A Study on the Heat and Stress Evaluation of Reinforced Concrete through High-Frequency Induction Heating System Using Finite Element Techniques
Abstract
:1. Introduction
2. Experimental Process and Methodology
2.1. Overview of Analysis Programme Theory and Processing
- Substance composition formula:
- b
- The fundamental equations of the A-ϕ method are as follows:
2.2. Analytical Model
2.2.1. Two-Dimensional (2D) Models
2.2.2. Three-Dimensional (3D) Models
3. Results and Discussion
3.1. Characteristics of the Temperature of Reinforcing Steel Generated in the Actual Environment
3.1.1. Temperature Characteristics of a Single Reinforcement
- (A)
- Results of 2D analysis
- (B)
- Results of 3D analysis
3.1.2. Temperature Characteristics of Cross-Bar
3.2. Reinforced Concrete Temperature Characteristics Generated in Actual Environment
3.2.1. Temperature Characteristics of Single Reinforced Concrete
3.2.2. Temperature Characteristics of Cross-Reinforced Concrete
3.3. Actual Temperature Characteristics of Reinforced Concrete Members
3.3.1. Temperature Characteristics of Cross-Reinforced Concrete (60 mm·10 KW Cover Thickness)
3.3.2. Actual Part Temperature Characteristics (Beam·5 KW)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yashiro, S.; Takatsubo, J.; Toyama, N. An NDT technique for composite structures using visualized Lamb-wave propagation. Compos. Sci. Technol. 2007, 67, 3202–3208. [Google Scholar] [CrossRef]
- Raisutis, R.; Kazys, R.; Zukauskas, E.; Mazeika, L.; Vladišauskas, A. Application of ultrasonic guided waves for non-destructive testing of defective CFRP rods with multiple delaminations. NDT E Int. 2010, 43, 416–424. [Google Scholar] [CrossRef]
- Li, P.; Xie, S.; Wang, K.; Zhao, Y.; Zhang, L.; Chen, Z.; Uchimoto, T.; Takagi, T. A novel frequency-band-selecting pulsed eddy current testing method for the detection of a certain depth range of defects. NDT E Int. 2019, 107, 102154. [Google Scholar] [CrossRef]
- Cheng, J.; Qiu, J.; Xu, X.; Ji, H.; Takagi, T.; Uchimoto, T. Research advances in eddy current testing for maintenance of carbon fiber reinforced plastic composites. Int. J. Appl. Electromagn. Mech. 2016, 51, 261–284. [Google Scholar] [CrossRef]
- Goidescu, C.; Welemane, H.; Garnier, C.; Fazzini, M.; Brault, R.; Péronnet, E.; Mistou, S. Damage investigation in CFRP com-posites using full-field measurement techniques: Combination of digital image stereo-correlation, infrared thermography and X-ray tomography. Compos. B Eng. 2013, 48, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Tian, M.; Xiao, P.; Pei, C.; Chen, Z.; Takagi, T. A hybrid nondestructive testing method of pulsed eddy current testing and electromagnetic acoustic transducer techniques for simultaneous surface and volumetric defects inspection. NDT E Int. 2017, 86, 153–163. [Google Scholar] [CrossRef]
- McCann, D.; Forde, M. Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 2001, 34, 71–84. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhattacharjee, B. Performance evaluation of rebar in chloride contaminated concrete by corrosion rate. Constr. Build. Mater. 2009, 23, 2346–2356. [Google Scholar] [CrossRef]
- Parthiban, T.; Ravi, R.; Parthiban, G. Potential monitoring system for corrosion of steel in concrete. Adv. Eng. Softw. 2006, 37, 375–381. [Google Scholar] [CrossRef]
- Pour-Ghaz, M.; Isgor, O.B.; Ghods, P. Quantitative interpretation of half-cell potential measurements in concrete 8 Advances in Civil Engineering structures. J. Mater. Civ. Eng. 2014, 21, 467–475. [Google Scholar] [CrossRef]
