Development and Evaluation of Combined Adaptive Neuro-Fuzzy Inference System and Multi-Objective Genetic Algorithm in Energy, Economic and Environmental Life Cycle Assessments of Oilseed Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Data Acquisition
2.2. Inventory Analysis
2.3. ANFIS
- Rule 1: If (x is A1) and (y is B1) then (f1 = p1x+q1y+r1)
- Rule 2: If (x is A2) and (y is B2) then (f2 = p2x+q2y+r2)
2.4. Multi-Objective Genetic Algorithm (MOGA)
2.5. Optimization Performance Evaluation
3. Results
3.1. Energy Use, Economics, and Environmental Impacts of Canola Production
3.2. ANFIS Modeling
3.3. Multi-Objective Optimization
3.4. Optimization through DEA Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Kulak, M.; Nemecek, T.; Frossard, E.; Chable, V.; Gaillard, G. Life cycle assessment of bread from several alternative food networks in Europe. J. Clean. Prod. 2015, 90, 104–113. [Google Scholar] [CrossRef]
- Iribarren, D.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Further potentials in the joint implementation of life cycle assessment and data envelopment analysis. Sci. Total Environ. 2010, 408, 5265–5272. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Cowie, A.; Mai, T.L.A.; Brandão, M.; De La Rosa, R.A.; Kristiansen, P.; Joseph, S. Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems. J. Clean. Prod. 2017, 162, 260–272. [Google Scholar] [CrossRef]
- Schmidt, J.H. Life cycle assessment of five vegetable oils. J. Clean. Prod. 2015, 87, 130–138. [Google Scholar] [CrossRef]
- De Gennaro, B.; Notarnicola, B.; Roselli, L.; Tassielli, G. Innovative olive-growing models: An environmental and economic assessment. J. Clean. Prod. 2012, 28, 70–80. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.L.; Cacho, O.; Kristiansen, P.; Mai, T.L.A.; Joseph, S. Biochar addition in rice farming systems: Economic and energy benefits. Energy 2017, 140, 415–425. [Google Scholar] [CrossRef]
- Notarnicola, B.; Hayashi, K.; Curran, M.A.; Huisingh, D. Progress in working towards a more sustainable agri-food industry. J. Clean. Prod. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Keyhani, A.; Mohammadi, A.; Rafiee, S.; Akram, A. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agric. Ecosyst. Environ. 2010, 137, 367–372. [Google Scholar] [CrossRef]
- Hematian, A.; Bakhtiari, A.A.; Yaghubi, O.; Zarei-Shahamat, E. Optimization of Energy Consumption in Sugar-Beet Production Using Genetic Algorithm “A Case study in Kermanshah Province, Iran”. Int. J. Agron. Plant Prod. 2013, 4, 1351–1356. [Google Scholar]
- Sefeedpari, P.; Rafiee, S.; Akram, A.; Mousavi-Avval, S.H. Application of Fuzzy Data Envelopment Analysis for Ranking Dairy Farms in the View of Energy Efficiency. J. Anim. Prod. Adv. 2012, 2, 284–296. [Google Scholar]
- Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Buragohain, M.; Mahanta, C. A novel approach for ANFIS modelling based on full factorial design. Appl. Soft Comput. 2008, 8, 609–625. [Google Scholar] [CrossRef]
- Arkhipov, M.; Krueger, E.; Kurtener, D. Evaluation of Ecological Conditions Using Bioindicators: Application of Fuzzy Modeling, Computational Science and Its Applications. In Computational Science and Its Applications–ICCSA 2008; Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L., Eds.; Springer: Berlin, Heidelberg, 2008; pp. 491–500. [Google Scholar]
