Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production
Abstract
:1. Introduction
2. Conservation Agriculture and ZT—Brief Synthesis of the Literature and Syrian Experience
2.1. Synthesis of the Literature
2.2. History of Conservation Agriculture (CA) in Syria
3. Data
4. Methodology
5. Results
6. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture, Trends and Challenges; Food and Agriculture Organisation: Rome, Italy, 2017. [Google Scholar]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the global spread of conservation agriculture. J. Field Actions Field Actions Sci. Rep. Spec. 2012, 6. Available online: http://factsreports.revues.org/1941 (accessed on 13 December 2013).
- Belloum, A. Conservation Agriculture in the Arab World between Concept and Application. Conservation Agriculture for Sustainable Land Management to Improve the Livelihood of People in Dry Areas. 2014. Available online: http://www.fao.org/ag/ca/doc/CA%20Workshop%20procedding%2008-08-08.pdf (accessed on 17 January 2014).
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2018. [Google Scholar] [CrossRef]
- Fulton, M. Foreword. In Landscapes Transformed: The History of Conservation Tillage and Direct Seeding; Lindwall, C., Sonntag, B., Eds.; Knowledge Impact in Society: Saskatoon, SK, Canada, 2010; pp. 9–14. Available online: http://www.kis.usask.ca/ZeroTill/LandscapesTransformedHistoryofCTBook.pdf (accessed on 13 December 2013).
- Horowitz, J.; Ebel, R.; Ueda, K. No-till farming is a growing practice. In Economic Information Bulletin, No. 70; Economic Research Service, USDA: Washington, DC, USA, 2010. Available online: http://www.ers.usda.gov/publications/eib-economic-information-bulletin/eib70.aspx (accessed on 13 December 2013).
- Lewellyn, R.S.; D’Emden, F.H.; Kuehne, G. Extensive use of no-tillage in grain growing regions of Australia. Field Crops Res. 2012, 132, 204–212. [Google Scholar] [CrossRef]
- Marandola, D.; Belliggiano, A.; Romagnoli, L.; Levoli, C. The spread of no-till in conservation agriculture systems in Italy: Indications for rural development policy-making. Agric. Econ. 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Piggin, C.; Haddad, A.; Khalil, Y. Development and promotion of zero tillage in Iraq and Syria. In Proceedings of the 5th World Congress on Conservation Agriculture, Brisbane, Australia, 26–29 September 2011; pp. 304–305. [Google Scholar]
- El-Shater, T.; Yigezu, Y.A.; Mugera, A.W.; Piggin, C.; Haddad, A.; Khalil, Y.; Loss, S.; Aw-Hassan, A. Does Zero Tillage improve the Livelihoods of Smallholder Cropping Farmers? J. Agric. Econ. 2016, 67, 154–172. [Google Scholar] [CrossRef]
- Ribera, L.; Hons, F.; Richardson, J. An economic comparison between conventional and no-tillage farming systems in Burleson County, Texas. Agron. J. 2004, 96, 415–424. [Google Scholar] [CrossRef]
- International Center for Agricultural Research in the Dry Areas (ICARDA). Conservation Agriculture: Opportunities for Intensified Farming and Environmental Conservation in Dry Areas. ICARDA Research to Action 2; International Center for Agricultural Research in the Dry: Aleppo, Syria, 2012; Available online: http://www.icarda.org/sites/default/files/conv-agree.pdf. (accessed on 17 January 2014).
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 2013. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, T.K.; Sharma, D.; Gupta, K. Potential of conservation agriculture for ecosystem services: A review. Indian J. Agric. Sci. 2019, 89, 1572–1579. [Google Scholar]
- Chimsah, F.A.; Cai, L.; Wu, J.; Zhang, R. Outcomes of long-term conservation tillage research in northern China. Sustainability 2020, 12, 1062. [Google Scholar] [CrossRef] [Green Version]
- Ayuke, F.O.; Kihara, J.; Ayaga, G.; Micheni, A.N. Conservation agriculture enhances soil fauna richness and abundance in low input systems: Examples from Kenya. Front. Environ. Sci. 2019, 7, 97. [Google Scholar] [CrossRef]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation technologies by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Greiner, R.; Patterson, L.; Miller, O. Motivations, risk perceptions and adoption of conservation practices by farmers. Agric. Syst. 2009, 99, 86–104. [Google Scholar] [CrossRef]