- Hornbostel, K.; Larsen, C.K.; Geiker, M.R. Relationship between concrete resistivity and corrosion rate—A literature review. Cem. Concr. Compos. 2013, 39, 60–72. [Google Scholar] [CrossRef]
- Takahashi, Y.; Matsubara, E.; Suzuki, S.; Okamoto, Y.; Komatsu, T.; Konishi, H.; Mizuki, J.; Waseda, Y. In-situ x-ray dif-fraction of corrosion products formed on iron surfaces. Mater. Trans. 2005, 46, 637–662. [Google Scholar] [CrossRef] [Green Version]
- Yeih, W.; Huang, R. Detection of the corrosion damage in reinforced concrete members by ultrasonic testing. Cem. Concr. Res. 1998, 28, 1071–1083. [Google Scholar] [CrossRef]
- Ahmed, R.; Rifat, A.A.; Yetisen, A.K.; Salem, M.S.; Yun, S.-H.; Butt, H. Optical microring resonator based corrosion sensing. RSC Adv. 2016, 6, 56127–56133. [Google Scholar] [CrossRef]
- Vrana, J.; Goldammer, M.; Bailey, K.; Rothenfusser, M.; Arnold, W.; Thompson, D.O.; Chimenti, D.E. Induction and conduction thermography: Optimizing the electromagnetic excitation towards application. AIP Conf. Proc. 2009, 1096, 518–525. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, L.; Zhao, R.; Zhou, J.; Yang, M.; Zhao, Y. A new judging criterion for corrosion testing of reinforced concrete based on self-magnetic flux leakage. Int. J. Appl. Electromagn. Mech. 2017, 54, 123–130. [Google Scholar] [CrossRef]
- González, J.; Cobo, A.; González, M.; Feliu, S. On-site determination of corrosion rate in reinforced concrete structures by use of galvanostatic pulses. Corros. Sci. 2001, 43, 611–625. [Google Scholar] [CrossRef]
- Abidin, I.Z.; Tian, G.Y.; Wilson, J.; Yang, S.; Almond, D. Quantitative evaluation of angular defects by pulsed eddy current thermography. NDT E Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Clark, M.; McCann, D.; Forde, M. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT E Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Clark, M.; McCann, D.; Forde, M. Infrared thermographic investigation of railway track ballast. NDT E Int. 2002, 35, 83–94. [Google Scholar] [CrossRef]
- Defer, D.; Shen, J.; Lassue, S.; Duthoit, B. Non-destructive testing of a building wall by studying natural thermal signals. Energy Build. 2002, 34, 63–69. [Google Scholar] [CrossRef]
- Engelbert, P.; Hotchkiss, R.; Kelly, W. Integrated remote sensing and geophysical techniques for locating canal seepage in Nebraska. J. Appl. Geophys. 1997, 38, 143–154. [Google Scholar] [CrossRef]
- Sakagami, T.; Kubo, S. Applications of pulse heating thermography and lock-in thermography to quantitative nonde-structive evaluations. Infrared Phys. Technol. 2002, 43, 211–218. [Google Scholar] [CrossRef]
- Baek, S.; Xue, W.; Feng, M.Q.; Kwon, S. Non-destructive corrosion detection in RC through integrated heat induction and IR thermography. J. Nondestr. Eval. 2012, 31, 181–190. [Google Scholar] [CrossRef]
- Weekes, B.; Almond, D.P.; Cawley, P.; Barden, T. Eddy-current induced thermography—Probability of detection study of small fatigue cracks in steel, titanium and nickel-based superalloy. NDT E Int. 2012, 49, 47–56. [Google Scholar] [CrossRef]
- He, Y.; Pan, M.; Tian, G.; Chen, D.; Tang, Y.; Zhang, H. Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation. Appl. Phys. Lett. 2013, 103, 144108. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, D.; Zhou, J.; He, J.; Xin, J.; Cao, Y. Corrosion detection of bridge reinforced concrete with induction heating and infrared thermography. Int. J. Robot. Autom. 2018, 33, 379–385. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P. Electrodynamics of Continuous Media; Pergamon Press: Oxford, UK, 1960. [Google Scholar]
