Benchmark of the Trends of Spatial Inequality in World Megaregions
Abstract
:1. Introduction
2. Background and Related Studies
2.1. Background on Megaregion Study
2.2. Studies Concerning SI in General
2.3. Studies on HSR and SI
3. Methods
3.1. Study Design and Data Sources
3.2. Measures of Spatial Inequality
Accessibility
4. Study Results
4.1. Inequality in 37 Megaregions
4.2. Polycentricity of Megaregions
4.3. HSR Impact on Regional Inequality
4.4. SI Changes Measured by Accessibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Folmer, H.; Oosterhaven, J. Spatial Inequalities and Regional Development: A Framework. Spat. Inequal. Reg. Dev. 1979, 1–19. [Google Scholar] [CrossRef]
- Kilroy, A. Intra-Urban Spatial Inequalities: Cities as ‘Urban Regions.’ Urban Regions 27. Available online: https://openknowledge.worldbank.org/handle/10986/9144 (accessed on 20 May 2021).
- Kim, S. Spatial Inequality and Econmoic Development: Theories, Facts and Policies; World Bank: Washington, DC, USA, 2008; Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/803661468330972127/Spatial-inequality-and-economic-development-theories-facts-and-policies (accessed on 20 May 2021).
- The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2020; p. 63.
- Dollars, D. Globalization, Inequality, and Poverty since 1980; Development Research Group, World Bank: Washington, DC, USA, 2001. [Google Scholar]
- Kemeny, T.; Storper, M. Superstar Cities and Left-Behind Places: Disruptive Innovation, Labor Demand, and Interregional Inequality. Int. Inequal. Inst. 2020, 41, 38. [Google Scholar]
- Wei, Y.D. Spatiality of Regional Inequality. Appl. Geogr. 2015, 61, 1–10. [Google Scholar] [CrossRef]
- Kanbur, R.; Venables, A.J. Spatial Inequality and Development; OUP Oxford: Oxford, UK, 2005; ISBN 978-0-19-153530-7. [Google Scholar]
- Carbonell, A.; Yaro, B. Carbonell: American Spatial Development and the New Megalopolis. Land Lines 2005, 17, 1–4. [Google Scholar]
- Regional Plan Association America 2050: A Prospectus. New York. 2006. Available online: https://rpa.org/work/reports/america-2050-prospectus (accessed on 20 May 2021).
- China Is Trying to Turn Itself intno a Country of 19 Super-Regions. The Economist. 23 June 2018. Available online: https://www.economist.com/china/2018/06/23/china-is-trying-to-turn-itself-into-a-country-of-19-super-regions (accessed on 20 May 2021).
- Zhou, Y.; Liu, Y.; Chen, X.; Xu, M.; Sun, S. Rising of Super City Clusters; The Boston Consulting Group: Boston, MA, USA, 2018; Volume 28, Available online: https://www.bcg.com/en-us/rising-of-super-city-clusters-envision-an-urban-future-for-all (accessed on 20 May 2021).
- Cavanaugh, A.; Breau, S. Locating Geographies of Inequality: Publication Trends across OECD Countries. Reg. Stud. 2018, 52, 1225–1236. [Google Scholar] [CrossRef]
- ESDP-European Spatial Development Perspective: Towards Balanced and Sustainable Development of the Territory of the European Union; Office for Official Publication of the European Communities: Luxembourg, 1999; ISBN 978-92-828-7658-9.
- China Mid/Long-Range Rail Network Plan 2016; National Development and Reform Commission: Beijing, China. 2016. Available online: https://www.gov.cn/xinwen/2016-07/20/5093165/files/1ebe946db2aa47248b799a1deed88144.pdf (accessed on 20 May 2021).
