Modeling Alternative Approaches to the Biodiversity Offsetting of Urban Expansion in the Grenoble Area (France): What Is the Role of Spatial Scales in ‘No Net Loss’ of Wetland Area and Function?
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Case Study and General Principle
- Step 3—Modeling the offsetting response obtained: selecting in map 2 the wetland area required to offset the impacts identified in map 1, using four different biodiversity offsetting models.
2.2. Calculating the Theoretical Ecological Score for Wetlands in This Study
2.3. Three steps to Model Biodiversity Offsetting at the Landscape Scale
2.3.1. Step 1: Identifying the Offsetting Need, Map of the Impacted Wetlands
2.3.2. Step 2: Identifying Potential Offsetting Capacity, Map of the Eligible Wetlands
2.3.3. Step 3: Identifying the Response to the Offset Need, Allocation Rules for Biodiversity Offsets
- Implementation models:
- ○
- an area-based method whereby a coefficient is applied to the impacted area to determine offset size, and
- ○
- a method where losses and gains of ecological function are calculated and offsets sized so as to generate enough gains to achieve functional NNL.
- Ecological equivalence methods:
- ○
- case-by-case permittee-led compensation where each developer compensates its impacts, resulting in many restored wetlands of various sizes distributed across available land, and
- ○
- an aggregated approach where larger sets of adjacent parcels of land are used to compensate for several projects at once, generating larger wetland units.
2.4. Monitored Indicators
- Area: ratio of offset area to impacted area;
- Ecological score: ratio of the restored ecological score (biodiversity offsets) to the impacted ecological score;
- Transactions: number of selected polygons that could be proxies for the number of transactions required to acquire or lease the offsetting land, and to control and monitor for regulators;
- Area for reaching NNL: area (in hectares) where 100% of the ecological score (offsetting need) is reached for the first time (for the prospective scenario only).
2.5. Supplementary Sensitivity Analyses for the Three Automated Scenarios
3. Results
3.1. Offsetting Need and Offsetting Response Capacity (Steps 1 and 2)
3.2. Results of the Modeling of Wetland Offsetting Scenarios (Step 3)
3.3. Results of the Supplementary Sensitivity Analyses
3.3.1. Effect of Prioritizing Wetlands Located in Ecological Corridors
3.3.2. Effect of Removing Parcels with No Grassland from the Possible Offsetting Parcels
4. Discussion
4.1. Lessons Learned Regarding the Performance of Offsetting Approaches
4.2. Cost-Effectiveness Implications
4.3. Wetland Condition Scoring and Its Limitations
4.4. Practical Applications: Assessing a Region’s Development Carrying Capacity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ermgassen, Z.S.O.; Baker, J.; Griffiths, R.A.; Strange, N.; Struebig, M.J.; Bull, J.W. The ecological outcomes of biodiversity offsets under “no net loss” policies: A global review. Conserv. Lett. 2019, 12, e12664. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.W.; Lloyd, S.P.; Strange, N. Implementation gap between the theory and practice of biodiversity offset multipliers. Conserv. Lett. 2017, 10, 656–669. [Google Scholar] [CrossRef]
- Wende, W.; Tucker, G.; Quétier, F.; Rayment, M.; Darbi, M. (Eds.) Biodiversity Offsets—European Perspectives on No Net Loss of Biodiversity and Ecosystem Services; Springer: Cham, Germany, 2018; ISBN 9783319725796. [Google Scholar]
- Bas, A.; Imbert, I.; Clermont, S.; Reinert, M.E.; Calvet, C.; Vaissière, A.C. Approches anticipées et planifiées de la compensation écologique en Allemagne: Vers un retour d’expérience pour la France? Sci. Eaux Territ. 2020, 31, 44–49. [Google Scholar]
- Schoukens, H. Habitat Restoration Measures as Facilitators for Economic Development within the Context of the EU Habitats Directive: Balancing No Net Loss with the Preventive Approach? J. Environ. Law 2017, 29, 47–73. [Google Scholar] [CrossRef]
- Weissgerber, M.; Roturier, S.; Julliard, R.; Guillet, F. Biodiversity offsetting: Certainty of the net loss but uncertainty of the net gain. Biol. Conserv. 2019, 237, 200–208. [Google Scholar] [CrossRef]
