Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Array Costs
2.2. Required Land
2.3. Emissions Reduction
2.4. Job Creation
2.5. Lithium-Ion Storage Costs
3. Results
3.1. Array Costs and Required Land
3.2. Required Land
3.3. Emissions Reduction
3.4. Job Creation
3.5. Lithium-Ion Storage
3.6. Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- United States of America House of Representative. H. Res. 109: Recognizing the Duty of the Federal Government to Create a Green New Deal; United States of America House of Representative: Washington, DC, USA, 2019.
- Dinesh, H.; Pearce, J. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Barron-Gafford, G.; Pavao-Zuckerman, M.; Minor, R.; Sutter, L.; Barnett-Moreno, I.; Blackett, D.; Thompson, M.; Dimond, K.; Gerlak, A.; Nabhan, G.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39. [Google Scholar] [CrossRef]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, UAE, 2020; ISBN 9789292602444. [Google Scholar]
- SEIA Solar Industry Data. Available online: https://www.seia.org/solar-industry-research-data (accessed on 7 July 2020).
- Gençer, E.; Miskin, C.; Sun, X.; Khan, M.R.; Bermel, P.; Alam, M.A.; Agrawal, R. Directing solar photons to sustainably meet food, energy, and water needs. Sci. Rep. 2017, 7, 3133. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Sorensen, A.A.; Freedgood, J.; Dempsey, J.; Theobald, D.M. Farms under Threat: The State of America’s Farmland; American Farmland Trust: Washington, DC, USA, 2018. [Google Scholar]
- Graham, S.M.; Ates, A.; Melathopoulos, A.; Moldenke, C.H. Pollinator-Focused Solar: Observations of Plant-Pollinator Interactions in the Agrivoltaic Understory; Oregon State University: Corvallis, OR, USA, 2020. [Google Scholar]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Veissier, I.; Van laer, E.; Palme, R.; Moons, C.P.H.; Ampe, B.; Sonck, B.; Andanson, S.; Tuyttens, F.A.M. Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int. J. Biometeorol. 2018, 62, 585–595. [Google Scholar] [CrossRef]
- Maia, A.S.C.; de Culhari, E.A.; de Fonsêca, V.F.C.; Milan, H.F.M.; Gebremedhin, K.G. Photovoltaic panels as shading resources for livestock. J. Clean. Prod. 2020, 258, 120551. [Google Scholar] [CrossRef]
- Parkinson, S.; Hunt, J. Economic Potential for Rainfed Agrivoltaics in Groundwater-Stressed Regions. Environ. Sci. Technol. Lett. 2020. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Younas, R.; Imran, H.; Riaz, M.H.; Butt, N. Agrivoltaic Farm Design: Vertical Bifacial vs. Tilted Monofacial Photovoltaic Panels. arXiv 2019, arXiv191001076. [Google Scholar]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.-M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Lobell, D.B.; Field, C.B. Tradeoffs and Synergies between Biofuel Production and Large Solar Infrastructure in Deserts. Environ. Sci. Technol. 2014, 48, 3021–3030. [Google Scholar] [CrossRef]
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 2017, 23, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’acob, A.M.; Jaafar, H.Z.E. Embracing new agriculture commodity through integration of Java Tea as high Value Herbal crops in solar PV farms. J. Clean. Prod. 2015, 91, 71–77. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S. Shade Effects on Phaseolus vulgaris L. Intercropped with Zea mays L. under Well-Watered Conditions. J. Agron. Crop Sci. 2004, 190, 168–176. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Cheng, Y.; Raza, M.A.; Wu, X.; Wang, Z.; Liu, Q.; Wang, R.; Wang, X.; Yong, T.; et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS ONE 2018, 13, e0198159. [Google Scholar] [CrossRef]
- Aroca-delgado, R.; Jos, P.; Jes, Á. Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability 2018, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Elgowainy, A.; Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem. 2020, 22, 5751–5761. [Google Scholar] [CrossRef]
- Cox, S.; Gagnon, P.; Stout, S.; Zinaman, O.; Watson, A.; Hotchkiss, E. Distributed Generation to Support Development-Focused Climate Action; National Renewable Energy Lab: Golden, CO, USA, 2016. [CrossRef] [Green Version]
- Wiser, R.; Millstein, D.; Mai, T.; Macknick, J.; Carpenter, A.; Cohen, S.; Cole, W.; Frew, B.; Heath, G. The environmental and public health benefits of achieving high penetrations of solar energy in the United States. Energy 2016, 113, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Baird, R. The Impact of Climate Change on Minorities and Indigenous Peoples; Minority Rights Group International: London, UK, 2008. [Google Scholar]
- Islam, S.; Winkel, J. Climate Change and Social Inequality; DESA Working Paper No. 152; ST/ESA/2017/DWP/152; Department of Economic & Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- Hand, M.M.; Baldwin, S.; DeMeo, E.; Reilly, J.M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D. Renewable Electricity Futures Study; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Energy Information Administration. Annual Electric Generator Report EIA Form-860 d; United States Energy Information Administration: Washington, DC, USA, 2019.
- Electric Power Monthly: Table 6.07.B. Capacity Factors for Utility Scale Generators Primarily Using Non-Fossil Fuels. Available online: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b (accessed on 19 December 2020).