- Bradley-Depani, N.; Butcher, L.; Sandford, M. The Northern Powerhouse; House of Commons Library, UK Parliament: London, UK, 2016; p. 38. [Google Scholar]
- Dash Nelson, G.; Rae, A. An Economic Geography of the United States: From Commutes to Megaregions. PLoS ONE 2016, 11, e0166083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florida, R.; Gulden, T.; Mellander, C. The Rise of the Mega-Region. Camb. J. Reg. Econ. Soc. 2008, 1, 459–476. [Google Scholar] [CrossRef]
- Ross, C.L.; Woo, M. Identification and Assessment of Potential High-Speed Rail Routes from Megaregion Perspective. Transp. Res. Rec. 2012, 2307, 31–42. [Google Scholar] [CrossRef]
- Hall, P.G.; Pain, K. The Polycentric Metropolis: Learning from Mega-City Regions in Europe; Routledge: London, UK, 2006; ISBN 978-1-84407-329-0. [Google Scholar]
- Yin, M.; Bertolini, L.; Duan, J. The Effects of the High-Speed Railway on Urban Development: International Experience and Potential Implications for China. Prog. Plan. 2015, 98, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.D.; Li, H.; Yue, W. Urban Land Expansion and Regional Inequality in Transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- Fan, C.C.; Casetti, E. The Spatial and Temporal Dynamics of US Regional Income Inequality, 1950–1989. Ann. Reg. Sci. 1994, 28, 177–196. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Assoc. 1955, 45, 31. [Google Scholar]
- Williamson, J.G. Regional Inequality and the Process of National Development: A Description of the Patterns. Econ. Dev. Cult. Chang. 1965, 13, 1–84. [Google Scholar] [CrossRef]
- Rey, S.J.; Montouri, B.D. US Regional Income Convergence: A Spatial Econometric Perspective. Reg. Stud. 1999, 33, 143–156. [Google Scholar] [CrossRef]
- Benner, C.; Pastor, M. Moving On Up? Regions, Megaregions, and the Changing Geography of Social Equity Organizing. Urban Aff. Rev. 2011, 47, 315–348. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.; Ross, C.L.; Boston, T.D. Do Megaregions Produce Greater Regional Convergence or Divergence? Implications for Spatial Planning and Infrastructure Investment. J. Urban Plann. Dev. 2015, 141, 04014013. [Google Scholar] [CrossRef]
- Wei, Y.D. Regional Inequality in China. Prog. Hum. Geogr. 1999, 23, 49–59. [Google Scholar] [CrossRef]
- Ureña, J.M.; Menerault, P.; Garmendia, M. The High-Speed Rail Challenge for Big Intermediate Cities: A National, Regional and Local Perspective. Cities 2009, 26, 266–279. [Google Scholar] [CrossRef]
- Ortega, E.; López, E.; Monzón, A. Territorial Cohesion Impacts of High-Speed Rail at Different Planning Levels. J. Transp. Geogr. 2012, 24, 130–141. [Google Scholar] [CrossRef]
- Monzón, A.; Ortega, E.; López, E. Efficiency and Spatial Equity Impacts of High-Speed Rail Extensions in Urban Areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-L.; Hall, P. The Wider Spatial-Economic Impacts of High-Speed Trains: A Comparative Case Study of Manchester and Lille Sub-Regions. J. Transp. Geogr. 2012, 24, 89–110. [Google Scholar] [CrossRef]
- Gutikrez, J.; Gonziilez, R.; Gdmez, G. The European High-Speed Train Network. Predicted effects on accessibility patterns. J. Transp. Geogr. 1996, 4, 227e38. [Google Scholar]
- Vickerman, R.; Spiekermann, K.; Wegener, M. Accessibility and Economic Development in Europe. Reg. Stud. 1999, 33, 1–15. [Google Scholar] [CrossRef]
- Vickerman, R. Can High-Speed Rail Have a Transformative Effect on the Economy? Transp. Policy 2018, 62, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Haynes, K.E. Impact of High-Speed Rail on Regional Economic Disparity in China. J. Transp. Geogr. 2017, 65, 80–91. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M. High-Speed Rail Impacts on Travel Times, Accessibility, and Economic Productivity: A Benchmarking Analysis in City-Cluster Regions of China. J. Transp. Geogr. 2018, 73, 25–40. [Google Scholar] [CrossRef]
- Kim, H.; Sultana, S.; Weber, J. A Geographic Assessment of the Economic Development Impact of Korean High-Speed Rail Stations. Transp. Policy 2018, 66, 127–137. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, J.; Jin, F.; Dunford, M. Impacts on Accessibility of China’s Present and Future HSR Network. J. Transp. Geogr. 2014, 40, 123–132. [Google Scholar] [CrossRef]
- Zhu, P.; Yu, T.; Chen, Z. High-Speed Rail and Urban Decentralization in China. Transp. Res. Rec. 2015, 2475, 16–26. [Google Scholar] [CrossRef]
- Chen, C.-L.; Vickerman, R. Can Transport Infrastructure Change Regions’ Economic Fortunes? Some Evidence from Europe and China. Reg. Stud. 2017, 51, 144–160. [Google Scholar] [CrossRef]
- Statistics|Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/demo_r_pjanind3/default/table?lang=en (accessed on 23 May 2021).