- Tucker, G.M.; Quétier, F.; Wende, W. Guidance on Achieving No Net Loss or Net Gain of Biodiversity and Ecosystem Services; Report to the European Commission; DG Environnement on Contract ENV.B.2/SER/2016/0018; IEEP: Brussels, Belgium, 2020. [Google Scholar]
- Bull, J.W.; Suttle, K.B.; Gordon, A.; Singh, N.J.; Milner-Gulland, E.J. Biodiversity offsets in theory and practice. Oryx 2013, 47, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Brower, A.L.; Stephens, R.T.; Lee, W.G. Why bartering biodiversity fails. Conserv. Lett. 2009, 2, 149–157, in press. [Google Scholar] [CrossRef]
- Gardner, T.A.; Von Hase, A.; Brownlie, S.; Ekstrom, J.M.; Pilgrim, J.D.; Savy, C.E.; Stephens, R.T.; Treweek, J.O.; Ussher, G.T.; Ward, G.; et al. Biodiversity offsets and the challenge of achieving no net loss. Conserv. Biol. 2013, 27, 1254–1264. [Google Scholar] [CrossRef]
- McKenney, B.A.; Kiesecker, J.M. Policy development for biodiversity offsets: A review of offset frameworks. Environ. Manag. 2010, 45, 165–176. [Google Scholar] [CrossRef]
- BenDor, T.; Brozović, N. Determinants of spatial and temporal patterns in compensatory wetland mitigation. Environ. Manag. 2007, 40, 349–364. [Google Scholar] [CrossRef]
- Bezombes, L.; Regnery, B. Séquence Éviter-Réduire-Compenser: Des enjeux écologiques aux considérations pratiques pour atteindre l’objectif d’absence de perte nette de biodiversité. Ingénieries 2020, 31, 4–9. [Google Scholar]
- Bigard, C.; Thiriet, P.; Pioch, S.; Thompson, J.D. Strategic landscape-scale planning to improve mitigation hierarchy implementation: An empirical case study in Mediterranean France. Land Use Policy 2020, 90, 104286. [Google Scholar] [CrossRef]
- Grimm, M.; Köppel, J.; Geißler, G. A Shift towards Landscape-Scale Approaches in Compensation-Suitable Mechanisms and Open Questions. Impact Assess. Proj. Apprais. 2019, 37, 491–502. [Google Scholar] [CrossRef]
- Kiesecker, J.M.; Copeland, H.; Pocewicz, A.; McKenney, B. Development by design: Blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 2010, 8, 261–266. [Google Scholar] [CrossRef]
- Simmonds, J.S.; Sonter, L.J.; Watson, J.E.M.; Bennun, L.; Costa, H.M.; Edwards, S.; Grantham, H.; Griffiths, V.F.; Jones, J.P.G.; Kiesecker, J.; et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. 2020, 12, e12695. [Google Scholar] [CrossRef] [Green Version]
- Underwood, J.G. Combining landscape-level conservation planning and biodiversity offset programs: A case study. Environ. Manag. 2011, 47, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.; Gallant, M.; Ten Kate, K. State of Biodiversity Mitigation 2017: Markets and Compensation for Global Infrastructure Development; Forest Trends’ Ecosystem Marketplace: Washington, DC, USA, 2017. [Google Scholar]
- Vaissière, A.C.; Levrel, H. Biodiversity offset markets: What are they really? An empirical approach to wetland mitigation banking. Ecol. Econ. 2015, 110, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Poudel, J.; Zhang, D.; Simon, B. Estimating the demand and supply of conservation banking markets in the United States. Land Use Policy 2018, 79, 320–325. [Google Scholar] [CrossRef]
- Poudel, J.; Zhang, D.; Simon, B. Habitat conservation banking trends in the United States. Biodivers. Conserv. 2019, 28, 1629–1646. [Google Scholar] [CrossRef]
- Grimm, M. Conserving biodiversity through offsets? Findings from an empirical study on conservation banking. J. Nat. Conserv. 2020, 57, 125871. [Google Scholar] [CrossRef]
- Kleining, B. Biodiversity protection under the habitats directive: Is habitats banking our new hope? Environ. Law Rev. 2017, 19, 113–125. [Google Scholar] [CrossRef]
- Ollivier, C.; Spiegelberger, T.; Gaucherand, S. La territorialisation de la séquence ERC: Quels enjeux liés au changement d’échelle spatiale? Sci. Eaux Territ. 2020, 1, 50–55. [Google Scholar] [CrossRef]
- Tulloch, A.I.; Gordon, A.; Runge, C.A.; Rhodes, J.R. Integrating spatially realistic infrastructure impacts into conservation planning to inform strategic environmental assessment. Conserv. Lett. 2019, 12, e12648. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, A.L.; Kujala, H.; Wintle, B.A. Dealing with cumulative biodiversity impacts in strategic environmental assessment: A new frontier for conservation planning. Conserv. Lett. 2017, 10, 195–204. [Google Scholar] [CrossRef]
