The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of the Study Areas
2.2. Sample Size and Sampling Technique
2.3. Sources of Data and Method of Collection
2.4. Definition and Computation of Variables
2.5. Data Analysis
3. Results
3.1. Description of the Sample
3.2. Adaptation Strategies
3.3. Measurement of Livelihood Sustainability
3.4. Impact of Adaptation to Climate Change and Variability (CCV) on Sustainable Livelihoods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Adaptation Strategy | Selection Instruments | Adaptation | LSI for Households that Did Not Adapt |
---|---|---|---|
Changing planting time | Member of farmer group | 1.12(0.12) *** | −0.09(1.77) |
Received farmer training | 0.22(0.11) ** | −1.60(1.12) | |
Access to weather information | 0.32(0.11) ** | −0.03(1.05) | |
Constant | −2.19(0.52) *** | 34.24(5.26) *** | |
Wald test on selection instruments | 141.63 *** | 0.18 (0.912) | |
Changing crop type | Member of farmer group | 0.03(0.12) | −1.96(1.45) |
Received farmer training | 0.70(0.11) *** | 0.12(1.19) | |
Access to weather information | −0.28(0.10) ** | −1.65(1.21) | |
Constant | −1.37(0.49) ** | 35.77(5.38) *** | |
Wald test on selection instruments | 72.86 *** | 0.79(0.501) | |
Crop diversification | Member of farmer group | 0.02(0.15) | 0.23(3.34) |
Received farmer training | 0.34(0.13) ** | −2.92(2.91) | |
Access to weather information | −0.05(0.13) | 1.66(2.62) | |
Constant | 1.77(0.64) ** | 20.13(13.44) | |
Wald test on selection instruments | 16.32 *** | 0.18(0.911) | |
Used improved seeds | Member of farmer group | 0.39(0.12) *** | −1.15(1.29) |
Received farmer training | 0.29(0.11) ** | −0.96(1.03) | |
Access to weather information | −0.13(0.10) | 1.01(1.01) | |
Constant | −1.77(0.51) *** | 33.12(4.96) *** | |
Wald test on selection instruments | 56.47 *** | 0.59(0.624) | |
Land management | Member of farmer group | 0.83(0.16) *** | 2.75(3.03) |
Received farmer training | 0.42(0.11) *** | −2.57(1.62) | |
Access to weather information | −0.19(0.11) * | −0.83(1.59) | |
Constant | −0.22(0.54) | 27.69(7.71) *** | |
Wald test on selection instruments | 78.83 *** | 0.65(0.587) | |
Irrigation | Member of farmer group | 0.26(0.13) ** | −0.02(1.21) |
Constant | 0.35(0.52) | 33.37(4.84) *** | |
Non-farm | Member of farmer group | 0.30(0.12) ** | −0.29(1.37) |
Received farmer training | −0.02(0.11) | 0.39(1.24) | |
Access to weather information | 0.36(0.11) *** | 0.47(1.16) | |
Constant | 1.64(0.51) *** | 28.23(6.07) | |
Wald test on selection instruments | 14.20 ** | 0.47(0.70) | |
Migration | Member of farmer group | 0.21(0.12) * | 0.73(1.17) |
Received farmer training | 0.14(0.12) | −1.09(0.99) | |
Access to weather information | 0.12(0.11) | −0.09(0.96) | |
Constant | −2.06(0.57) *** | 37.26(4.43) *** | |
Wald test on selection instruments | 21.45 *** | 0.31(0.818) | |
Used more than four adaptation strategies | Member of farmer group | 0.67(0.12) *** | −1.10(1.52) |
Received farmer training | 0.45(0.11) *** | −1.41(1.09) | |
Access to weather information | 0.09(0.10) | 0.08(1.07) | |
Constant | −1.46(0.50) ** | 31.53(5.28) *** | |
Wald test on selection instruments | 104.14 *** | 0.35 |
References