- U.S. Census Bureau. Business Dynamics Statistics Datasets. Available online: https://www.census.gov/data/datasets/time-series/econ/bds/bds-datasets.html (accessed on 23 May 2021).
- BEA: Regional Economic Accounts: Download. Available online: https://apps.bea.gov/ (accessed on 24 May 2021).
- China Statistical Yearbook-2016. Available online: http://www.stats.gov.cn/tjsj/ndsj/2016/indexeh.htm (accessed on 31 May 2021).
- Jayet, H. Analyse Spatiale Quantitative: Une Introduction; Economica: Paris, France, 1993; ISBN 978-2-7178-2492-6. [Google Scholar]
- World Bank. Regional Economic Impact Analysis of High Speed Rail in China: Main Report; World Bank: Washington, DC, USA, 2014; Available online: https://openknowledge.worldbank.org/handle/10986/2204 (accessed on 4 June 2021).
- Zheng, S.; Kahn, M.E. China’s Bullet Trains Facilitate Market Integration and Mitigate the Cost of Megacity Growth. Proc. Natl. Acad. Sci. USA 2013, 110, E1248–E1253. [Google Scholar] [CrossRef] [Green Version]
- Rey, S.J.; Janikas, M.V. Regional Convergence, Inequality, and Space. J. Econ. Geogr. 2005, 5, 155–176. [Google Scholar] [CrossRef]
- Lessmann, C.; Seidel, A. Regional Inequality, Convergence, and Its Determinants—A View from Outer Space. Eur. Econ. Rev. 2017, 92, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.D.; Muro, M.; Whiton, J. The Case for Growth Centers: How to Spread Tech Innovation across America; Brookings: Washington, DC, USA, 2019; Available online: https://www.brookings.edu/research/growth-centers-how-to-spread-tech-innovation-across-america/ (accessed on 20 May 2021).
- Rosés, J.R.; Sanchis, M.T. A long-run perspective on French regional income inequality, 1860–2010. In The Economic Development of Europe’s Regions; Routledge: London, UK, 2018; ISBN 978-0-429-44978-9. [Google Scholar]
- McAvay, H.; Verdugo, G. Income Inequality and Segregation in the Paris Metro Area (1990–2015). In Urban Socio-Economic Segregation and Income Inequality; Springer: Cham, Switzerland, 2021; pp. 329–345, Open Access; Available online: https://www.researchgate.net/publication/350463067_Income_Inequality_and_Segregation_in_the_Paris_Metro_Area_1990-2015 (accessed on 20 May 2021).