- Aguiar, P.M.; Jacquinot, J.-F.; Sakellariou, D. Experimental and numerical examination of eddy (Foucault) currents in rotating micro-coils: Generation of heat and its impact on sample temperature. J. Magn. Reson. 2009, 200, 6–14. [Google Scholar] [CrossRef]
- Cheng, J.; Roy, R.; Agrawal, D. Radically different effects on materials by separated microwave electric and magnetic fields. Mater. Res. Innov. 2002, 5, 170–177. [Google Scholar] [CrossRef]
- Cherradi, A.; Desgardin, G.; Provost, J.; Raveau, B. Electric & Magnetic Field Contributions to the Microwave Sintering of Ceramics Elelctroceramics IV; Wasner, R., Hoffman, S., Bonnenberg, D., Hoffmann, C., Eds.; RWTN: Aachen, Germany, 1994; Volume 2, pp. 1219–1224. [Google Scholar]
- Cao, Z.; Wang, Z.; Yoshikawa, N.; Taniguchi, S. Microwave heating origination and rapid crystallization of PZT thin films in separated H field. J. Phys. D Appl. Phys. 2008, 41, 092003. [Google Scholar] [CrossRef]
- Jin, R.; Chen, Q. Investigation of Concrete Recycling in the U.S. Construction Industry. Procedia Eng. 2015, 118, 894–901. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Rodríguez, G.; Del Bosque, I.F.S.; Asensio, E.; Rojas, M.I.S.D.; Medina, C. Construction and demolition waste applications and maximum daily output in Spanish recycling plants. Waste Manag. Res. 2020, 38, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Chen, Z.; Takagi, T.; Uchimoto, T. Quantitative non-destructive evaluation of wall thinning defect in double-layer pipe of nuclear power plants using pulsed ECT method. NDT E Int. 2015, 75, 87–95. [Google Scholar] [CrossRef]
- Matvieieva, N.; Schulze, M.; Mizukami, K.; Kharabet, I.; Heuer, H. Determination of indication depths at high frequency eddy current testing of CFRP. In Proceedings of the 10th International Symposium on NDT in Aerospace, Dresden, Germany, 24–26 October 2018; pp. 1–8. [Google Scholar]
- Mottl, Z. The quantitative relations between true and standard depth of penetration for air-cored probe coils in eddy current testing. NDT Int. 1990, 23, 11–18. [Google Scholar] [CrossRef]
- Mook, G.; Lange, R.; Koeser, O. Non-destructive characterization of carbon-fibre-reinforced plastics by means of eddy currents. Compos. Sci. Technol. 2001, 61, 865–873. [Google Scholar] [CrossRef]
- Cheng, J.; Ji, H.; Qiu, J.; Takagi, T.; Uchimoto, T.; Hu, N. Role of interlaminar interface on bulk conductivity and electrical an-isotropy of CFRP laminates measured by eddy current method. NDT E Int. 2014, 68, 1–12. [Google Scholar] [CrossRef]
- Heuer, H.; Schulze, M.; Pooch, M.; Gäbler, S.; Nocke, A.; Bardl, G.; Cherif, C.; Klein, M.; Kupke, R.; Vetter, R.; et al. Review on quality assurance along the CFRP value chain—Non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques. Compos. Part B Eng. 2015, 77, 494–501. [Google Scholar] [CrossRef]
- Schulze, M.H.; Heuer, H.; Küttner, M.; Meyendorf, N. High-resolution eddy current sensor system for quality assessment of carbon fiber materials. Microsyst. Technol. 2010, 16, 791–797. [Google Scholar] [CrossRef]
- Todoroki, A. Skin effect of alternating electric current on laminated CFRP. Adv. Compos. Mater. 2012, 21, 477–489. [Google Scholar] [CrossRef]
- Jiao, S.; Li, J.; Du, F.; Sun, L.; Zeng, Z. Characteristics of Eddy Current Distribution in Carbon Fiber Reinforced Polymer. J. Sensors 2016, 2016, 4292134. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, C.J. Comparison of Alternative Formulations of 3-Dimensional Magnetic-Field and Eddy-Current Problems at Power Frequenies. Proc. IEE 1977, 124, 1026–1034. [Google Scholar]