- Moilanen, A.; Van Teeffelen, A.J.; Ben-Haim, Y.; Ferrier, S. How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. Restor. Ecol. 2009, 17, 470–478. [Google Scholar] [CrossRef]
- Cole, S.G. Wind power compensation is not for the birds: An opinion from an environmental economist. Restor. Ecol. 2011, 19, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Quétier, F.; Lavorel, S. Assessing ecological equivalence in biodiversity offset schemes: Key issues and solutions. Biol. Conserv. 2011, 144, 2991–2999. [Google Scholar] [CrossRef]
- Laitila, J.; Moilanen, A.; Pouzols, F.M. A method for calculating minimum biodiversity offset multipliers accounting for time discounting, additionality and permanence. Methods Ecol. Evol. 2014, 5, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Marshall, E.; Wintle, B.A.; Southwell, D.; Kujala, H. What are we measuring? A review of metrics used to describe biodiversity in offsets exchanges. Biol. Conserv. 2020, 241, 108250. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Sonter, L.J.; Simmonds, J.S.; Watson, J.E.; Jones, J.P.; Kiesecker, J.M.; Costa, H.M.; Bennun, L.; Edwards, S.; Grantham, H.S.; Griffiths, V.F.; et al. Local conditions and policy design determine whether ecological compensation can achieve No Net Loss goals. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sonter, L.J.; Tomsett, N.; Wu, D.; Maron, M. Biodiversity offsetting in dynamic landscapes: Influence of regulatory context and counterfactual assumptions on achievement of no net loss. Biol. Conserv. 2017, 206, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Barrett, D.J.; Soares-Filho, B.S. Offsetting the impacts of mining to achieve no net loss of native vegetation. Conserv. Biol. 2014, 28, 1068–1076. [Google Scholar] [CrossRef]
- Thébaud, O.; Boschetti, F.; Jennings, S.; Smith, A.D.; Pascoe, S. Of sets of offsets: Cumulative impacts and strategies for compensatory restoration. Ecol. Model. 2015, 312, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.; Langford, W.T.; Todd, J.A.; White, M.D.; Mullerworth, D.W.; Bekessy, S.A. Assessing the impacts of biodiversity offset policies. Environ. Model. Softw. 2011, 26, 1481–1488. [Google Scholar] [CrossRef]
- Gordon, A. Implementing backcasting for conservation: Determining multiple policy pathways for retaining future targets of endangered woodlands in Sydney, Australia. Biol. Conserv. 2015, 181, 182–189. [Google Scholar] [CrossRef]
- Calvet, C.; Delbar, V.; Chapron, P.; Brasebin, M.; Perret, J.; Moulherat, S. La biodiversité à l’épreuve des choix d’aménagement: Une approche par la modélisation appliquée à la Région Occitanie. Sci. Eaux Territ. 2020, 1, 24–31. [Google Scholar]
- Tarabon, S.; Calvet, C.; Delbar, V.; Dutoit, T.; Isselin-Nondedeu, F. Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics. Landsc. Urban Plan. 2020, 202, 103871. [Google Scholar] [CrossRef]
- Tarabon, S.; Dutoit, T.; Isselin-Nondedeu, F. Pooling biodiversity offsets to improve habitat connectivity and species conservation. J. Environ. Manag. 2021, 277, 111425. [Google Scholar] [CrossRef]
- Van Teeffelen, A.J.A.; Opdam, P.F.M.; Wätzol, F.; Hartig, F.; Johst, K.; Drechsler, M.; Vos, C.S.; Wissel, S.; Quétier, F. Ecological and economic conditions and associated institutional challenges for conservation banking in dynamic landscapes. Landsc. Urban Plan. 2014, 130, 64–72. [Google Scholar] [CrossRef]
- Vannier, C.; Bierry, A.; Longaretti, P.Y.; Nettier, B.; Cordonnier, T.; Chauvin, C.; Bertrand, N.; Quétier, F.; Lasseur, R.; Lavorel, S. Co-constructing future land-use scenarios for the Grenoble region, France. Landsc. Urban Plan. 2019, 190, 103614. [Google Scholar] [CrossRef] [Green Version]
- Vannier, C.; Lefebvre, J.; Longaretti, P.Y.; Lavorel, S. Patterns of landscape change in a rapidly urbanizing mountain region. Cybergeo Eur. J. Geogr. 2016. [Google Scholar] [CrossRef]
- Communauté d’Agglomération Grenoble—Alpes Métropole Schéma de cohérence territoriale (SCoT) 2010–2030. Grenoble 2011, France. Available online: https://scot-region-grenoble.org (accessed on 26 December 2020).