Area km2 | Population (Million) | Number of County/NUTS3/City | Number of MSA/FUA/City | |
---|---|---|---|---|
U.S. Megaregions (11) | ||||
Cascadia | 93,024 | 7.9 | 26 | 9 |
Florida | 81,932 | 15.1 | 32 | 13 |
Front Range | 159,297 | 7.7 | 37 | 9 |
Great Lakes | 387,885 | 47.2 | 279 | 51 |
Gulf Coast | 132,218 | 6.6 | 59 | 15 |
Northeast | 190,550 | 55.2 | 177 | 45 |
Northern CA | 105,763 | 13.3 | 28 | 15 |
Piedmont Atlantic | 164,974 | 18.2 | 127 | 18 |
Southern CA | 160,265 | 24.4 | 10 | 7 |
Sun Corridor | 208,881 | 6.0 | 10 | 4 |
Texas Triangle | 153,357 | 17.4 | 77 | 11 |
European Mega-City Regions (9) | ||||
South East England | 29,184 | 19.0 | 37 | 27 |
The Randstad | 8757 | 8.6 | 23 | 15 |
Central Belgium | 16,000 | 7.8 | 42 | 9 |
RhineRuhr | 11,536 | 11.7 | 25 | 4 |
Rhine-Main | 8211 | 4.2 | 19 | 5 |
Northern Switzerland | 13,700 | 3.5 | 3 | 5 |
Paris Region | 43,019 | 15.7 | 23 | 18 |
Greater Dublin | 7814 | 1.6 | 3 | 1 |
Northern Powerhouse | 37,142 | 10.7 | 56 | 12 |
China City-Cluster Regions (19) | ||||
Capital Zone (Jing-jin-ji) | 182,320 | 70.2 | 10 | 10 |
Yangtz River Delta | 200,056 | 117.7 | 25 | 25 |
Pearl River Delta | 109,170 | 43.0 | 13 | 13 |
Shandong Gulf | 73,192 | 39.7 | 8 | 8 |
Haixia West | 225,471 | 85.0 | 17 | 17 |
Shanxi Middle | 69,509 | 14.0 | 4 | 4 |
Zhongyuan | 99,690 | 68.4 | 13 | 13 |
Mid-Yangtze River | 349,829 | 121.2 | 28 | 28 |
Guanzhong | 72,958 | 23.9 | 5 | 5 |
Lanxi | 73,269 | 9.9 | 4 | 4 |
Hubaoeyu | 174,806 | 7.7 | 3 | 3 |
North Gulf | 98,705 | 36.0 | 9 | 9 |
Chengyu | 238,600 | 98.0 | 14 | 14 |
Qianzhou | 74,924 | 13.3 | 3 | 3 |
Ningxia | 13,156 | 2.6 | 3 | 3 |
Dianzhong | 64,852 | 14.3 | 3 | 3 |
Tianshan North | 190,612 | 2.2 | 2 | 2 |
Hachang | 322,559 | 45.2 | 10 | 10 |
Liao Middle south | 126,078 | 38.5 | 13 | 13 |
Theil (GRP) | |||
---|---|---|---|
2006 | 2016 | Change | |
U.S. Megaregions | |||
Cascadia | 0.076 | 0.099 | 30% |
Florida | 0.030 | 0.039 | 32% |
Front Range | 0.059 | 0.057 | −4% |
Great Lakes | 0.051 | 0.051 | −1% |
Gulf Coast | 0.143 | 0.084 | −41% |
Northeast | 0.197 | 0.224 | 14% |
Northern CA | 0.071 | 0.136 | 91% |
Piedmont Atlantic | 0.139 | 0.132 | −5% |
Sourthern CA | 0.019 | 0.026 | 34% |
Sun Corridor | 0.029 | 0.031 | 7% |
Texas Triangle | 0.072 | 0.075 | 4% |
Average | 0.081 | 0.087 | 15% |
European Mega-City Regions | |||
Central Belgium | 0.064 | 0.058 | −9% |
NorthernPH * | 0.034 | 0.037 | 8% |
Paris Region | − | 0.159 | − |
Rhine-Main | 0.133 | 0.103 | −23% |
RhineRuhr | 0.080 | 0.067 | −17% |
South East Eng * | 0.016 | 0.014 | −11% |
The Randstad | 0.053 | 0.047 | −9% |
Average | 0.063 | 0.069 | −10% |
China City-Clusters Regions | |||
Beibu Gulf | 0.043 | 0.065 | 50% |
Capital Zone | 0.199 | 0.236 | 18% |
