | No Intervention |
Low Close to Nature Forestry | Native Site Adapted | No genetic modification or Tree Breeding | Natural regeneration or planting | High | Stem | Single stem, or group selection, irregular shelter-wood | Long rotation (MAI) |
Medium Combined Objective Forestry | Tree Species Suitable for Site | Planting Material from Tree Breeding but not genetically modified | Natural regeneration, planting, and seeding | High | Stem and crown | All possible seed tree, strip, or group shelter-wood | Long rotation (MAI) |
High Intensive Even-aged Forestry | Tree Species Suitable for Site | Tree breeding allowed, no genetic modification | Natural regeneration, planting, and seeding | Medium | Whole tree | All possible clear-cut, long rotation preferable | Short Rotation (Financial rotation) |
Intensive Short Rotation Forestry | Any Species | Tree breeding and genetic modification used | Planting, seeding, and coppicing | Low | Whole tree and residuals | All possible (Coppice clear-cut) | Short Rotation (Financial rotation) |
Fuel Type | Amount of Fuel per Terajoule (TJ) | Employment per TJ in Person Days |
---|---|---|
Fuelwood | 62 | 100–700 |
Charcoal | 33 | 200–350 |
Coal | 43 | 20–40 |
Kerosene | 29 | 10 |
LPG | 22 | 10–20 |
Electricity | 228 MWh | 80–100 |
Land Use | 1990 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|
Forest land | 4724 | 3557 | 4047 | 4230 | 4413 |
Crop land | 9258 | 9661 | 9868 | 10,072 | 10,276 |
Grassland | 41,522 | 41,654 | 41,496 | 41,080 | 40,664 |
Settlement | 57 | 87 | 109 | 126 | 143 |
Other lands | 1004 | 1574 | 1035 | 1044 | 1053 |
Wetlands | 1472 | 1504 | 1482 | 1485 | 1488 |
Total area (ha) | 58,037 | 58,037 | 58,037 | 58,037 | 58,037 |
Type of Forest | Sub-Type | Estimated Area (ha) | % of Total Area |
---|---|---|---|
Western rainforest | Natural forest (mixed indigenous) | 144,615 | 3.5 |
Montane forests | Natural forest (mixed indigenous) | 1,359,860 | 32.9 |
Bamboo | 85,693 | 2.1 | |
Coastal forest | Natural forest (mixed indigenous trees | 295,871 | 7.2 |
Mangroves | 48,522 | 1.2 | |
Dryland forests | Natural forest (mixed indigenous trees) | 1,875,316 | 45.4 |
Riverine forest | 135,231 | 3.3 | |
Forest plantations | Public and private forests | 186,716 | 4.5 |
Type of Ecosystem Services | Name of Service | Annual (KES) | Contribution to Total Economic Value (%) |
---|---|---|---|
Provisioning | Timber and Non-timber | 22,941,590,363 | 6.33 |
Food Production | 634,770,000 | 0.18 | |
Water | 3,427,027,000 | 0.95 | |
Hydropower | 11,983,679,000 | 3.31 | |
Biodiversity | 5,712,786,000 | 1.58 | |
Tourism | 9,300,000,000 | 2.57 | |
Sub-total | 53,999,852,363 | 14.90 | |
Regulating | Water Flow | 2,960,143,000 | 0.82 |
Water-Quality Regulation | 1,155,366,000 | 0.32 | |
Carbon Sequestration | 176,657,067,000 | 48.75 | |
Oxygen Generation | 118,461,049,000 | 32.69 | |
Microclimatic Regulation | 2,099,161,000 | 0.58 | |
Sub-total | 301,332,786,000 | 83.16 | |
Supporting | Soil Conservation | 1,060,000,000 | 0.29 |
Nutrient Conservation | 4,499,000,000 | 1.24 | |
Pollination | 930,564,000 | 0.26 | |
Sub-total | 6,489,564,000 | 1.79 | |
Cultural | Cultural and Spiritual | 235,358,000 | 0.06 |
Bequest | 297,905,000 | 0.08 | |
Sub-total | 533,263,000 | 0.15 | |
Grand Total | 362,355,465,363 | 100.00 |
Study | County | Cost of Wood in KES for Different Quantities (m3/stere/Kg/Head Lot) | Cost of 350 kg of Wood (USD) | Exchange Rate (1 USD to KES) | |
---|---|---|---|---|---|
Ngetich et al. (2009) | Nakuru | 500 | 0.17 m3 * | 22.4 *** | 80 |
Ndegwa (2010) | Murang’a | 800 | 1 Stere * | 19.4 ** | 80 |