- Naderloo, L.; Alimardani, R.; Omid, M.; Sarmadian, F.; Javadikia, P.; Torabi, M.Y.; Alimardani, F. Application of ANFIS to predict crop yield based on different energy inputs. Measurement 2012, 45, 1406–1413. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement 2014, 47, 521–530. [Google Scholar] [CrossRef]
- Abhishek, K.; Datta, S.; Mahapatra, S.S. Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm. Measurement 2016, 77, 222–239. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 2014, 57, 122–131. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Bolandnazar, E.; Band, S.S.; Shariati, H.M.; Anuar, N.B.; Kiah, M.L.M. Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. J. Clean. Prod. 2015, 86, 67–77. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Marsala, G.; Mistretta, M.; Pucci, M. The Use of Genetic Algorithms to Solve the Allocation Problems in the Life Cycle Inventory. In Assessment and Simulation Tools for Sustainable Energy Systems; Cavallaro, F., Ed.; Green Energy and Technology, vol 129; Springer: London, UK, 2013; pp. 267–284. [Google Scholar]
- Chan, K.; Kwong, C.K.; Tsim, Y. Modelling and optimization of fluid dispensing for electronic packaging using neural fuzzy networks and genetic algorithms. Eng. Appl. Artif. Intell. 2010, 23, 18–26. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy 2011, 36, 2765–2772. [Google Scholar] [CrossRef]
- Rafiee, S.; Mousavi-Avval, S.H.; Mohammadi, A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy 2010, 35, 3301–3306. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Mousavi-Avval, S.H.; Nonhebel, S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renew. Sustain. Energy Rev. 2014, 30, 724–733. [Google Scholar] [CrossRef]
- Zentner, R.P.; Basnyat, P.; Brandt, S.; Thomas, A.; Ulrich, D.; Campbell, C.A.; Nagy, C.; Frick, B.; Lemke, R.; Malhi, S.; et al. Effects of input management and crop diversity on non-renewable energy use efficiency of cropping systems in the Canadian Prairie. Eur. J. Agron. 2011, 34, 113–123. [Google Scholar] [CrossRef]
- Alluvione, F.; Moretti, B.; Sacco, D.; Grignani, C. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy 2011, 36, 4468–4481. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). ISO 14040: Environmental Management. Life Cycle Assessment. Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Nemecek, T.; Kägi, T. Life Cycle Inventories of Swiss and European Agricultural Production Systems. Final Report Ecoinvent V2. 0 No 15a. Available online: https://www.researchgate.net/publication/263239333_Life_Cycle_Inventories_of_Agricultural_Production_Systems/citation/download (accessed on 18 December 2020).
- Prasuhn, V.; Grünig, K. Evaluation der Ökomassnahmen-Phosphorbelastung der Oberflächengewässer Durch Bodenerosion; Eidgenössische Forschungsanstalt für Agrarökologie und Landbau: Zürich, Switzerland, 2001; 152p. [Google Scholar]
- Bolandnazar, E.; Keyhani, A.; Omid, M. Determination of efficient and inefficient greenhouse cucumber producers using Data Envelopment Analysis approach, a case study: Jiroft city in Iran. J. Clean. Prod. 2014, 79, 108–115. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl. Energy 2012, 89, 254–261. [Google Scholar] [CrossRef]
- Pre-Consultants, SimaPro 8.0.2. Available online: http://www.pre-sustainability.com/simapro (accessed on 18 December 2020).