- Cremer-Schulte, D. With or Without You? Strategic spatial planning and territorial re-scaling in Grenoble Urban Region. Plan. Pract. Res. 2014, 29, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Quétier, F.; Regnery, B.; Levrel, H. No net loss of biodiversity or paper offsets? A critical review of the French no net loss policy. Environ. Sci. Policy 2014, 38, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Vaissière, A.C.; Quétier, F.; Bas, A.; Calvet, C.; Gaucherand, S.; Hay, J.; Jacob, C.; Kermagoret, C.; Levrel, H.; Malapert, A.; et al. France. In Biodiversity Offsets—European Perspectives on No Net Loss of Biodiversity and Ecosystem Services; Wende, W., Tucker, G.M., Quétier, F., Rayment, M., Darbi, M., Eds.; Springer: Cham, Germany, 2018; ISBN 9783319725796. [Google Scholar]
- Gaucherand, S.; Schwoertzig, E.; Clément, J.C.; Johnson, B.; Quétier, F. The cultural dimensions of freshwater wetland assessments: Lessons learned from the application of US rapid assessment methods in France. Environ. Manag. 2015, 56, 245–259. [Google Scholar] [CrossRef]
- Gayet, G.; Baptist, F.; Fossey, M.; Caessteker, P.; Clément, J.C.; Gaillard, J.; Gaucherand, S.; Isselin-Nondedeu, F.; Poinsot, C.; Quétier, F. Wetland assessment in France: Lessons learned from the development, validation and application of a new functions-based method. In Wetland and Stream Rapid Assessments: Development, Validation, and Application; Dorney, J., Savage, R., Tiner, R., Adamus, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; p. 582. ISBN 9780128050910. [Google Scholar]
- Lasseur, R.; Vannier, C.; Lefebvre, J.; Longaretti, P.-Y.; Lavorel, S. Landscape scale modelling of agricultural land use for the quantification of ecosystem services. J. Appl. Remote Sens. 2018, 12, 046024. [Google Scholar] [CrossRef]
- Bierry, A.; Quétier, F.; Baptist, F.; Wegener, L.; Lavorel, S. Apports potentiels du concept de services écosystémiques au dialogue territorial. Sci. Eaux Territ. 2015. [Google Scholar] [CrossRef]
- Chaurand, J.; Bigard, C.; Vanpeene-Bruhier, S.; Thompson, J. Articuler la politique Trame verte et bleue et la séquence Éviter-réduire-compenser: Complémentarités et limites pour une préservation efficace de la biodiversité en France. Vertigo Rev. Électron. Sci. Environ. 2019, 19, 1. [Google Scholar] [CrossRef]
- Quétier, F.; Cozannet, N.; Boyer, E.; Rayé, G. Les corridors écologiques dans l’aménagement du territoire: Retours sur plus de 10 ans d’expérience dans les Alpes françaises. Sci. Eaux Territ. under review.
- Schéma Directeur d’Aménagement et de Gestion des Eaux (SDAGE) Rhône-Méditerranée 2016–2021. Available online: https://www.rhone-mediterranee.eaufrance.fr/sites/sierm/files/content/migrate_documents/20151221-SDAGE-RMed-2016-2021.pdf (accessed on 26 December 2020).