- Eriksen, S.H.; O’brien, K. Vulnerability, poverty and the need for sustainable adaptation measures. Clim. Policy 2007, 7, 337–352. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.C.; Ekstrom, J.A. A framework to diagnose barriers to climate change adaptation. Proc. Natl. Acad. Sci. USA 2010, 107, 22026–22031. [Google Scholar] [CrossRef] [Green Version]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Dynamics of smallholder farmers’ livelihood adaptation decision-making in Central Ethiopia. Sustainability 2020, 12, 4526. [Google Scholar] [CrossRef]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Asfaw, S.; McCarthy, N.; Lipper, L.; Arslan, A.; Cattaneo, A. What determines farmers’ adaptive capacity? Empirical evidence from Malawi. Food Secur. 2016, 8, 643–664. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does Adaptation to Climate Change Provide Food Security—A Micro-Perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Chambers, R.; Conway, G. Sustainable Rural Livelihoods: Practical Concepts for the 21st Century; Institute of Development Studies: Brighton, UK, 1992. [Google Scholar]
- Scoones, I. Sustainable Rural Livelihoods: A Framework for Analysis; IDS Working Paper 72; Institute of Development Studies: Brighton, UK, 1998. [Google Scholar]
- De Haan, L.; Zoomers, A. Exploring the frontier of livelihoods research. Dev. Chang. 2005, 36, 27–47. [Google Scholar] [CrossRef]
- Scoones, I. Livelihoods perspectives and rural development. J. Peasant. Stud. 2009, 36, 171–196. [Google Scholar] [CrossRef]
- Connolly-Boutin, L.; Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Chang. 2016, 16, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Boelee, E.; Yohannes, M.; Poda, J.-N.; McCartney, M.; Cecchi, P.; Kibret, S.; Hagos, F.; Laamrani, H. Options for water storage and rainwater harvesting to improve health and resilience against climate change in Africa. Reg. Environ. Chang. 2013, 13, 509–519. [Google Scholar] [CrossRef]
- Djoudi, H.; Brockhaus, M.; Locatelli, B. Once there was a lake: Vulnerability to environmental changes in northern Mali. Reg. Environ. Chang. 2013, 13, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Solorzano, C. Unintended outcomes of farmers’ adaptation to climate variability: Deforestation and conservation in Calakmul and Maya biosphere reserves. Ecol. Soc. 2014, 19, 53. [Google Scholar] [CrossRef] [Green Version]
- Dinshaw, A.; Fisher, S.; McGray, H.; Rai, N.; Schaar, J. Monitoring and evaluation of climate change adaptation: Methodological approaches. In OECD Environment Working Papers; No. 74; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Kothari, C.R. Research Methodology: Methods and Techniques; New Age International: New Delhi, India, 2004. [Google Scholar]
- Singh, P.K.; Hiremath, B. Sustainable livelihood security index in a developing country: A tool for development planning. Ecol. Indic. 2010, 10, 442–451. [Google Scholar] [CrossRef]
- Fisher, J.A.; Patenaude, G.; Meir, P.; Nightingale, A.J.; Rounsevell, M.D.; Williams, M.; Woodhouse, I.H. Strengthening conceptual foundations: Analysing frameworks for ecosystem services and poverty alleviation research. Glob. Environ. Chang. 2013, 23, 1098–1111. [Google Scholar] [CrossRef] [Green Version]