- Zanaganeh, M.; Mousavi, S.J.; Etemad-Shahidi, A. A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intell. 2009, 22, 1194–1202. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Derivation of Fuzzy Control Rules from Human Operator’s Control Actions. In Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, Marseille, France, 19–21 July 1983; pp. 55–60. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2012, 6, 182–197. [Google Scholar] [CrossRef]
- Segal, E.M.; Rhode-Barbarigos, L.; Adriaenssens, S.; Coelho, R.D.F. Multi-objective optimization of polyester-rope and steel-rope suspended footbridges. Eng. Struct. 2015, 99, 559–567. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Improving energy productivity of sunflower production using data envelopment analysis (DEA) approach. J. Sci. Food Agric. 2011, 91, 1885–1892. [Google Scholar] [CrossRef]
- CML. CML—IA (Version 4.2); Institut of Environmental Sciences, Leiden University: Leiden, The Netherlands, 2013. [Google Scholar]
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J. Clean. Prod. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Bernesson, S.; Nilsson, D.; Hansson, P.-A. A limited LCA comparing large- and small-scale production of rape methyl ester (RME) under Swedish conditions. Biomass Bioenergy 2004, 26, 545–559. [Google Scholar] [CrossRef]
- Stephenson, A.; Dennis, J.; Scott, S. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process. Saf. Environ. Prot. 2008, 86, 427–440. [Google Scholar] [CrossRef]
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting Tractor Fuel Consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Iráizoz, B.; Rapún, M.; Zabaleta, I. Assessing the technical efficiency of horticultural production in Navarra, Spain. Agric. Syst. 2003, 78, 387–403. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Mohapatra, P.K.; Pandey, K.P. Improving energy productivity in paddy production through benchmarking—An application of data envelopment analysis. Energy Convers. Manag. 2006, 47, 1063–1085. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Singh, J. Optimization of energy inputs for wheat crop in Punjab. Energy Convers. Manag. 2004, 45, 453–465. [Google Scholar] [CrossRef]
Characteristics | Coefficient (Emissions End Point) [References] |
---|---|
A. Emissions from fertilizers | [1] |
0.01 (to air) | |
0.2 (to air) | |
0.2 (to air) | |
0.1 (to air) | |
0.3 (to water) | |
0.05 (to water) | |
B. Indirect N2O from atmospheric deposition of fertilizers | [1] |
0.01 × 0.1 (to air) | |
0.01 × 0.2 (to air) | |
C. Conversion of emissions | [1] |
Conversion from kg CO2-C to kg CO2 | |
Conversion from kg N2O-N to kg N2O | |
Conversion from kg NH3-N to kg NH3 | |
Conversion from kg NO3--N to kg NO3 | |
Conversion from kg P2O5 to kg phosphorus | |
D. Emissions from residue burning | [30] |
0.005 (to air) | |
0.06 (to air) | |
0.007 (to air) | |
0.121 (to air) | |
Emissions from residue incorporating | |
0.01 (to soil) | |
E. Direct NOx emissions from fertilizers and soil | [1] |
0.21 (to air) | |
F. Emissions from labor (to air) | [31] |
0.7 (to air) | |
G. Diesel for farm traction and transportation | Datasheet for the Ecoinvent database |
H. Emissions from chemicals | All the active ingredient is emitted to soil [28] |
Average | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|
A. Energy inputs (MJ ha−1) | ||||
1. Labor | 143 | 93 | 35 | 737 |
2. Machinery | 1121 | 267 | 494 | 1930 |