- Vaissière, A.C.; Tardieu, L.; Roussel, S.; Quétier, F. Preferences for biodiversity offset contracts on arable land: A choice experiment study with farmers. Eur. Rev. Agric. Econ. 2018, 45, 553–582. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Power, M.E.; Comin, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 2012, 10, e1001247. [Google Scholar] [CrossRef] [Green Version]
- Vaissière, A.C.; Meinard, Y. A policy framework to accommodate both the analytic and normative aspects of biodiversity in ecological compensation. Biol. Conserv. 2021, 253, 108897. [Google Scholar] [CrossRef]
- Etrillard, C.; Pech, M. Mesures de compensation écologique: Risques ou opportunités pour le foncier agricole en France ? Vertigo Rev. Électron. Sci. Environ. 2015, 15. [Google Scholar] [CrossRef]
- Vaissière, A.-C.; Quétier, F.; Calvet, C.; Latune, J. Quelles implications possibles du monde agricole dans la compensation écologique ? Vers des approches territoriales. Sci. Eaux Territ. 2020, 31, 38–43. [Google Scholar] [CrossRef]
- Mechin, A.; Pioch, S. Une Méthode Expérimentale Pour Evaluer Rapidement la Compensation en zone Humide, La Méthode MERCIe: Principes et Applications; Office Français de la Biodiversité (ex-ONEMA): Paris, France, 2016. [Google Scholar]
- Gayet, G.; Baptist, F.; Baraille, L.; Caessteker, P.; Clément, J.-C.; Gaillard, J.; Gaucherand, S.; Isselin-Nondedeu, F.; Poinsot, C.; Quétier, F.; et al. Guide de la Méthode Nationale d’évaluation des Fonctions des Zones Humides—Version 1.0. Onema, Collection Guides et Protocoles, 186 p. 2016. Available online: https://professionnels.ofb.fr/fr/node/80 (accessed on 26 December 2020).
- Berges, L.; Avon, C.; Bezombes, L.; Clauzel, C.; Duflot, R.; Foltête, J.C.; Gauch, S.; Girardet, X.; Spiegelberger, T. Environmental mitigation hierarchy and biodiversity offsets revisited through habitat connectivity modelling. J. Environ. Manag. 2020, 256, 109950. [Google Scholar] [CrossRef] [PubMed]
Agricultural Practice | Ecological Score/ha Score from 1 to 7 Loss if Impacted | Ecological Restoration Potential/ha Score from 0 to 6 Gain if Restored as an Offset | ||
---|---|---|---|---|
Type of zone of agriculture | Intensive | Less intensive | Intensive | Less intensive |
Permanent grasslands | 7 | 7 | 0 | 0 |
Hedgerow | 7 | 7 | 0 | 0 |
3 or 4 grasslands + 1 or 2 other land use | 5 | 6 | 2 | 1 |
3 grasslands and 2 SC */3 SC et 2 grasslands | 4 | 5 | 3 | 2 |
3 grasslands and 2 WC **/3 WC and 2 grasslands | 4 | 5 | 3 | 2 |
2 grasslands, 2 WC, 1 other | 3 | 4 | 4 | 3 |
2 grasslands, 1 SC, 1 other | 3 | 4 | 4 | 3 |
Poplar | 3 | 4 | 4 | 3 |
3 or 4 WC with 1 grassland | 2 | 3 | 5 | 4 |
3 or 4 SC with 1 grassland | 2 | 3 | 5 | 4 |
Arboriculture | 2 | 3 | 5 | 4 |
SC monocropping | 1 | 1 | 6 | 6 |
WC monocropping | 1 | 1 | 6 | 6 |
3 or 4 SC without grassland | 1 | 1 | 6 | 6 |
3 or 4 WC without grassland | 1 | 1 | 6 | 6 |
3 SC and 2 WC/3 WC and 2 SC | 1 | 1 | 6 | 6 |
2 WC, 2 SC, 1 other | 1 | 1 | 6 | 6 |
Market gardening; horticulture | 1 | 1 | 6 | 6 |
Permanent crop (orchard, wine) | 1 | 1 | 6 | 6 |
Other agricultural practice | 1 | 1 | 6 | 6 |
Name of the Offsetting Model | Implementation Model | Ecological Equivalence Method | Type of Allocation of the Polygons * | Additional Constraint for Eligible Wetlands (Map 2) | Rationale |
---|---|---|---|---|---|
