Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model
Abstract
:1. Introduction
- (1)
- How to construct a set of biocapacity evaluation models suitable for the Loess Plateau in Northern Shaanxi?
- (2)
- What will be the spatial distribution pattern of the biocapacity of the Loess Plateau in Northern Shaanxi in the future?
- (3)
- In response to future changes in the biocapacity, what strategies should the government take?
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Basic Data and Pre-Processing
2.3. Research Methods
2.3.1. Analytical Framework and Methods
2.3.2. Logistic Regression Method
2.3.3. CA–Markov Model
2.3.4. Biocapacity Model
3. Results and Analysis
3.1. Quantity and Distribution of Land Use/Cover
3.2. Spatial Distribution of Biocapacity
3.3. Spatial-Temporal Changes of Biocapacity
3.4. Change Matrix of Biocapacity
4. Discussion
4.1. Simulation Accuracy Analysis
4.2. Uncertainty Analysis
4.3. Policy Suggestions
5. Conclusions
- (1)
- From 2000 to 2020, the forest of the Loess Plateau in Northern Shaanxi increased by 0.88%; the amount of grassland did not change much, but its transformation with farmland and forest reflects the process of returning farmland to grassland and developing into forest; farmland was reduced by 0.7%; forest and grassland have been well protected, and the effect of the GGP is obvious.
- (2)
- The biocapacity of the Loess Plateau in Northern Shaanxi increased by 9.98% from 2000 to 2010, and decreased by 4.14% from 2010 to 2020, and the total amount remained stable. It is predicted that in the next 10 years, the regional biocapacity will continue to increase by 0.03%, reaching 16.52 × 106 gha.
- (3)
- To cope with the potential impact of changes in land use and biocapacity, local governments should continue to implement ecological restoration projects such as the GGP, and rationally plan the conversion ratio of farmland, grassland, and forest to maintain regional food safety and biocapacity stability.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, D.; Dai, E. Environmental ethics and regional sustainable development. J. Geogr. Sci. 2012, 22, 86–92. [Google Scholar] [CrossRef]
- Kemp, R.; Parto, S.; Gibson, R.B. Governance for sustainable development: Moving from theory to practice. Int. J. Sustain. Dev. 2005, 8, 12–30. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Moran, D.D.; Wackernagel, M.; Kitzes, J.A.; Goldfinger, S.H.; Boutaud, A. Measuring sustainable development—Nation by nation. Ecol. Econ. 2008, 64, 470–474. [Google Scholar] [CrossRef]
- Ress, W.E.; Wackernagel, M. Ecological footprints and appropriated carrying capacity: Measuring the natural capital requirements of the human economy. Focus 1996, 6, 45–60. [Google Scholar]
- Narayana, K.A. Assessment of land parcel level planning with soil and water parameters for enhancement of Biocapacity in Gudiyattam block, Vellore District, Tamilnadu, India. Mater. Today Proc. 2021, 37, 1449–1454. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Majeed, A.; Umar, M.; Khan, Z.; Muhammad, S. The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resour. Policy 2020, 69, 101817. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. Sci. Total Environ. 2021, 751. [Google Scholar] [CrossRef]
- Usman, O.; Alola, A.A.; Sarkodie, S.A. Assessment of the role of renewable energy consumption and trade policy on environmental degradation using innovation accounting: Evidence from the US. Renew. Energy 2020, 150, 266–277. [Google Scholar] [CrossRef]
- Yue, D.; Xu, X.; Hui, C.; Xiong, Y.; Han, X.; Ma, J. Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability. Ecol. Econ. 2011, 70, 988–994. [Google Scholar] [CrossRef]
- Gabbi, G.; Matthias, M.; Patrizi, N.; Pulselli, F.M.; Bastianoni, S. The biocapacity adjusted economic growth. Developing a new indicator. Ecol. Indic. 2021, 122, 107318. [Google Scholar] [CrossRef]
- Danish; Hassan, S.T.; Baloch, M.A.; Mahmood, N.; Zhang, J. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain. Cities Soc. 2019, 47, 101516. [Google Scholar] [CrossRef]