- Carpenter, C. Finite-element network models and their application to eddy-current problems. Proc. Inst. Electr. Eng. 1975, 122, 455. [Google Scholar] [CrossRef]
- Chari, M.K. Finite-Element Solution of the Eddy-Current Problem in Magnetic Structures. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 62–72. [Google Scholar] [CrossRef]
- Salon, S.J.; Schneider, J.M. The Application of a Finite Element Formulation of the Electric Vector Potential to Eddy Current Losses; IEEE Paper A79-545-5; IEEE: New York, NY, USA, 1979. [Google Scholar]
- Sato, T.; Sarto, S. Solution of Magnetic Field, Eddy Current and Circulating Current Problems, Taking Magnetic Saturation and Effect of Eddy Current and Circulating Current Paths into Account. In IEEE Transactions on Power Apparatus and Systems; IEEE Paper A-77-168-8; IEEE: New York, NY, USA, 1977. [Google Scholar]
- Rodger, D. Finite-element method for calculating power frequency 3-dimensional electromagnetic field distributions. IEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. Rev. 1983, 130, 233. [Google Scholar] [CrossRef]
- Ma, Q.S.; Shao, K.R.; Li, L.R. Axisymmetric Eddy Current Field Computations by a Hybrid Finite-Series Method. IEEE Trans Magn. 1997, 33, 1338–1341. [Google Scholar] [CrossRef]
Items | Electrostatic Field Analysis | Magnetostatic Analysis | Heat Conduction Analysis |
---|---|---|---|
φ | electric potential φ | magnetic potential Ω | Temperature T |
b | electric flux density D | magnetic beam density B | heat flux q |
h | electric field strength E | intensity of magnetic field H | temperature matching |
[k] | dielectric constant [ε] | Permeability [μ] | thermal conductivity [k] |
Q | charge density ρ | - | calorific value Q |
C | - | - | heat capacity C |
b0 | Polarisation P | Magnetisation μ0 M | - |
h0 | external electric field E0 | T0 | - |
Coil Current A(Area) * kHz | Electrical Conductivity of Reinforcing Bars (S/m) | Heat Transfer Coefficient (W/mk) | Heat Capacity (W/m3k) | Heat Transfer (W/m2k) | Concrete |
---|---|---|---|---|---|
530 × 120 | σ = 1 × 107 | k = 4.3 × 101 | c = 3.4 × 106 | λ = 100 | σ = 0, k = 1.2, C = 2.16 × 103 |
Physical Property Value | Current Value [A] | Frequency [Hz] | Permeability | Electrical Conductivity |
---|---|---|---|---|
air | 530 (effective value) | 1.2 × 105 | 1.25664 × 10−6 | 0.0 |
reinforcement | 5.02656 × 10−4 | 1.3 × 106 | ||
Concrete | 1.25664 × 10−6 | 0.0 |
Physical Property Value | Heat Transfer Coefficient | Thermal Conductivity | Heat Capacity |
---|---|---|---|
air | 100 | 0.0241 | 1.301 × 103 |
reinforcement | 45.1 | 3.61 × 106 | |
Concrete | 1.6 | 1.9 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, M.-k.; Lee, C. A Study on the Heat and Stress Evaluation of Reinforced Concrete through High-Frequency Induction Heating System Using Finite Element Techniques. Sustainability 2021, 13, 6061. https://doi.org/10.3390/su13116061
Lim M-k, Lee C. A Study on the Heat and Stress Evaluation of Reinforced Concrete through High-Frequency Induction Heating System Using Finite Element Techniques. Sustainability. 2021; 13(11):6061. https://doi.org/10.3390/su13116061
Chicago/Turabian StyleLim, Myung-kwan, and Changhee Lee. 2021. "A Study on the Heat and Stress Evaluation of Reinforced Concrete through High-Frequency Induction Heating System Using Finite Element Techniques" Sustainability 13, no. 11: 6061. https://doi.org/10.3390/su13116061
APA StyleLim, M.-k., & Lee, C. (2021). A Study on the Heat and Stress Evaluation of Reinforced Concrete through High-Frequency Induction Heating System Using Finite Element Techniques. Sustainability, 13(11), 6061. https://doi.org/10.3390/su13116061