- Egoh, B.N.; O’Farrell, P.J.; Charef, A.; Gurney, L.J.; Koellner, T.; Abi, H.N.; Egoh, M.; Willemen, L. An African account of ecosystem service provision: Use, threats and policy options for sustainable livelihoods. Ecosyst. Serv. 2012, 2, 71–81. [Google Scholar] [CrossRef]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide, Version 3; Food and Nutrition Technical Assistance (FANTA) Project: Washington, DC, USA, 2007. [Google Scholar]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Climate change, in-situ adaptation, and migration decisions of smallholder farmers in central Ethiopia. Migr. Dev. 2020, 1–25. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Bangwayo-Skeete, P.F.; Bezabih, M.; Zikhali, P. Crop biodiversity, productivity and production risk: Panel data micro-evidence from Ethiopia. Nat. Resour. forum 2012, 36, 263–273. [Google Scholar] [CrossRef]
- Di Falco, S.; Chavas, J.-P. On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. Am. J. Agric. Econ. 2009, 91, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Trends of Climate Change and Variability in Three Agro-Ecological Settings in Central Ethiopia: Contrasts of Meteorological Data and Farmers’ Perceptions. Climate 2020, 8, 121. [Google Scholar] [CrossRef]
- Bezabih, M.; Sarr, M. Risk preferences and environmental uncertainty: Implications for crop diversification decisions in Ethiopia. Environ. Resour. Econ. 2012, 53, 483–505. [Google Scholar] [CrossRef]
- Michler, J.D.; Josephson, A.L. To specialize or diversify: Agricultural diversity and poverty dynamics in Ethiopia. World Dev. 2017, 89, 214–226. [Google Scholar] [CrossRef]
- Araya, T.; Nyssen, J.; Govaerts, B.; Deckers, J.; Sommer, R.; Bauer, H.; Gebrehiwot, K.; Cornelis, W.M. Seven years resource-conserving agriculture effect on soil quality and crop productivity in the Ethiopian drylands. Soil Tillage Res. 2016, 163, 99–109. [Google Scholar] [CrossRef]
- Kato, E.; Ringler, C.; Yesuf, M.; Bryan, E. Soil and water conservation technologies: A buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. Agric. Econ. 2011, 42, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Adgo, E.; Teshome, A.; Mati, B. Impacts of long-term soil and water conservation on agricultural productivity: The case of Anjenie watershed, Ethiopia. Agric. Water Manag. 2013, 117, 55–61. [Google Scholar] [CrossRef]
- Kassie, M.; Pender, J.; Yesuf, M.; Kohlin, G.; Bluffstone, R.; Mulugeta, E. Estimating returns to soil conservation adoption in the northern Ethiopian highlands. Agric. Econ. 2008, 38, 213–232. [Google Scholar] [CrossRef]
- Teklewold, H.; Mekonnen, A.; Köhlin, G. Climate change adaptation: A study of multiple climate-smart practices in the Nile Basin of Ethiopia. Clim. Dev. 2019, 11, 180–192. [Google Scholar] [CrossRef]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. [Google Scholar] [CrossRef]
- Branca, G.; Lipper, L.; McCarthy, N.; Jolejole, M.C. Food security, climate change, and sustainable land management. A review. Agron. Sustain. Dev. 2013, 33, 635–650. [Google Scholar] [CrossRef] [Green Version]
- Legesse, L.; Ayele, A.; Tasewu, W.; Alemu, A. Impact of Small Scale Irrigation on Household Farm Income and Asset Holding: Evidence from Shebedino District, Southern Ethiopia. J. Resour. Dev. Manag. 2018, 43, 8–15. [Google Scholar]
- Muluneh, A.; Stroosnijder, L.; Keesstra, S.; Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: Supplemental irrigation, plant density and sowing date. J. Agric. Sci. 2016, 155, 703–724. [Google Scholar] [CrossRef]
