Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy
Abstract
1. Introduction
2. Materials and Methods
2.1. Array Costs
2.2. Required Land
2.3. Emissions Reduction
2.4. Job Creation
2.5. Lithium-Ion Storage Costs
3. Results
3.1. Array Costs and Required Land
3.2. Required Land
3.3. Emissions Reduction
3.4. Job Creation
3.5. Lithium-Ion Storage
3.6. Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- United States of America House of Representative. H. Res. 109: Recognizing the Duty of the Federal Government to Create a Green New Deal; United States of America House of Representative: Washington, DC, USA, 2019.
- Dinesh, H.; Pearce, J. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Barron-Gafford, G.; Pavao-Zuckerman, M.; Minor, R.; Sutter, L.; Barnett-Moreno, I.; Blackett, D.; Thompson, M.; Dimond, K.; Gerlak, A.; Nabhan, G.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39. [Google Scholar] [CrossRef]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, UAE, 2020; ISBN 9789292602444. [Google Scholar]
- SEIA Solar Industry Data. Available online: https://www.seia.org/solar-industry-research-data (accessed on 7 July 2020).
- Gençer, E.; Miskin, C.; Sun, X.; Khan, M.R.; Bermel, P.; Alam, M.A.; Agrawal, R. Directing solar photons to sustainably meet food, energy, and water needs. Sci. Rep. 2017, 7, 3133. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Sorensen, A.A.; Freedgood, J.; Dempsey, J.; Theobald, D.M. Farms under Threat: The State of America’s Farmland; American Farmland Trust: Washington, DC, USA, 2018. [Google Scholar]
- Graham, S.M.; Ates, A.; Melathopoulos, A.; Moldenke, C.H. Pollinator-Focused Solar: Observations of Plant-Pollinator Interactions in the Agrivoltaic Understory; Oregon State University: Corvallis, OR, USA, 2020. [Google Scholar]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Veissier, I.; Van laer, E.; Palme, R.; Moons, C.P.H.; Ampe, B.; Sonck, B.; Andanson, S.; Tuyttens, F.A.M. Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int. J. Biometeorol. 2018, 62, 585–595. [Google Scholar] [CrossRef]
- Maia, A.S.C.; de Culhari, E.A.; de Fonsêca, V.F.C.; Milan, H.F.M.; Gebremedhin, K.G. Photovoltaic panels as shading resources for livestock. J. Clean. Prod. 2020, 258, 120551. [Google Scholar] [CrossRef]
- Parkinson, S.; Hunt, J. Economic Potential for Rainfed Agrivoltaics in Groundwater-Stressed Regions. Environ. Sci. Technol. Lett. 2020. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Younas, R.; Imran, H.; Riaz, M.H.; Butt, N. Agrivoltaic Farm Design: Vertical Bifacial vs. Tilted Monofacial Photovoltaic Panels. arXiv 2019, arXiv191001076. [Google Scholar]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.-M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Ravi, S.; Lobell, D.B.; Field, C.B. Tradeoffs and Synergies between Biofuel Production and Large Solar Infrastructure in Deserts. Environ. Sci. Technol. 2014, 48, 3021–3030. [Google Scholar] [CrossRef]
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 2017, 23, 104–110. [Google Scholar] [CrossRef]
- Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’acob, A.M.; Jaafar, H.Z.E. Embracing new agriculture commodity through integration of Java Tea as high Value Herbal crops in solar PV farms. J. Clean. Prod. 2015, 91, 71–77. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S. Shade Effects on Phaseolus vulgaris L. Intercropped with Zea mays L. under Well-Watered Conditions. J. Agron. Crop Sci. 2004, 190, 168–176. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Cheng, Y.; Raza, M.A.; Wu, X.; Wang, Z.; Liu, Q.; Wang, R.; Wang, X.; Yong, T.; et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS ONE 2018, 13, e0198159. [Google Scholar] [CrossRef]
- Aroca-delgado, R.; Jos, P.; Jes, Á. Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability 2018, 10, 743. [Google Scholar] [CrossRef]
- Liu, X.; Elgowainy, A.; Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem. 2020, 22, 5751–5761. [Google Scholar] [CrossRef]
- Cox, S.; Gagnon, P.; Stout, S.; Zinaman, O.; Watson, A.; Hotchkiss, E. Distributed Generation to Support Development-Focused Climate Action; National Renewable Energy Lab: Golden, CO, USA, 2016. [CrossRef]
- Wiser, R.; Millstein, D.; Mai, T.; Macknick, J.; Carpenter, A.; Cohen, S.; Cole, W.; Frew, B.; Heath, G. The environmental and public health benefits of achieving high penetrations of solar energy in the United States. Energy 2016, 113, 472–486. [Google Scholar] [CrossRef]
- Baird, R. The Impact of Climate Change on Minorities and Indigenous Peoples; Minority Rights Group International: London, UK, 2008. [Google Scholar]
- Islam, S.; Winkel, J. Climate Change and Social Inequality; DESA Working Paper No. 152; ST/ESA/2017/DWP/152; Department of Economic & Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- Hand, M.M.; Baldwin, S.; DeMeo, E.; Reilly, J.M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D. Renewable Electricity Futures Study; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Energy Information Administration. Annual Electric Generator Report EIA Form-860 d; United States Energy Information Administration: Washington, DC, USA, 2019.
- Electric Power Monthly: Table 6.07.B. Capacity Factors for Utility Scale Generators Primarily Using Non-Fossil Fuels. Available online: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b (accessed on 19 December 2020).
- Jordan, D.; Kurtz, S. Overview of Field Experience-Degradation Rates & Lifetimes; NREL National Renewable Energy Laboratory: Golden, CO, USA, 2015.