Old way | Permittee-led | Area based (200% area) | Automated, random | All types of parcels can be used | The way offsets have been carried out until recent changes in French policy on wetlands and mitigation hierarchy |
Local river basin plan | Permittee-led | Step 1: function based (until at least 100% of the impacted area is offset) | Automated, random by decreasing ecological score To simulate the requirement to restore the most degraded wetlands (i.e., the most intensively cultivated). | Remove parcels with permanent grasslands and hedgerows Because they do not provide any ecological gain if restored, which would contradict the intention of the scenarios. | The closest to existing official local guidance and applicable regulations [56]. |
Step 2: area based (until 200% of impacted area is offset) | Automated, random | ||||
Prospective | Permittee-led | Step 1: function based (100% of functions) | Automated, random by decreasing ecological score | This model is a potential improvement on current regulations and closer to other French guidelines and applicable regulations for species and other natural habitat types. | |
Step 2: if area < 100%, continue with area based (until 100% of the impacted area is offset) | Automated, random | ||||
Landscape-scale | Aggregated | Function based (100% of functions) and area based (until at least 100% of impacted area is offset) | Manual, fostering high ecological restoration potential, location in ecological corridors or near a network of permanent grasslands or hedgerows, a body of water, forest or semi-natural area, not isolated in an urbanized area, contiguous parcels that would recreate ecological corridors, one single large mitigation bank rather than many small ones | All types of parcels can be used. | Similar to mitigation banking (Sites Naturels de Compensation in France) or other emerging landscape-scale approaches being developed by local governments [25]. |
Land Use | Area in 2009 (ha) | Evolution 2009–2040 (ha) | Evolution 2009–2040 (% of area) |
---|---|---|---|
Aquatic areas | 4100 | 0 | 0 |
Built-up areas | 46,800 | +5300 | +11.4 |
Agricultural areas | 149,800 | −6610 | −4.4 |
Forest areas | 215,600 | +430 | +0.2 |
Semi-natural areas | 29,300 | +138 | +0.5 |
Fallow grounds | 0 | +728 | N/A |
Subwatershed (Code) | Offsetting Needs | Potential Offsetting Response | ||
---|---|---|---|---|
Ecological Score | Area (ha) | Ecological Score | Area (ha) | |
Bièvre Liers Valloire (BILV) | 169 | 33 | 8910 | 2914 |
Drac aval (DRAC) | 144 | 24 | 571 | 293 |
Galaure (GALA) | 10 | 2 | 977 | 839 |
Grésivaudan (GRES) | 83 | 43 | 8491 | 1786 |
Guiers Aiguebelette (GUIE) | 159 | 24 | 448 | 601 |
Isère aval et Bas Grésivaudan (IABG) | 24 | 5 | 1680 | 401 |
Paladru—Fure (PAFU) | 52 | 12 | 1565 | 447 |
Romanche (ROMA) | 35 | 11 | 526 | 131 |
Vercors (VERC) | 114 | 17 | 173 | 810 |
TOTAL | 789 | 170 | 23,343 | 8221 |
Old Way | Local River Basin Plan | Prospective | Landscape-Scale | |
---|---|---|---|---|
Area | ||||
Targeted area (% of impacted area = 170 ha) | 200% | 200% | <100% | <100% |
Area of compensation (ha) | 340 [4; 87] | 340 [4; 87] | 215 [2; 54] | 346 |
Area of compensation (% of impacted area) | 200% [200%; 201%] | 200% [200%; 203%] | 126% [100%; 312%] | 203% |
Area of compensation (% of the response capacity in area) | 4.1% [0.4%; 16.3%] | 4.1% [0.4%; 16.4%] | 2.6% [0.2%; 8.2%] | 4.1% |
Ecological score | ||||
Targeted ecological score (% of impacted ecological score = 800) | - | - | 100% | 100% |