Wambua (2011) | Kakamega | 76 | 25 kg of head lot | 12 ** | 89 |
Boulkaid (2015) | Nyeri | 200 | 25 kg | 27 *** | 103 |
Thematic Area | Potential Biomass Savings (m3 RWE per year) | Emission Reduction from Deforestation and Degradation (tCO2 e per year) | Investment (USD/year) |
---|---|---|---|
Forest operations (harvesting) | 10,000 | n/a | 37,500 |
Timber processing (including briquette production) | 238,000 | 110,838 | 1,340,000 |
Charcoal production | 5,658,810 | 16,476,000 | 15,642,000 |
Fuelwood consumption at household level | 960,100 | 2,386,000 | 10,000,000 |
Fuelwood consumption at industrial level | 1,191,000 | 2,040,000 | 11,430,000 |
Total | 8,057,910 | 21,012,838 | 38,787,000 |
Document | Compatibility with the Bioeconomy of Deadwood Resources |
---|---|
Constitution of Kenya, 2010 [118] | Establishes the three organs of government which are meant to coordinate the development of policies and strategies for the bioeconomy of deadwood |
Vision 2030 [119] | Establishes the social pillar as the foundations that drive successful deadwood bioeconomy |
Forest Conservation and Management Act, 2016 [120] | Establishes the regulatory framework and infrastructure for sustainable management of deadwood in public forests Establishes institutions for managing deadwood in public forests to promote the bioeconomy |
Draft Forest Policy, 2020 [121] | Provides policy direction on utilization of forest resources, including deadwood resources |
Environmental Management and Coordination Act, 1999 [122] | It is the framework of environmental protection law that sets the parameters for innovations toward environmental sustainability in the country |
National Biosafety Act, 2009 [123] | Concern with the risks associated with genetically modified organisms. It is relevant in guiding the biotechnology perspective of the deadwood bioeconomy |
Science Innovation and Technology Act, 2013 [124] | Safeguards intellectual property rights related to knowledge and this promotes the bioeconomy of deadwood resources |
Energy Efficiency and Conservation Strategy 2020 [125] | Provides incentives for energy efficiency and conservation and hence deadwood conservation |
National Biodiversity Strategy and Action Plan whose provisions for the period 2019–2030 [126] | Establishes a framework and a road map for conservation of all types of organisms and biodiversity in public forests |
National Solid Waste Management Strategy, 2015 [127] | Envisions a zero-waste society and provides a framework for managing municipal solid waste, but lacks provisions for the management of wood waste in public forests |
Draft Energy Policy, 2014 [128] | Identifies bioenergy resources as critical for energy production and provides the feed-in-tariff for biomass resources which encourages the exploitation of biomass resources. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chisika, S.N.; Park, J.; Yeom, C. Paradox of Deadwood Circular Bioeconomy in Kenya’s Public Forests. Sustainability 2021, 13, 7051. https://doi.org/10.3390/su13137051
Chisika SN, Park J, Yeom C. Paradox of Deadwood Circular Bioeconomy in Kenya’s Public Forests. Sustainability. 2021; 13(13):7051. https://doi.org/10.3390/su13137051
Chicago/Turabian StyleChisika, Sylvester Ngome, Joon Park, and Chunho Yeom. 2021. "Paradox of Deadwood Circular Bioeconomy in Kenya’s Public Forests" Sustainability 13, no. 13: 7051. https://doi.org/10.3390/su13137051
APA StyleChisika, S. N., Park, J., & Yeom, C. (2021). Paradox of Deadwood Circular Bioeconomy in Kenya’s Public Forests. Sustainability, 13(13), 7051. https://doi.org/10.3390/su13137051