3. Diesel fuel and lubricant | 5217 | 1269 | 2469 | 8772 |
4. Agrochemicals | 385 | 231 | 0 | 1278 |
5. Nitrogen | 7147 | 3099 | 0 | 16,824 |
6. Other chemical fertilizers | 865 | 389 | 0 | 2171 |
7. Farmyard manure | 298 | 796 | 0 | 4500 |
8. Seeds | 33 | 8 | 25 | 72 |
B. Energy indicators | ||||
1. Total energy input (MJ ha−1) | 15,209 | 4299 | 5188 | 27,887 |
2. Output energy (MJ ha−1) | 56,696 | 17,192 | 23,205 | 107,016 |
3. Yield (kg ha−1) | 2077 | 630 | 850 | 3920 |
Economic Indices (Unit) | Average (%) |
---|---|
a. Sale price (USD kg−1) | 0.54 |
b. Total production revenue (USD ha−1) | 1111 |
c. Variable cost of production (USD ha−1) | 491 (69.4%) |
d. Fixed cost of production (USD ha−1) | 216 (30.6%) |
e. Total cost of production per area unit (USD ha−1) | 707 (100%) |
f. Total cost of production per mass unit (USD kg−1) | 0.34 |
g. Benefit to cost ratio | 1.60 |
Impact Category | Unit | Average Characteristics (Unit ha−1) | Weighted Emissions (pPt ha−1) |
---|---|---|---|
1. Abiotic depletion | kg Sb eq | 6.5E-3 | 31.2 |
2. Abiotic depletion (fossil fuels) | MJ | 14,585.1 | 38.4 |
3. Global warming (GWP100a) | kg CO2 eq | 2454.0 | 58.6 |
4. Ozone layer depletion (ODP) | kg CFC-11 eq | 5.7E-5 | 0.2 |
5. Human toxicity | kg 1,4-DB eq | 466.2 | 180.9 |
6. Freshwater aquatic ecotoxicity | kg 1,4-DB eq | 1413.2 | 199.3 |
7. Marine aquatic ecotoxicity | kg 1,4-DB eq | 873,286.3 | 1502.0 |
8. Terrestrial ecotoxicity | kg 1,4-DB eq | 28.2 | 8.6 |
9. Photochemical oxidation | kg C2H4 eq | 1.1 | 30.8 |
10. Acidification | kg SO2 eq | 48.4 | 202.6 |
11. Eutrophication | kg PO43− eq | 37.3 | 235.9 |
Total | - | 2488.7 |
Parameters | Output Parameter | |||
---|---|---|---|---|
Output Energy | Benefit to Cost Ratio | Environmental Emissions Score | ||
Type of membership function | Input | Gbell | Gbell | Gbell |
Output | Linear | Linear | Linear | |
Number of membership function | Input | 7 | 7 | 7 |
Epoch | 32 | 32 | 32 | |
Error analysis | R2 | 0.90 | 0.87 | 0.92 |
Root mean square error (RMSE) | 5.35 | 0.15 | 266.92 | |
Mean absolute error (MAE) | 3.63 | 0.1 | 184.15 | |
Coefficient of variation of the root mean square error (CVRMSE) (%) | 9 | 9 | 11 | |
Normalized mean bias error (NMBE) (%) | 0.7 | -0.34 | -0.26 |
Decision-Making Unit | Labor (MJ ha−1) | Machinery | Fuel and Lubricant | Agrochemicals | Nitrogen | Other Chemical Fertilizers | Farmyard Manure (MJ ha−1) | Seeds | Total Energy Input | Energy Ratio | Output Energy | Environmental Score | B/C Ratio | Yield | Economical Productivity (kg MJ−1) | Energy Intensity | Net Energy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MJ ha−1 | MJ ha−1 | MJ ha−1 | MJ ha−1 | MJ ha−1 | MJ ha−1 | MJ ha−1 | MJ ha−1 | MJ ha−1 | - | MJ ha−1 | pPt ha−1 | - | kg ha−1 | kg MJ−1 | MJ kg−1 | MJ ha−1 | |
1 | 176 | 769 | 5048 | 602 | 9881 | 2167 | 1184 | 26 | 19,853 | 2.72 | 54,015 | 659 | 4.95 | 1979 | 0.10 | 10.0 | 34,162 |
2 | 252 | 1686 | 3310 | 393 | 4299 | 1540 | 920 | 46 | 12,446 | 5.23 | 65,111 | 2770 | 5.32 | 2385 | 0.19 | 5.2 | 52,664 |
3 | 77 | 582 | 4287 | 163 | 10,563 | 1751 | 910 | 31 | 18,362 | 3.55 | 65,111 | 1861 | 4.29 | 2385 | 0.13 | 7.7 | 46,748 |
4 | 243 | 1502 | 5088 | 383 | 9432 | 659 | 813 | 46 | 18,166 | 3.19 | 58,000 | 2977 | 5.44 | 2125 | 0.12 | 8.6 | 39,834 |
5 | 184 | 1091 | 2848 | 90 | 5342 | 1538 | 1179 | 35 | 12,308 | 3.92 | 48,222 | 683 | 3.76 | 1766 | 0.14 | 7.0 | 35,914 |