- Abebaw, D.; Admassie, A.; Kassa, H.; Padoch, C. Does rural outmigration affect investment in agriculture? Evidence from Ethiopia. Migr. Dev. 2019, 10, 144–168. [Google Scholar] [CrossRef]
- Abebaw, D.; Admassie, A.; Kassa, H.; Padoch, C. Can rural outmigration improve household food security? Empirical evidence from Ethiopia. World Dev. 2020, 129, 104879. [Google Scholar] [CrossRef]
- Mueller, V.; Doss, C.; Quisumbing, A. Youth Migration and Labour Constraints in African Agrarian Households. J. Dev. Stud. 2018, 54, 875–894. [Google Scholar] [CrossRef]
- Redehegn, M.A.; Sun, D.; Eshete, A.M.; Gichuki, C.N. Development impacts of migration and remittances on migrant-sending communities: Evidence from Ethiopia. PLoS ONE 2019, 14, e0210034. [Google Scholar] [CrossRef] [Green Version]
- Bezu, S.; Holden, S. Are Rural Youth in Ethiopia Abandoning Agriculture? World Dev. 2014, 64, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Kijima, Y.; Yamano, T. The role of local nonfarm activities and migration in reducing poverty: Evidence from Ethiopia, Kenya, and Uganda. Agric. Econ. 2006, 35, 449–458. [Google Scholar] [CrossRef]
- Bezu, S.; Barrett, C.B.; Holden, S.T. Does the Nonfarm Economy Offer Pathways for Upward Mobility? Evidence from a Panel Data Study in Ethiopia. World Dev. 2012, 40, 1634–1646. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, M.; Kumbi, G.E. Poverty and the rural nonfarm economy in Oromia, Ethiopia. Agric. Econ. 2006, 35, 469–475. [Google Scholar] [CrossRef]
- Gebreyesus, B. The Effect of Livelihood Diversification on Household Income: Evidence from Rural Ethiopia. Int. J. Afr. Asian Stud. 2016, 20, 1–12. [Google Scholar]
- Ali, M.; Peerlings, J. Farm households and nonfarm activities in Ethiopia: Does clustering influence entry and exit? Agric. Econ. 2012, 43, 253–266. [Google Scholar] [CrossRef]
- Bezu, S.; Barrett, C. Employment Dynamics in the Rural Nonfarm Sector in Ethiopia: Do the Poor Have Time on Their Side? J. Dev. Stud. 2012, 48, 1223–1240. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.; Shiferaw, B.; Pender, J. Non-farm income, household welfare, and sustainable land management in a less-favoured area in the Ethiopian highlands. Food Policy 2004, 29, 369–392. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.; Hundie, B. The effect of off farm employment on agricultural production and productivity: Evidence from Gurage Zone of Southern Ethiopia. J. Econ. Sustain. Dev. 2014, 5, 85–98. [Google Scholar]
- Mekonnen, Z.; Woldeamanuel, T.; Kassa, H. Socio-ecological vulnerability to climate change/variability in central rift valley, Ethiopia. Adv. Clim. Chang. Res. 2019, 10, 9–20. [Google Scholar] [CrossRef]
- Tesso, G.; Emana, B.; Ketema, M. Analysis of vulnerability and resilience to climate change induced shocks in North Shewa, Ethiopia. Agric. Sci. 2012, 3, 871–888. [Google Scholar] [CrossRef] [Green Version]
Variables | All Households | Highland | Midland | Lowland | Mean Difference a | |
---|---|---|---|---|---|---|
Mean | SD | |||||
Age of HHH (years) | 47.0 | 15.9 | 47.6 | 48.7 | 44.8 | 4.45 * |
Sex of HHH (female = 1) | 0.13 | 0.34 | 0.11 | 0.15 | 0.14 | 1.19 |
Labour force size | 2.39 | 1.09 | 2.46 | 2.33 | 2.37 | 0.99 |