- Niccolucci, V.; Coscieme, L.; Marchettini, N. Benefit transfer and the economic value of Biocapacity: Introducing the ecosystem service Yield factor. Ecosyst. Serv. 2021, 48, 101256. [Google Scholar] [CrossRef]
- Galli, A.; Iha, K.; Moreno Pires, S.; Mancini, M.S.; Alves, A.; Zokai, G.; Lin, D.; Murthy, A.; Wackernagel, M. Assessing the Ecological Footprint and biocapacity of Portuguese cities: Critical results for environmental awareness and local management. Cities 2020, 96, 102442. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Cheng, M. Renewable natural capital, the Biocapacity, and subjective well-being. J. Clean. Prod. 2017, 150, 277–286. [Google Scholar] [CrossRef]
- Monfreda, C.; Wackernagel, M.; Deumling, D. Establishing national natural capital accounts based on detailed Ecological Footprint and biological capacity assessments. Land Use Policy 2004, 21, 231–246. [Google Scholar] [CrossRef]
- Rees, W.E. Revisiting carrying capacity: Area-based indicators of sustainability. Popul. Environ. 1996, 17, 195–215. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Ai, B.; Tao, H.; Wu, S.; Liu, T. Multi-agent systems for simulating and planning land use development. Acta Geogr. Sin. 2006, 61, 1101–1112. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Yagoub, M.M.; Al Bizreh, A.A. Prediction of Land Cover Change Using Markov and Cellular Automata Models: Case of Al-Ain, UAE, 1992–2030. J. Indian Soc. Remote Sens. 2014, 42, 665–671. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Gao, Y.; Huang, X.; Liu, H.; Huang, L. Recent progresses on the application and improvement of the CLUE-S model. Prog. Geogr. 2012, 31, 3–10. [Google Scholar]
- Li, S.; Liu, X.; Li, X.; Chen, Y. Simulation model of land use dynamics and application: Progress and prospects. J. Remote Sens. 2017, 21, 329–340. [Google Scholar]
- Yang, Q.; Li, X.; Liu, X. Urban land use change research based on Agent and Cellular Automata. J. Geo Inf. Sci. 2005, 7, 78–81. [Google Scholar]
- Gao, M.; Xiao, Y.; HU, Y. Evaluation of Water Yield and Soil Erosion in the Three-River-Source Region under Different Land-Climate Scenarios. J. Resour. Ecol. 2020, 11, 13–26. [Google Scholar]
- Hu, Y.; Gao, M. Batunacun, Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environ. Dev. 2020, 34, 100488. [Google Scholar] [CrossRef]
- Guan, D.; Gao, W.; Watari, K.; Fukahori, H. Land use change of Kitakyushu based on landscape ecology and Markov model. J. Geogr. Sci. 2008, 18, 455–468. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Zhang, F.; Kung, H.T.; Johnson, V.C. Assessment of Land-Cover/Land-Use Change and Landscape Patterns in the Two National Nature Reserves of Ebinur Lake Watershed, Xinjiang, China. Sustainability 2017, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. CATENA 2000, 39, 69–78. [Google Scholar] [CrossRef]
- Hu, Y.; Dao, R.; Hu, Y. Vegetation change and driving factors: Contribution analysis in the loess plateau of China during 2000–2015. Sustainability 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Lu, Y.H.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.Y.; Sun, G.; Wu, B.F. A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar]
- Chen, J.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Tsendbazar, N.E.; Herold, M.; de Bruin, S.; Lesiv, M.; Fritz, S.; Van De Kerchove, R.; Buchhorn, M.; Duerauer, M.; Szantoi, Z.; Pekel, J.F. Developing and applying a multi-purpose land cover validation dataset for Africa. Remote Sens. Environ. 2018, 219, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Shafizadeh-Moghadam, H.; Minaei, M.; Feng, Y.; Pontius, R.G. GlobeLand30 maps show four times larger gross than net land change from 2000 to 2010 in Asia. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 240–248. [Google Scholar] [CrossRef]
- Rudke, A.P.; Fujita, T.; de Almeida, D.S.; Eiras, M.M.; Xavier, A.C.F.; Rafee, S.A.A.; Santos, E.B.; de Morais, M.V.B.; Martins, L.D.; de Souza, R.V.A.; et al. Land cover data of Upper Parana River Basin, South America, at high spatial resolution. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101926. [Google Scholar] [CrossRef]