6 | 116 | 530 | 7244 | 786 | 7784 | 956 | 402 | 50 | 17,867 | 3.64 | 65,111 | 2999 | 5.12 | 2385 | 0.13 | 7.5 | 47,243 |
7 | 183 | 1370 | 7096 | 817 | 5727 | 1445 | 258 | 39 | 16,935 | 3.51 | 59,488 | 1203 | 3.69 | 2179 | 0.13 | 7.8 | 42,554 |
8 | 214 | 1662 | 3019 | 371 | 5352 | 781 | 4312 | 34 | 15,746 | 3.66 | 57,666 | 3161 | 5.38 | 2112 | 0.13 | 7.5 | 41,920 |
9 | 264 | 1178 | 4737 | 358 | 10,934 | 103 | 852 | 45 | 18,471 | 3.23 | 59,613 | 3014 | 4.95 | 2184 | 0.12 | 8.5 | 41,142 |
10 | 99 | 1072 | 4776 | 458 | 5127 | 709 | 668 | 39 | 12,947 | 3.96 | 51,320 | 2827 | 5.02 | 1880 | 0.15 | 6.9 | 38,372 |
11 | 97 | 1282 | 4822 | 433 | 5564 | 1416 | 684 | 39 | 14,339 | 4.06 | 58,149 | 2964 | 4.89 | 2130 | 0.15 | 6.7 | 43,811 |
12 | 196 | 922 | 3985 | 546 | 7792 | 1367 | 550 | 36 | 15,396 | 3.81 | 58,695 | 1107 | 3.21 | 2150 | 0.14 | 7.2 | 43,299 |
13 | 133 | 908 | 4511 | 623 | 4015 | 203 | 3269 | 27 | 13,688 | 3.37 | 46,193 | 3161 | 5.27 | 1692 | 0.12 | 8.1 | 32,505 |
14 | 143 | 1427 | 5602 | 135 | 1077 | 505 | 140 | 43 | 9074 | 7.74 | 70,265 | 422 | 2.09 | 2574 | 0.28 | 3.5 | 61,191 |
15 | 45 | 951 | 4477 | 653 | 9400 | 755 | 2948 | 31 | 19,259 | 3.38 | 65,111 | 3161 | 4.58 | 2385 | 0.12 | 8.1 | 45,851 |
16 | 176 | 750 | 5362 | 271 | 4495 | 921 | 263 | 38 | 12,275 | 3.82 | 46,918 | 2956 | 5.02 | 1719 | 0.14 | 7.1 | 34,642 |
17 | 81 | 1230 | 5773 | 726 | 9907 | 770 | 358 | 35 | 18,881 | 3.45 | 65,111 | 396 | 2.15 | 2385 | 0.13 | 7.9 | 46,229 |
18 | 258 | 1434 | 4823 | 192 | 7437 | 111 | 3180 | 27 | 17,460 | 3.40 | 59,371 | 3161 | 4.70 | 2175 | 0.12 | 8.0 | 41,910 |
19 | 194 | 1579 | 7084 | 233 | 7872 | 345 | 1448 | 25 | 18,780 | 3.95 | 74,092 | 3161 | 4.19 | 2714 | 0.14 | 6.9 | 55,312 |
20 | 97 | 1273 | 7242 | 807 | 4009 | 1500 | 818 | 26 | 15,773 | 3.77 | 59,488 | 334 | 2.15 | 2179 | 0.14 | 7.2 | 43,715 |
21 | 218 | 1072 | 3427 | 375 | 11,449 | 735 | 390 | 27 | 17,693 | 3.68 | 65,111 | 588 | 2.15 | 2385 | 0.13 | 7.4 | 47,418 |
22 | 142 | 1472 | 5065 | 1152 | 5234 | 715 | 252 | 34 | 14,066 | 4.46 | 62,772 | 544 | 2.15 | 2299 | 0.16 | 6.1 | 48,706 |
23 | 250 | 1803 | 2651 | 122 | 8112 | 975 | 1360 | 36 | 15,310 | 4.91 | 75,251 | 2770 | 3.61 | 2756 | 0.18 | 5.6 | 59,940 |
24 | 151 | 572 | 5044 | 556 | 1402 | 151 | 219 | 56 | 8151 | 6.80 | 55,418 | 2695 | 4.19 | 2030 | 0.25 | 4.0 | 47,267 |
25 | 266 | 1757 | 6185 | 342 | 3801 | 1171 | 168 | 45 | 13,735 | 4.74 | 65,111 | 2770 | 3.90 | 2385 | 0.17 | 5.8 | 51,375 |
26 | 266 | 1785 | 6263 | 484 | 3434 | 244 | 53 | 35 | 12,565 | 4.73 | 59,488 | 3184 | 4.45 | 2179 | 0.17 | 5.8 | 46,924 |
27 | 87 | 643 | 6022 | 294 | 2779 | 1557 | 1714 | 28 | 13,123 | 4.36 | 57,267 | 478 | 2.18 | 2098 | 0.16 | 6.3 | 44,144 |
28 | 99 | 1048 | 5176 | 217 | 10,121 | 626 | 846 | 34 | 18,168 | 3.58 | 65,111 | 648 | 2.01 | 2385 | 0.13 | 7.6 | 46,943 |
29 | 151 | 1010 | 4882 | 379 | 7555 | 1344 | 93 | 42 | 15,456 | 3.54 | 54,692 | 2814 | 4.19 | 2003 | 0.13 | 7.7 | 39,236 |
30 | 329 | 1759 | 6972 | 552 | 3332 | 1341 | 3448 | 45 | 17,777 | 3.35 | 59,488 | 385 | 1.95 | 2179 | 0.12 | 8.2 | 41,711 |
Min | 45 | 530 | 2651 | 90 | 1077 | 103 | 53 | 25 | 8151 | 2.72 | 46,193 | 334 | 1.95 | 1692 | 0.10 | 3.5 | 32,505 |
Max | 329 | 1803 | 7244 | 1152 | 11,449 | 2167 | 4312 | 56 | 19,853 | 7.74 | 75,251 | 3184 | 5.44 | 2756 | 0.28 | 10.0 | 61,191 |
Current Situation | Optimum Situation | Difference | Difference (%) | |
---|---|---|---|---|