Dependency ratio | 1.13 | 0.88 | 1.03 | 1.09 | 1.27 | 5.34 ** |
Education of HHH (≥primary) | 0.32 | 0.47 | 0.27 | 0.39 | 0.31 | 4.45 * |
Size of land (in ha) | 1.82 | 1.95 | 2.34 | 1.31 | 1.81 | 19.51 *** |
Number of oxen | 1.37 | 1.18 | 1.66 | 1.28 | 1.16 | 13.4 *** |
Member of farmer group (yes = 1) | 0.23 | 0.42 | 0.30 | 0.19 | 0.20 | 5.59 ** |
Received farmers’ training (yes = 1) | 0.61 | 0.49 | 0.70 | 0.62 | 0.52 | 9.23 *** |
Access to financial capital (yes = 1) | 0.47 | 0.49 | 0.59 | 0.43 | 0.39 | 12.28 *** |
Used fertilizer (yes = 1) | 0.92 | 0.27 | 0.97 | 0.96 | 0.82 | 26.87 *** |
Used herbicide or pesticide (yes = 1) | 0.81 | 0.39 | 0.85 | 0.91 | 0.66 | 31.47 *** |
Distance to a market (in minutes) | 113.24 | 80.96 | 107.59 | 99.18 | 132.94 | 13.09 *** |
Distance to FTC (in minutes) | 35.31 | 30.17 | 21.27 | 51.45 | 33.20 | 82.28 *** |
Access to weather information (yes = 1) | 0.65 | 0.47 | 0.67 | 0.67 | 0.60 | 1.86 |
Belg rainfall (15 years) | 122.4 | 122.4 | 67.1 | 212.6 | 87.5 | 15.32 *** |
Kiremt rainfall (15 years) | 676.2 | 266.5 | 680.5 | 962.8 | 385.2 | 84.38 *** |
Annual temperature (15 years) | 17.4 | 3.5 | 14.8 | 15.1 | 22.3 | 1350.92 *** |
Sample size | 810 | 270 | 270 | 270 | -- |
Variables | Mean | S.D | Factor Loadings | ||
---|---|---|---|---|---|
ESI | SEI | EEI | |||
Construction materials | 0.45 | 0.49 | 0.888 | ||
Firewood | 0.50 | 0.50 | 0.865 | ||
Farming tools | 0.35 | 0.48 | 0.794 | ||
Grazing land | 0.26 | 0.44 | 0.653 | ||
Health status | 0.67 | 0.25 | 0.844 | ||
Life satisfaction | 0.67 | 0.28 | 0.843 | ||
Food security | 0.81 | 0.23 | 0.664 | ||
Labour productivity | 0.10 | 0.10 | 0.791 | ||
Land productivity | 0.13 | 0.09 | 0.755 | ||
Months yield sufficient during poor rainfall | 0.36 | 0.18 | 0.517 | ||
Wealth index | 0.49 | 0.30 | 0.495 | ||
Eigen values | 2.94 | 2.44 | 1.19 | ||
Cumulative total explained variance | 27% | 49% | 60% |
Strategies | Decision Stage | Treatment Effects | ||
---|---|---|---|---|
To Adapt | Not to Adapt | |||
Changing planting time | Adapted (ATT) | a = 42.1 | b =40.9 | e = 1.2(0.60) |
Did not adapt (ATU) | c = 41.0 | d = 40.1 | f = 0.9(0.59) | |
Heterogeneity effect | g = 1.1(0.63) | h = 0.8(0.55) | i = 0.3 | |
Changing crop type | Adapted (ATT) | 40.1 | 23.4 | 16.7(0.51) *** |
Did not adapt (ATU) | 41.6 | 41.8 | −0.2(0.65) | |
Heterogeneity effect | −1.5(0.53) ** | −18.4(0.64) *** | 16.9 | |
Crop diversification | Adapted (ATT) | 46.9 | 41.7 | 5.2(0.44) *** |
Did not adapt (ATU) | 42.6 | 36.5 | 6.1(1.02) *** | |
Heterogeneity effect | 4.3(0.78) *** | 5.2(0.81) *** | −0.9 | |
Using improved seeds | Adapted (ATT) | 44.6 | 43.3 | 1.3(0.53) * |
Did not adapt (ATU) | 48.5 | 38.4 | 10.1(0.58) *** | |
Heterogeneity effect | −3.9(0.62) *** | 4.9(0.49) *** | −8.8 | |
Land management | Adapted (ATT) | 41.8 | 30.4 | 11.4(0.69) *** |
Did not adapt (ATU) | 41.2 | 38.2 | 3.0(0.72) *** | |
Heterogeneity effect | 0.6(0.49) | −7.8(0.88) *** | 8.4 | |
Irrigation | Adapted (ATT) | 44.9 | 23.6 | 21.3(0.59) *** |
Did not adapt (ATU) | 38.2 | 38.6 | −0.4(0.62) | |
Heterogeneity effect | 6.7(0.69) *** | −15.0(0.52) *** | 21.7 | |
Non-farm | Adapted (ATT) | 41.8 | 36.5 | 5.3(0.71) *** |
Did not adapt (ATU) | 32.2 | 40.3 | −8.1(0.51) *** | |
Heterogeneity effect | 9.6(0.66) *** | −3.8(0.57) *** | 13.4 | |