- Feng, Y.; Lei, Z.; Tong, X.; Gao, C.; Chen, S.; Wang, J.; Wang, S. Spatially-explicit modeling and intensity analysis of China’s land use change 2000–2050. J. Environ. Manag. 2020, 263, 110407. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Feng, M.; Biswas, A.; Su, H.; Niu, Y.; Cao, J. Driving Factors and Future Prediction of Land Use and Cover Change Based on Satellite Remote Sensing Data by the LCM Model: A Case Study from Gansu Province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A.; Tahir, A.A. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag. 2019, 245, 348–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Zhuang, D. A highly integrated, expansible, and comprehensive analytical framework for urban ecological land: A case study in Guangzhou, China. J. Clean. Prod. 2020, 268, 122360. [Google Scholar] [CrossRef]
- He, D.; Jin, F.; Zhou, J. The changes of land use and landscape pattern based on Logistic-CA-Markov model: A case study of Beijing-Tianjin-Hebei metropolitan region. Sci. Geogr. Sin. 2011, 31, 903–910. [Google Scholar]
- Sarkar, T.; Mishra, M. Soil Erosion Susceptibility Mapping with the Application of Logistic Regression and Artificial Neural Network. J. Geovis. Spat. Anal. 2018, 2, 8. [Google Scholar] [CrossRef]
- Shahbazian, Z.; Faramarzi, M.; Rostami, N.; Mahdizadeh, H. Integrating logistic regression and cellular automata-Markov models with the experts’ perceptions for detecting and simulating land use changes and their driving forces. Environ. Monit. Assess. 2019, 191, 17. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601. [Google Scholar] [CrossRef]
- Wijesekara, G.N.; Gupta, A.; Valeo, C.; Hasbani, J.G.; Qiao, Y.; Delaney, P.; Marceau, D.J. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J. Hydrol. 2012, 412–413, 220–232. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of rapid urban expansion on green space structure. Ecol. Indic. 2017, 81, 274–284. [Google Scholar] [CrossRef]
- Pan, Y.; Roth, A.; Yu, Z.; Doluschitz, R. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Comput. Environ. Urban Syst. 2010, 34, 400–408. [Google Scholar] [CrossRef]
- Visser, H.; de Nijs, T. The Map Comparison Kit. Environ. Model. Softw. 2006, 21, 346–358. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Deng, Y.; Liu, Y.; Wu, Z.; Chen, Z. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 2020, 117, 106671. [Google Scholar] [CrossRef]
- Guo, H.; Cai, Y.; Yang, Z.; Zhu, Z.; Ouyang, Y. Dynamic simulation of coastal wetlands for Guangdong-Hong Kong-Macao Greater Bay area based on multi-temporal Landsat images and FLUS model. Ecol. Indic. 2021, 125, 107559. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 2020, 417, 108924. [Google Scholar] [CrossRef]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Li, J. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc. Urban Plan. 2008, 86, 79–91. [Google Scholar] [CrossRef]
- Pontius, R.G.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
Categories | Factors | Data Sources | Processing Methods | Final Results |
---|---|---|---|---|
Economic and social development | Per capita GDP | Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on 5 October 2020), National Per capita GDP data with 1 km resolution in 2010 and 2015 | Linear interpolation, resample | Per capita GDP data in 2010 and 2020 |
Population density | Resource and Environment Science and Data Center, National population density data with 1 km resolution in 2010 and 2015 | Linear interpolation, resample | Population density data in 2010 and 2020 | |
Topography | Elevation | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 8 October 2020), DEM data | Mosaic, clip, projection | Elevation data |
Slope | Calculated by DEM data | Slope data | ||
Aspect | Calculated by DEM data | Aspect data | ||
Climatic condition | Annual precipitation | Greenhouse Data Sharing Platform (http://data.sheshiyuanyi.com/, accessed on 16 October 2020), annual precipitation observation data of 16 meteorological stations in the study area and surrounding area from 2010 to 2019 | Linear interpolation, IDW interpolation | Annual precipitation data from 2010 to 2020 |