A. Energy inputs (MJ ha−1) | ||||
1. Labor | 143 | 173 | 30 | 21.1 |
2. Machinery | 1121 | 1204 | 83 | 7.4 |
3. Diesel fuel and lubricant | 5217 | 5094 | −123 | −2.4 |
4. Agrochemicals | 385 | 450 | 65 | 17.0 |
5. Nitrogen | 7147 | 6441 | −706 | −9.9 |
6. Other chemical fertilizers | 865 | 947 | 82 | 9.5 |
7. Farmyard manure | 298 | 1123 | 826 | 277.2 |
8. Seeds | 33 | 37 | 3 | 9.9 |
B. Energy and environmental indices | ||||
1. Total energy input (MJ ha−1) | 15,209 | 15,469 | 260 | 1.7 |
2. Energy ratio | 3.73 | 4.05 | 0.32 | 8.7 |
3. Output energy (MJ ha−1) | 56,696 | 60,225 | 3530 | 6.2 |
4. Environmental final score (pPt ha−1) | 2489 | 1995 | −494 | −19.8 |
5. B/C ratio | 1.60 | 3.90 | 2.30 | 144.3 |
6. Yield (kg ha−1) | 2077 | 2206 | 129 | 6.2 |
7. Economical productivity (kg $−1) | 0.14 | 0.15 | 0.01 | 6.0 |
8. Energy intensity (MJ kg−1) | 7.32 | 7.06 | −0.26 | −3.6 |
9. Net energy (MJ ha−1) | 41,487 | 44,756 | 3269 | 7.9 |
Particular | Average | SD | Min | Max |
---|---|---|---|---|
Technical efficiency | 0.91 | 0.10 | 0.64 | 1 |
Pure technical efficiency | 0.95 | 0.06 | 0.74 | 1 |
Scale efficiency | 0.96 | 0.06 | 0.73 | 1 |
Optimum Situation | Difference | Difference (%) | |
---|---|---|---|
A. Energy inputs (MJ ha−1) | |||
1. Labor | 117 | −26 | −18 |
2. Machinery | 1007 | −114 | −10 |
3. Diesel fuel and lubricant | 4589 | −628 | −12 |
4. Agrochemicals | 339 | −46 | −12 |
5. Nitrogen | 6665 | −482 | −7 |
6. Other chemical fertilizers | 819 | −46 | −5 |
7. Farmyard manure | 272 | −26 | −9 |
8. Seeds | 30.9 | −2.5 | −7 |
B. Energy and environmental indices | |||
1. Total energy input (MJ ha−1) | 13,838 | −1370 | −9 |
2. Energy ratio | 3.79 | 0.06 | 1 |
3. Output energy (MJ ha−1) | 52,380 | −4315 | −8 |
4. Environmental final score (pPt ha−1) | 2377 | −112 | −5 |
5. B/C ratio | 1.32 | −0.28 | −18 |
6. Yield (kg ha−1) | 1919 | −158 | −8 |
7. Economical productivity (kg $−1) | 2.44 | −0.52 | −18 |
8. Energy intensity (MJ kg−1) | 7.21 | −0.11 | −2 |
9. Net energy (MJ ha−1) | 38,542 | −2945 | −7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi-Avval, S.H.; Rafiee, S.; Mohammadi, A. Development and Evaluation of Combined Adaptive Neuro-Fuzzy Inference System and Multi-Objective Genetic Algorithm in Energy, Economic and Environmental Life Cycle Assessments of Oilseed Production. Sustainability 2021, 13, 290. https://doi.org/10.3390/su13010290
Mousavi-Avval SH, Rafiee S, Mohammadi A. Development and Evaluation of Combined Adaptive Neuro-Fuzzy Inference System and Multi-Objective Genetic Algorithm in Energy, Economic and Environmental Life Cycle Assessments of Oilseed Production. Sustainability. 2021; 13(1):290. https://doi.org/10.3390/su13010290
Chicago/Turabian StyleMousavi-Avval, Seyed Hashem, Shahin Rafiee, and Ali Mohammadi. 2021. "Development and Evaluation of Combined Adaptive Neuro-Fuzzy Inference System and Multi-Objective Genetic Algorithm in Energy, Economic and Environmental Life Cycle Assessments of Oilseed Production" Sustainability 13, no. 1: 290. https://doi.org/10.3390/su13010290
APA StyleMousavi-Avval, S. H., Rafiee, S., & Mohammadi, A. (2021). Development and Evaluation of Combined Adaptive Neuro-Fuzzy Inference System and Multi-Objective Genetic Algorithm in Energy, Economic and Environmental Life Cycle Assessments of Oilseed Production. Sustainability, 13(1), 290. https://doi.org/10.3390/su13010290