Migration | Adapted (ATT) | 38.6 | 17.6 | 21.0(0.59) *** |
Did not adapt (ATU) | 32.3 | 41.9 | −9.6(0.62) *** | |
Heterogeneity effect | 6.3(0.67) *** | −24.3(0.47) *** | 30.6 | |
Used >4 strategies | Adapted (ATT) | 43.0 | 40.3 | 2.7(0.55) *** |
Did not adapt (ATU) | 43.4 | 39.3 | 4.1(0.59) *** | |
Heterogeneity effect | −0.4(0.59) | 1.0(0.54) | −1.4 |
Strategies | Highland | Midland | Lowland | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Decision Stage | Treatment Effects | Decision Stage | Treatment Effects | Decision Stage | Treatment Effects | |||||
To Adapt | Not to Adapt | To Adapt | Not to Adapt | To Adapt | Not to Adapt | |||||
Changed planting time | ATT | 36.2 | 34.9 | 1.3(0.59) * | 38.9 | 36.8 | 2.1(0.54) *** | 51.1 | 50.9 | 0.2(0.65) |
ATU | 35.8 | 35.4 | 0.4(0.67) | 37.4 | 35.2 | 2.2(0.54) *** | 49.9 | 49.7 | 0.2(0.68) | |
Changed crop type | ATT | 35.7 | 18.2 | 17.5(0.59) *** | 38.0 | 19.2 | 18.8(0.52) *** | 48.3 | 30.7 | 17.6(0.59) *** |
ATU | 36.9 | 35.8 | 1.1(0.65) | 37.2 | 34.9 | 2.3(0.56) *** | 52.9 | 52.0 | 0.9(0.69) | |
Crop diversification | ATT | 46.6 | 35.4 | 11.2(0.49) *** | 40.0 | 38.1 | 1.9(0.45) *** | 53.1 | 51.1 | 2.0(0.51) *** |
ATU | 37.4 | 38.2 | −0.8(1.94) | 40.4 | 32.9 | 7.5(0.93) *** | 52.4 | 43.1 | 9.3(1.91) *** | |
Used improved seeds | ATT | 38.7 | 37.8 | 0.9(0.51) | 41.3 | 40.5 | 0.8(0.49) | 53.1 | 51.9 | 1.2(0.49) * |
ATU | 42.1 | 32.6 | 9.5(0.56) *** | 45.0 | 35.1 | 9.9(0.56) *** | 57.7 | 47.9 | 9.8(0.58) *** | |
Land management | ATT | 36.5 | 23.9 | 12.6(0.63) *** | 37.6 | 25.1 | 12.5(0.67) *** | 51.7 | 40.3 | 11.4(0.67) *** |
ATU | 38.5 | 33.3 | 5.2(0.96) *** | 35.7 | 33.3 | 2.4(0.82) ** | 49.9 | 46.5 | 3.4(0.86) *** | |
Irrigation | ATT | 37.9 | 17.6 | 20.3(0.94) *** | 39.9 | 22.5 | 17.4(0.46) *** | 52.9 | 33.9 | 19.0(0.62) *** |
ATU | 33.5 | 35.4 | −1.9(1.01) | 31.5 | 32.7 | −1.2(0.57) * | 47.8 | 48.2 | −0.4(0.61) | |
Non-farm works | ATT | 34.7 | 32.4 | 2.3(0.69) *** | 35.4 | 30.6 | 4.8(0.67) *** | 51.9 | 49.4 | 2.5(0.74) *** |
ATU | 25.8 | 36.4 | −10.6(0.60) *** | 29.9 | 37.6 | −7.7(0.55) *** | 38.9 | 48.5 | −9.6(0.58) *** | |
Migration | ATT | 36.7 | 12.7 | 24.0(0.67) *** | 36.3 | 13.6 | 22.7(0.58) *** | 52.1 | 23.9 | 28.2(1.19) *** |
ATU | 30.1 | 35.5 | −5.4(0.64) *** | 30.8 | 36.7 | −5.9(0.56) *** | 43.9 | 50.0 | −6.1(0.95) *** | |
>4 strategies | ATT | 37.4 | 34.5 | 2.9(0.48) *** | 40.1 | 36.3 | 3.8(0.43) *** | 52.5 | 49.3 | 3.2(0.53) *** |
ATU | 38.8 | 34.4 | 4.4(0.65) *** | 39.4 | 33.9 | 5.5(0.54) *** | 53.1 | 48.7 | 4.4(0.65) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia. Sustainability 2021, 13, 6790. https://doi.org/10.3390/su13126790
Etana D, Snelder DJRM, van Wesenbeeck CFA, de Cock Buning T. The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia. Sustainability. 2021; 13(12):6790. https://doi.org/10.3390/su13126790
Chicago/Turabian StyleEtana, Dula, Denyse J. R. M. Snelder, Cornelia F. A. van Wesenbeeck, and Tjard de Cock Buning. 2021. "The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia" Sustainability 13, no. 12: 6790. https://doi.org/10.3390/su13126790
APA StyleEtana, D., Snelder, D. J. R. M., van Wesenbeeck, C. F. A., & de Cock Buning, T. (2021). The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia. Sustainability, 13(12), 6790. https://doi.org/10.3390/su13126790