- Jha, D.; Hojjati, B.; Vosti, S. The Use of improved agricultural technology in Eastern Province. In Adopting Improved Farm Technology: A Study of Smallholder Farmers in Eastern Province, Zambia; Celis, R., Milimo, J.T., Wanmali, S., Eds.; Intl Food Policy Research Inst: Washington, DC, USA, 1990. [Google Scholar]
- Smale, M.; Kaunda, Z.H.W.; Makina, H.L.; Mkandawire, M.M.M.K.; Msowoya, M.N.S.; Mwale, D.J.E.K.; Heisey, P.W. Chimanga Cha Makolo, Hybrids and Composites: An Analysis of Farmers’ Adoption of Maize Technolgoies in Malawi, 1989–1991; CIMMYT Economics Working Paper 91/04; CIMMYT: Mexico City, Mexico, 1991. [Google Scholar]
- Feder, G.; Richard, E.J.; David, Z. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, R.S.; Kamal, V.; Dhaliwal, H.S. Conservation agriculture in Punjab: Economic implications of technologies and practices. Indian J. Agric. Econ. 2010, 53, 1413–1427. [Google Scholar]
- Erenstein, O.; Laxmi, V. Zero tillage impacts in India’s rice-wheat systems: A review. Soil Tillage Res. 2008, 100, 1–14. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Yang, Z.; Mugera, A.; Zhang, F. Investigating yield variability and inefficiency in rice production: A case study in central China. Sustainability 2016, 8, 787. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Sicular, T. Aging of the labor force and technical efficiency in crop production: Evidence from Liaoning province, China. China Agric. Econ. Rev. 2013, 5, 342–359. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Glauben, T.; Brümmer, B. The impact of land reallocation on technical efficiency: Evidence from China. Agric. Econ. 2011, 42, 495–507. [Google Scholar] [CrossRef]
- Alvarez, A.; Arias, C. Technical efficiency and farm size: A conditional analysis. Agric. Econ. 2004, 30, 241–250. [Google Scholar] [CrossRef]
- Gorton, M.; Davidova, S. Farm productivity and efficiency in the CEE applicant countries: A synthesis of results. Agric. Econ. 2004, 30, 1–16. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Rossi, F.; Amjath-Babu, T.S.; Veettil, P.C.; Krupnik, T.J. Application of a bias-corrected meta frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia. J. Prod. Anal. 2018, 49, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Just, R.E.; Pope, R.D. Production Function Estimation and Related Risk Considerations. Am. J. Agric. Econ. 1979, 61, 276–284. [Google Scholar] [CrossRef]
- Battese, G.E.; Rambaldi, A.N.; Wan, G.H. A stochastic frontier production function with flexible risk properties. J. Prod. Anal. 1997, 8, 269–280. [Google Scholar] [CrossRef]
- Wang, H.J. Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model. J. Prod. Anal. 2002, 18, 241–253. [Google Scholar] [CrossRef]
- El-Mashaleh, M.S.; Rababeh, S.M.; Hyari, K.H. Utilizing data envelopment analysis to benchmark safety performance of construction contractors. Int. J. Proj. Manag. 2010, 28, 61–67. [Google Scholar] [CrossRef]
- Wei, C.K.; Chen, L.C.; Li, R.K.; Tsai, C.H.; Huang, H.L. A study of optimal weights of data envelopment analysis—Development of a context-dependent DEA-R model. Expert Syst. Appl. 2012, 39, 4599–4608. [Google Scholar] [CrossRef]
- Wilson, P.; Hadley, D.; Ashby, C. The influence of management characteristics on the technical efficiency of wheat farmers in Eastern England. Agric. Econ. 2001, 24, 329–338. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.; Schmidt, P. Formulation and Estimation of Stochastic Production Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA and R; Springer: New York, NY, USA, 2011. [Google Scholar]
- Coelli, T.J. A Computer Program for Frontier Production Function Estimation: Frontier. Version 2.0. Econ. Lett. 1992, 39, 29–32. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LP: College Station, TX, USA, 2017. [Google Scholar]
Governorates Included in the Sample | Districts Included in the Survey | ||||||
---|---|---|---|---|---|---|---|