Central of Dian | 0.090 | 0.104 | 16% |
Central Plains | 0.140 | 0.165 | 18% |
Central Qian | 0.137 | 0.130 | −5% |
Central Shanxi | 0.149 | 0.145 | −3% |
Central South of Liao | 0.113 | 0.149 | 32% |
Chengyu | 0.110 | 0.097 | −12% |
Guanzhong Plains | 0.109 | 0.079 | −28% |
Hachang | 0.166 | 0.083 | −50% |
Hubaoeyu | 0.157 | 0.066 | −58% |
Lanxi | 0.197 | 0.211 | 7% |
Mid-Yangtze River | 0.146 | 0.182 | 24% |
Ningxia | 0.027 | 0.021 | −22% |
North Foot of Tianshan | 0.237 | 0.045 | −81% |
Pearl River Delta | 0.539 | 0.407 | −24% |
Shandong Peninsula | 0.071 | 0.050 | −29% |
West Shore | 0.165 | 0.139 | −16% |
Yangzte Delta River | 0.183 | 0.132 | −28% |
Average | 0.157 | 0.132 | −10% |
Rank-Size Coefficient | |||
---|---|---|---|
2006 | 2016 | Change | |
U.S. Megaregions | |||
Southern CA | −1.525 | −1.525 | 0.0% |
Northern CA | −1.047 | −1.059 | 1.1% |
Piedmont Atlantic | −1.400 | −1.427 | 1.9% |
Great Lakes | −1.318 | −1.325 | 0.5% |
Sun Corridor | −2.489 | −2.524 | 1.4% |
Front Range | −1.400 | −1.409 | 0.6% |
Gulf Coast | −0.983 | −0.992 | 0.9% |
Texas Triangle | −1.735 | −1.751 | 0.9% |
Florida | −1.034 | −1.036 | 0.2% |
Cascadia | −1.518 | −1.534 | 1.1% |
Northeast | −1.187 | −1.187 | 0.0% |
Average | −1.421 | −1.434 | 0.9% |
Standard deviation | 0.481 | 0.492 | 0.021 |
European Mega-City Regions * | |||
Central Belgium | −1.421 | −1.219 | −14% |
Northern Powerhouse | −1.201 | −1.201 | 0% |
Northern Switzerland | −1.420 | −1.474 | 4% |
Rhine-Main | −1.143 | −1.152 | 1% |
RhineRuhr | −1.192 | −1.185 | −1% |
Paris Region | −1.455 | −1.485 | 2% |
The Randstad | −1.241 | −1.334 | −27% |
South East England | −1.651 | −1.213 | −14% |
Average | −1.341 | −1.283 | −3% |
Standard deviation | 0.174 | 0.132 | 0.113 |
China City-Cluster Regions | |||
Beibu Gulf | −0.836 | −0.984 | 17.7% |
Capital Zone (Jing-jin-ji) | −1.500 | −1.468 | −2.1% |
Central of Dian | |||
Central Plains | −0.748 | −1.317 | 76.1% |
Central Qian | −0.915 | −0.538 | −41.2% |
Central Shanxi | −1.601 | −1.590 | −0.7% |
Central South of Liao | −0.839 | −0.869 | 3.6% |
Chengyu | −1.101 | −1.087 | −1.3% |
Guanzhong Plains | −1.301 | −1.394 | 7.1% |
Hachang | −1.051 | −1.130 | 7.5% |
Hubaoeyu | −0.898 | −0.830 | −7.6% |
Lanxi | −1.157 | −1.132 | −2.2% |
Mid-Yangtze River | −0.735 | −0.733 | −0.3% |
Ningxia | −0.680 | −1.361 | 100.1% |
North Foot of Tianshan | −2.579 | −3.127 | 21.2% |
Pearl River Delta | −1.173 | −1.091 | −7.0% |
Shandong Peninsula | −0.805 | −0.730 | −9.3% |
West Shore | −0.987 | −0.862 | −12.7% |
Yangtz River Delta | −0.945 | −0.929 | −1.7% |
Average | −0.761 | −0.811 | 6.6% |
Standard deviation | 0.493 | 0.603 | 0.220 |
No HSR | With HSR | Change | No HSR | With HSR | Change | ||