Ecological score of compensation (ecological score) | 1 045 [4; 444] | 1 630 [18; 488] | 1 020 [11; 240] | 926 |
Ecological score of compensation (% of impacted ecological score) | 132% [6%; 534%] | 206% [82%; 587%] | 129% [100%; 289%] | 117% |
Ecological score of compensation (% of the response capacity in ecological score) | 4.5% [0.4%; 16.3%] | 7% [1.8%; 53.6%] | 4.4% [1.2%; 65.7%] | 3.9% |
Transactions | ||||
Number of parcels | 175 | 166 | 108 | 150 (16 groups) |
Subwatershed (CODE) | Offsetting Area for Reaching NNL of Wetland Function and Biodiversity | Offsetting Area Required to Achieve Both NNL and An Area at Least Equal to the Area Impacted |
---|---|---|
(% of Impacted Area, Mean Value for the 5000 Simulations) | ||
Bièvre Liers Valloire (BILV) | 93% | 100% |
Drac aval (DRAC) | 101% | 101% |
Galaure (GALA) | 104% | 104% |
Grésivaudan (GRES) | 37% | 100% |
Guiers Aiguebelette (GUIE) | 132% | 132% |
Isère aval et Bas Grésivaudan (IABG) | 95% | 100% |
Paladru—Fure (PAFU) | 88% | 100% |
Romanche (ROMA) | 71% | 100% |
Vercors (VERC) | 312% | 312% |
All the subwatersheds | 106% | 126% |
Subwatershed (Code) | Result Relative to the Objective (Ecological Score) | Result Relative to the Objective (Area) | Number of Mitigation Banks | Size of the Mitigation Banks (ha) |
---|---|---|---|---|
Bièvre Liers Valloire (BILV) | 103% | 112% | 1 | 37 |
Drac aval (DRAC) | 104% | 180% | 3 | 29, 10, 4 |
Galaure (GALA) | 101% | 226% | 1 | 4 |
Grésivaudan (GRES) | 236% | 105% | 1 | 45 |
Guiers Aiguebelette (GUIE) | 102% | 377% | 2 | 52, 37 |
Isère aval et Bas Grésivaudan (IABG) | 101% | 108% | 1 | 6 |
Paladru—Fure (PAFU) | 115% | 120% | 1 | 14 |
Romanche (ROMA) | 102% | 113% | 1 | 12 |
Vercors (VERC) | 100% | 557% | 5 | 35, 25, 24, 8, 4 |
TOTAL | 117% | 203% | 16 | 346 |
Subwatershed (CODE) | Area for Reaching NNL (% of Impacted Area, Mean Value for the 5000 Simulations) | |
---|---|---|
Prospective Scenario | Prospective Scenario without the Best Agricultural Parcels | |
Bièvre Liers Valloire (BILV) | 93% | 102% |
Drac aval (DRAC) | 101% | 147% |
Galaure (GALA) | 104% | 104% |
Grésivaudan (GRES) | 37% | 44% |
Guiers Aiguebelette (GUIE) | 132% | 193% |
Isère aval et Bas Grésivaudan (IABG) | 95% | 100% |
Paladru—Fure (PAFU) | 88% | 98% |
Romanche (ROMA) | 71% | 94% |
Vercors (VERC) | 312% | 500% |
All the subwatersheds | 106% | 146% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaissière, A.-C.; Quétier, F.; Bierry, A.; Vannier, C.; Baptist, F.; Lavorel, S. Modeling Alternative Approaches to the Biodiversity Offsetting of Urban Expansion in the Grenoble Area (France): What Is the Role of Spatial Scales in ‘No Net Loss’ of Wetland Area and Function? Sustainability 2021, 13, 5951. https://doi.org/10.3390/su13115951
Vaissière A-C, Quétier F, Bierry A, Vannier C, Baptist F, Lavorel S. Modeling Alternative Approaches to the Biodiversity Offsetting of Urban Expansion in the Grenoble Area (France): What Is the Role of Spatial Scales in ‘No Net Loss’ of Wetland Area and Function? Sustainability. 2021; 13(11):5951. https://doi.org/10.3390/su13115951
Chicago/Turabian StyleVaissière, Anne-Charlotte, Fabien Quétier, Adeline Bierry, Clémence Vannier, Florence Baptist, and Sandra Lavorel. 2021. "Modeling Alternative Approaches to the Biodiversity Offsetting of Urban Expansion in the Grenoble Area (France): What Is the Role of Spatial Scales in ‘No Net Loss’ of Wetland Area and Function?" Sustainability 13, no. 11: 5951. https://doi.org/10.3390/su13115951