Annual accumulated temperature (>10 °C) | Greenhouse Data Sharing Platform, annual accumulated temperature observation data of 16 meteorological stations from 2010 to 2019 | Linear interpolation, IDW interpolation | Annual accumulated temperature data from 2010 to 2020 | |
Spatial distance relationship | Distance to main roads | National Basic Geographic Information Database | Euclidean distance | Distance to main roads data |
Distance to rivers | National Basic Geographic Information Database | Euclidean distance | Distance to rivers data | |
Distance to built-up land | GlobeLand30 dataset | Resample and Euclidean distance | Distance to built-up land data in 2010 and 2020 |
2000 | 2010 | 2020 | 2030 | |||||
---|---|---|---|---|---|---|---|---|
Yield Factor | Equivalence Factor | Yield Factor | Equivalence Factor | Yield Factor | Equivalence Factor | Yield Factor | Equivalence Factor | |
Farmland | 2.12 | 2.15 | 2.21 | 2.39 | 2.02 | 2.50 | 2.02 | 2.50 |
Forest | 1.18 | 1.36 | 1.18 | 1.24 | 1.18 | 1.28 | 1.18 | 1.28 |
Grassland | 0.81 | 0.48 | 0.81 | 0.51 | 0.81 | 0.46 | 0.81 | 0.46 |
Water area | 1.27 | 0.35 | 1.27 | 0.41 | 1.27 | 0.37 | 1.27 | 0.37 |
2000 | 2010 | 2020 | 2030 | |
---|---|---|---|---|
Farmland | 25,736 | 25,636 | 25,555 | 25,547 |
Forest | 14,448 | 14,512 | 14,575 | 14,637 |
Grassland | 37,667 | 37,637 | 37,600 | 37,561 |
Water area | 311 | 259 | 228 | 208 |
Built-up land | 318 | 479 | 609 | 716 |
Unused land | 1581 | 1539 | 1495 | 1392 |
Biocapacity (gha) | ||||||
---|---|---|---|---|---|---|
Farmland | Forest | Grassland | Water Area | Built-up Land | Unused Land | |
Farmland | 12,517,700 * | (43,417) 12,985 | (330,412) 24,378 | (4245) 395 | (7625) 0 | (1743) 0 |
Forest | (8849) 29,586 | 2,189,684 * | (2310) 570 | (140) 44 | (90) 0 | (44) 0 |
Grassland | (23,830) 322,973 | (1720) 6974 | 1,375,479 * | (312) 394 | (34) 0 | (612) 0 |
Water area | (681) 7322 | (100) 321 | (788) 625 | 8471 * | (54) 0 | (568) 0 |
Built-up land | (0) 9722 | (0) 170 | (0) 216 | (0) 10 | 0 * | (0) 0 |
Unused land | (0) 13068 | (0) 371 | (0) 1388 | (0) 444 | (0) 0 | 0 * |
Farmland (Pixel) | Forest (Pixel) | Grassland (Pixel) | Water Area (Pixel) | Built-up Land (Pixel) | Unused Land (Pixel) | User Accuracy (%) | Producer Accuracy (%) | |
---|---|---|---|---|---|---|---|---|
Farmland | 2,617,1695 | 335,526 | 1,736,978 | 13,340 | 54,776 | 81,836 | 92.17 | 92.90 |
Forest | 253,096 | 15,568,195 | 278,692 | 9031 | 26,460 | 56,827 | 96.15 | 94.17 |
Grassland | 1,659,608 | 540,227 | 39,487,858 | 36,306 | 59,701 | 24,244 | 94.45 | 94.88 |
Water area | 17,211 | 16,359 | 19,639 | 193,303 | 3168 | 2438 | 76.67 | 69.11 |
Built-up land | 23,390 | 27,250 | 35,031 | 14,433 | 512,724 | 29,437 | 79.83 | 75.07 |
Unused land | 46,753 | 44,905 | 59,396 | 13,310 | 26,143 | 1,469,643 | 88.52 | 88.30 |
Farmland | Forest | Grassland | Water Area | Built-Up Land | Unused Land | |
---|---|---|---|---|---|---|
Per capita GDP | −0.681 | 0.576 | −0.452 | - | 8.991 | - |
Population density | 0.143 | 0.331 | - | - | 6.552 | - |
Elevation | −1.429 | 6.539 | −1.190 | −9.529 | 0.917 | −1.145 |
Slope | 0.104 | - | 0.222 | 0.380 | 2.698 | 0.301 |
Aspect | 0.140 | −0.087 | - | −0.155 | 0.205 | 0.112 |
Annual precipitation | −1.873 | 7.357 | −3.633 | 0.588 | −0.208 | −9.355 |
Annual accumulated temperature | −0.713 | 27.742 | −9.578 | −34.892 | 1.796 | 7.923 |
Distance to main roads | −0.449 | 0.208 | 0.242 | 0.477 | 0.106 | 0.596 |
Distance to rivers | - | −0.410 | −0.301 | −0.352 | 0.122 | 0.106 |
Distance to built-up land | - | 0.193 | - | −0.270 | −15.090 | −0.333 |
ROC | 0.870 | 0.971 | 0.903 | 0.915 | 0.908 | 0.912 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Hu, Y. Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model. Sustainability 2021, 13, 5901. https://doi.org/10.3390/su13115901
Wang H, Hu Y. Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model. Sustainability. 2021; 13(11):5901. https://doi.org/10.3390/su13115901
Chicago/Turabian StyleWang, Hao, and Yunfeng Hu. 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model" Sustainability 13, no. 11: 5901. https://doi.org/10.3390/su13115901
APA StyleWang, H., & Hu, Y. (2021). Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model. Sustainability, 13(11), 5901. https://doi.org/10.3390/su13115901