- Energy Information Administration. Frequently Asked Questions How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11#:~:text=In 2018%2C total U.S. electricity,of CO2 emissions per kWh (accessed on 5 July 2020).
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandre, M.D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hondo, H.; Moriizumi, Y. Employment creation potential of renewable power generation technologies: A life cycle approach. Renew. Sustain. Energy Rev. 2017, 79, 128–136. [Google Scholar] [CrossRef]
- Ould Amrouche, S.; Rekioua, D.; Rekioua, T.; Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrog. Energy 2016, 41, 20914–20927. [Google Scholar] [CrossRef]
- Fu, R.; Remo, T.; Margolis, R. 2018 U.S. Utility-Scale PhotovoltaicsPlus-Energy Storage System Costs Benchmark; National Renewable Energy Laboratory: Golden, CO, USA, 2018.
- Energy Information Administration State Electricity Profile. Available online: https://www.eia.gov/electricity/state/ (accessed on 7 February 2020).
- Freyman, T.; Tran, T. Renewable Energy Discount Rate Survey Results—2018. Available online: https://www.grantthornton.co.uk/insights/renewable-energy-discount-rate-survey-2018/ (accessed on 7 July 2020).
- US EPA Greenhouse Gas Emissions from a Typical Passenger Vehicle. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdf (accessed on 1 July 2020).
- United States Office of Management and Budget Budget of the United States Government. Available online: https://www.govinfo.gov/app/collection/budget/2019/BUDGET-2019-TAB (accessed on 8 September 2020).
- Majumdar, D.; Pasqualetti, M.J. Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landsc. Urban Plan. 2018, 170, 150–168. [Google Scholar] [CrossRef]
- Hassanpour, E.; Good, S.; Calaf, M.; Higgins, C. Solar PV Power Potential is Greatest over Croplands. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Carley, S.; Konisky, D. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5. [Google Scholar] [CrossRef]
- Blattner, C. Just Transition for Agriculture? A Critical Step in Tackling Climate Change. J. Agric. Food Syst. Community Dev. 2020, 9, 1–6. [Google Scholar] [CrossRef]
- Carley, S.; Evans, T.P.; Konisky, D.M. Adaptation, culture, and the energy transition in American coal country. Energy Res. Soc. Sci. 2018, 37, 133–139. [Google Scholar] [CrossRef]
- Cameron, L.; van der Zwaan, B. Employment factors for wind and solar energy technologies: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 160–172. [Google Scholar] [CrossRef]
- Brabec, E.; Smith, C. Agricultural land fragmentation: The spatial effects of three land protection strategies in the eastern United States. Landsc. Urban Plan. 2002, 58, 255–268. [Google Scholar] [CrossRef]
- Carlisle, L.; de Wit, M.M.; De Longe, M.S.; Calo, A.; Getz, C.; Ory, J.; Munden-Dixon, K.; Galt, R.; Melone, B.; Knox, R.; et al. Securing the future of US agriculture: The case for investing in new entry sustainable farmers. Elem. Sci. Anthr. 2019, 7. [Google Scholar] [CrossRef]
- Pender, J.; Thomas, H.; John, C.; Tracey, F. Rural America at a Glance; 2019 Edition Economic Information Bulletin No. EIB-212; USDA Economic Research Service: Washington, DC, USA, 2019.
Green New Deal Goal (Text Directly Quoted from US H. Res. 109 [2]) | Alignment with Agrivoltaic Systems |
---|---|
“ (A) to achieve net-zero greenhouse gas emissions through a fair and just transition for all communities and workers” |
|
“(B) to create millions of good, high-wage jobs and ensure prosperity and economic security for all people of the United States;” |
|
“(C) to invest in the infrastructure and industry of the United States to sustainably meet the challenges of the 21st century;” |
|
“(D) to secure for all people of the United States for generations to come—
|
|
“(E) to promote justice and equity by stopping current, preventing future, and repairing historic oppression of indigenous peoples, communities of color, migrant communities, deindustrialized communities, depopulated rural communities, the poor, low-income workers, women, the elderly, the unhoused, people with disabilities, and youth (referred to in this resolution as “frontline and vulnerable communities”)” |
|
Input Parameter | Base Value | Perturbed Value | Response NPV (Billion $) | Relative Sensitivity |
---|---|---|---|---|
Electricity Generation (GWh) | 824,000 | 906,400 | 39.29 | 1 |
Capacity Factor (−) | 0.245 | 0.270 | 107.57 | 20.12 |
Capex ($/watt) | 2 | 2.20 | −34.76 | −19.73 |
O & M ($/kWh/year) | 19 | 20.90 | 27.16 | −2.40 |
Discount rate (−) | 0.06 | 0.066 | −3.54 | −10.99 |
Project Life (year) | 25 | 27.5 | 58.09 | 6.26 |
Electricity price ($/kWh) | 0.1053 | 0.1158 | 118.33 | 23.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proctor, K.W.; Murthy, G.S.; Higgins, C.W. Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy. Sustainability 2021, 13, 137. https://doi.org/10.3390/su13010137
Proctor KW, Murthy GS, Higgins CW. Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy. Sustainability. 2021; 13(1):137. https://doi.org/10.3390/su13010137
Chicago/Turabian StyleProctor, Kyle W., Ganti S. Murthy, and Chad W. Higgins. 2021. "Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy" Sustainability 13, no. 1: 137. https://doi.org/10.3390/su13010137
APA StyleProctor, K. W., Murthy, G. S., & Higgins, C. W. (2021). Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy. Sustainability, 13(1), 137. https://doi.org/10.3390/su13010137