---|---|---|---|---|---|---|---|
Mid-Yangtze River | Texas Triangle | ||||||
Xiangyang | 31,444 | 45,792 | 45.6% | Dallas | 38,064 | 67,551 | 77.5% |
Jingmen | 42,712 | 59,904 | 40.3% | Fort Worth | 53,648 | 85,056 | 58.5% |
Jingzhou | 47,102 | 76,705 | 62.8% | Waxahachie | 37,357 | 87,765 | 134.9% |
Xiaogan | 55,461 | 112,368 | 102.6% | Hillsboro | 64,743 | 120,924 | 86.8% |
Wuhan | 46,855 | 102,032 | 117.8% | Waco | 51,871 | 96,300 | 85.7% |
Yichang | 34,887 | 61,990 | 77.7% | Temple | 50,377 | 99,713 | 97.9% |
Ezhou | 111,020 | 162,185 | 46.1% | Taylor | 51,311 | 112,122 | 118.5% |
Xianming | 123,351 | 147,671 | 19.7% | Austin | 39,207 | 72,675 | 85.4% |
Huanggang | 68,662 | 107,103 | 56.0% | San Antonio | 28,588 | 50,433 | 76.4% |
Huangshi | 55,332 | 115,943 | 109.5% | College Station | 47,260 | 63,301 | 33.9% |
Yueyang | 51,160 | 122,598 | 139.6% | Houston | 21,069 | 38,611 | 83.3% |
Changde | 32,303 | 55,480 | 71.8% | Northern Powerhouse | |||
Changsha | 47,612 | 124,271 | 161.0% | Manchester | 25,401 | 34,356 | 35.3% |
Zhuzhou | 53,766 | 150,023 | 179.0% | Liverpool | 20,709 | 24,597 | 18.8% |
Pingxiang | 119,079 | 130,073 | 9.2% | Leeds | 23,942 | 36,318 | 51.7% |
Hengyang | 106,015 | 90,119 | −15.0% | Sheffield | 25,211 | 32,061 | 27.2% |
Xiangtan | 46,408 | 92,030 | 98.3% | Hull | 18,897 | 20,387 | 7.9% |
Yiyang | 76,851 | 72,118 | −6.2% | Newcastle | 12,469 | 14,574 | 16.9% |
Yichun | 121,572 | 129,553 | 6.6% | ||||
Nanchang | 78,209 | 92,649 | 18.5% | ||||
Xinyu | 61,995 | 102,597 | 65.5% | ||||
Fuzhou | 36,782 | 77,631 | 111.1% | ||||
Loudi | 60,229 | 54,239 | −9.9% | ||||
Jiujiang | 163,985 | 61,924 | −62.2% | ||||
Yingtan | 75,581 | 64,861 | −14.2% | ||||
Shangrao | 46,066 | 44,178 | −4.1% | ||||
Jian | 39,873 | 41,413 | 3.9% | ||||
Jingdezhen | 19,091 | 33,040 | 73.1% |
No HSR | With HSR | Change (%) | |
---|---|---|---|
Texas Triangle | 0.047 | 0.055 | 17% |
The Northern Powerhouse | 0.018 | 0.033 | 83% |
Mid-Yangtze River | 0.106 | 0.072 | −32% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, M.; Liu, L. Benchmark of the Trends of Spatial Inequality in World Megaregions. Sustainability 2021, 13, 6456. https://doi.org/10.3390/su13116456
Liu Z, Zhang M, Liu L. Benchmark of the Trends of Spatial Inequality in World Megaregions. Sustainability. 2021; 13(11):6456. https://doi.org/10.3390/su13116456
Chicago/Turabian StyleLiu, Ziqi, Ming Zhang, and Liwen Liu. 2021. "Benchmark of the Trends of Spatial Inequality in World Megaregions" Sustainability 13, no. 11: 6456. https://doi.org/10.3390/su13116456
APA StyleLiu, Z., Zhang, M., & Liu, L. (2021). Benchmark of the Trends of Spatial Inequality in World Megaregions. Sustainability, 13(11), 6456. https://doi.org/10.3390/su13116456