- Jordan, D.; Kurtz, S. Overview of Field Experience-Degradation Rates & Lifetimes; NREL National Renewable Energy Laboratory: Golden, CO, USA, 2015.
- Energy Information Administration. Frequently Asked Questions How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11#:~:text=In 2018%2C total U.S. electricity,of CO2 emissions per kWh (accessed on 5 July 2020).
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandre, M.D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hondo, H.; Moriizumi, Y. Employment creation potential of renewable power generation technologies: A life cycle approach. Renew. Sustain. Energy Rev. 2017, 79, 128–136. [Google Scholar] [CrossRef]
- Ould Amrouche, S.; Rekioua, D.; Rekioua, T.; Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrog. Energy 2016, 41, 20914–20927. [Google Scholar] [CrossRef]
- Fu, R.; Remo, T.; Margolis, R. 2018 U.S. Utility-Scale PhotovoltaicsPlus-Energy Storage System Costs Benchmark; National Renewable Energy Laboratory: Golden, CO, USA, 2018.
- Energy Information Administration State Electricity Profile. Available online: https://www.eia.gov/electricity/state/ (accessed on 7 February 2020).
- Freyman, T.; Tran, T. Renewable Energy Discount Rate Survey Results—2018. Available online: https://www.grantthornton.co.uk/insights/renewable-energy-discount-rate-survey-2018/ (accessed on 7 July 2020).
- US EPA Greenhouse Gas Emissions from a Typical Passenger Vehicle. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdf (accessed on 1 July 2020).
- United States Office of Management and Budget Budget of the United States Government. Available online: https://www.govinfo.gov/app/collection/budget/2019/BUDGET-2019-TAB (accessed on 8 September 2020).
- Majumdar, D.; Pasqualetti, M.J. Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landsc. Urban Plan. 2018, 170, 150–168. [Google Scholar] [CrossRef]
- Hassanpour, E.; Good, S.; Calaf, M.; Higgins, C. Solar PV Power Potential is Greatest over Croplands. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Carley, S.; Konisky, D. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5. [Google Scholar] [CrossRef]
- Blattner, C. Just Transition for Agriculture? A Critical Step in Tackling Climate Change. J. Agric. Food Syst. Community Dev. 2020, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Carley, S.; Evans, T.P.; Konisky, D.M. Adaptation, culture, and the energy transition in American coal country. Energy Res. Soc. Sci. 2018, 37, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Cameron, L.; van der Zwaan, B. Employment factors for wind and solar energy technologies: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Brabec, E.; Smith, C. Agricultural land fragmentation: The spatial effects of three land protection strategies in the eastern United States. Landsc. Urban Plan. 2002, 58, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Carlisle, L.; de Wit, M.M.; De Longe, M.S.; Calo, A.; Getz, C.; Ory, J.; Munden-Dixon, K.; Galt, R.; Melone, B.; Knox, R.; et al. Securing the future of US agriculture: The case for investing in new entry sustainable farmers. Elem. Sci. Anthr. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Pender, J.; Thomas, H.; John, C.; Tracey, F. Rural America at a Glance; 2019 Edition Economic Information Bulletin No. EIB-212; USDA Economic Research Service: Washington, DC, USA, 2019.
Green New Deal Goal (Text Directly Quoted from US H. Res. 109 [2]) | Alignment with Agrivoltaic Systems |
---|---|
“ (A) to achieve net-zero greenhouse gas emissions through a fair and just transition for all communities and workers” |
|
“(B) to create millions of good, high-wage jobs and ensure prosperity and economic security for all people of the United States;” |
|
“(C) to invest in the infrastructure and industry of the United States to sustainably meet the challenges of the 21st century;” |
|
“(D) to secure for all people of the United States for generations to come—
|
|
“(E) to promote justice and equity by stopping current, preventing future, and repairing historic oppression of indigenous peoples, communities of color, migrant communities, deindustrialized communities, depopulated rural communities, the poor, low-income workers, women, the elderly, the unhoused, people with disabilities, and youth (referred to in this resolution as “frontline and vulnerable communities”)” |
|
Input Parameter | Base Value | Perturbed Value | Response NPV (Billion $) | Relative Sensitivity |
---|---|---|---|---|
Electricity Generation (GWh) | 824,000 | 906,400 | 39.29 | 1 |
Capacity Factor (−) | 0.245 | 0.270 | 107.57 | 20.12 |
Capex ($/watt) | 2 | 2.20 | −34.76 | −19.73 |
O & M ($/kWh/year) | 19 | 20.90 | 27.16 | −2.40 |
Discount rate (−) | 0.06 | 0.066 | −3.54 | −10.99 |
Project Life (year) | 25 | 27.5 | 58.09 | 6.26 |
Electricity price ($/kWh) | 0.1053 | 0.1158 | 118.33 | 23.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proctor, K.W.; Murthy, G.S.; Higgins, C.W. Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy. Sustainability 2021, 13, 137. https://doi.org/10.3390/su13010137
Proctor KW, Murthy GS, Higgins CW. Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy. Sustainability. 2021; 13(1):137. https://doi.org/10.3390/su13010137
Chicago/Turabian StyleProctor, Kyle W., Ganti S. Murthy, and Chad W. Higgins. 2021. "Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy" Sustainability 13, no. 1: 137. https://doi.org/10.3390/su13010137