District Name | Number of Villages Included in the Sample | Total Population in the Sample Villages | Sample Size from the District: | ||||
Whole Sample | Randomly Selected | ||||||
Total | Wheat Producer 1 | Total | Wheat Producers | ||||
Aleppo | Al Bab | 1 | 650 | 36 | 25 | 18 | 12 |
Ein Al Arab | 2 | 700 | 40 | 31 | 36 | 21 | |
Sama’an | 2 | 800 | 26 | 19 | 36 | 22 | |
Sfiera | 1 | 900 | 43 | 33 | 18 | 11 | |
Al-haska | Kamshly | 4 | 347 | 96 | 75 | 70 | 43 |
Tel-Hamis | 1 | 66 | 31 | 23 | 18 | 11 | |
Malkia | 1 | 190 | 25 | 19 | 18 | 12 | |
Amoda | 1 | 270 | 21 | 16 | 18 | 11 | |
Hasaka | 1 | 700 | 62 | 49 | 18 | 12 | |
Ras-Alain | 1 | 600 | 22 | 17 | 18 | 11 | |
Edleb | Khan-Shikon | 1 | 400 | 23 | 17 | 18 | 11 |
Almara | 4 | 3270 | 174 | 131 | 70 | 43 | |
Hamah | Slmiah | 3 | 2400 | 94 | 71 | 54 | 33 |
Sabora | 2 | 1200 | 50 | 38 | 36 | 22 | |
Homs | Ksier | 1 | 380 | 26 | 18 | 18 | 12 |
Deraa | Alshajra | 1 | 410 | 25 | 19 | 18 | 10 |
Alswieda | Salked | 1 | 800 | 26 | 20 | 18 | 11 |
Total | 28 | 14,083 | 820 | 621 | 500 | 308 |
Variables | Average Values for the Entire Sample of 621 Farmers | Average Values only for the Random Sample of 308 Farmers | |||||
---|---|---|---|---|---|---|---|
Unit | Adopters | Non-Adopters | Total | Adopters | Non-Adopters | Total | |
Number of farmers | Number | 249 | 372 | 621 | 15 | 293 | 308 |
Average farming experience of household head (^) | Years | 23.7 | 27.5 | 26.0 | 18.7 | 26.8 | 26.5 |
Average education level of household heads (^) (***) | Years | 4.2 | 3.0 | 3.5 | 3.9 | 2.8 | 2.9 |
Proportion of farmers with salinity-affected soil *** | % | 5.2 | 23.7 | 16.3 | 0.0 | 27.3 | 26.0 |
Average time since farmer started using ZT (***) | Years | 2.1 | 0.0 | 0.8 | 2.0 | 0.0 | 0.1 |
Proportion of farmers who are in zone one (a) (^) | % | 33.0 | 36.0 | 34.8 | 33 | 36 | 36 |
Total area (average) cultivated (^) (***) | Hectare | 40.0 | 19.2 | 27.5 | 10.7 | 17.9 | 17.5 |
Total wheat area (average) cultivated (***) | Hectare | 20.8 | 8.7 | 13.6 | 8.7 | 7.6 | 7.7 |
Proportion of farmers who know about ZT technology (^) (***) | % | 100.0 | 59.4 | 75.5 | 100.0 | 50.0 | 52.6 |
Average distance to the nearest input market (^) | Km | 13.8 | 15.4 | 14.7 | 13.0 | 18.0 | 17.7 |
Average value of total assets in million Syrian Pounds (^) | Million SYP | 1.6 | 1.6 | 1.6 | 1.9 | 1.6 | 1.6 |
Average time since the farmer first heard about ZT technology | Year | 2.3 | 1.0 | 1.6 | 2.2 | 1.0 | 1.1 |
Area under ZT (***) | (Ha) | 15.2 | 0.0 | 6.1 | 8.6 | 0.0 | 0.0 |
Proportion of area under the ZT technology (**) | % | 73.4 | 0.0 | 32.4 | 95.2 | 0.0 | 8.0 |
Average tillage cost (**) | SYP/ha | 98 | 1800 | 1117.6 | 300 | 1700 | 1632 |
Average herbicides cost | SYP/ha | 947 | 603 | 741 | 1000 | 550 | 572 |
Average seed quantity (^) (***) | (kg/ha) | 110.7 | 145.1 | 131.3 | 118 | 140 | 138.9 |
Average fertilizer quantity (^) (*) | (kg/ha) | 107.2 | 150.8 | 133.3 | 120 | 145 | 143 |
Average labor inputs (^) (***) | (hour/ha) | 22.7 | 36.6 | 31 | 24 | 35 | 34.5 |
Proportion of farmers using improved wheat variety (^) (***) | % | 66.2 | 33.8 | 65.7 | 59 | 51 | 51.4 |
Average yield | kg ha−1 | 1727.1 | 1242.5 | 1436.8 | 1740 | 1251.8 | 1275.5 |
Average net wheat income (**) | SYP/ha | 37,995 | 27,335 | 31,610 | 38,207 | 27,535 | 28,055 |
Variable | Unrestricted Risk Function | Restricted Risk Function | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
Deterministic function | ||||
Seed | 0.124 *** | 0.047 | 0.037 | 0.053 |
Labor | −0.054 ** | 0.027 | −0.083 *** | 0.030 |
Phosphorus | −0.001 | 0.009 | −0.001 | 0.010 |
Nitrogen | 0.081 *** | 0.011 | 0.057 *** | 0.010 |
Plant date (0,1) | −0.140 *** | 0.047 | −0.343 *** | 0.061 |
Graze on crop residues (0,1) | −0.282 *** | 0.054 | −0.068 | 0.054 |
Use ZT (0,1) | 0.415 *** | 0.034 | 0.328 *** | 0.038 |
Level of education | −0.033 *** | 0.011 | −0.042 *** | 0.014 |
Experience (year) | 0.000 | 0.002 | 0.000 | 0.002 |
Constant | 6.965 *** | 0.268 | 7.608 *** | 0.297 |
Risk function | ||||
Seed | −0.215 | 0.362 | - | - |
Labor | −0.160 | 0.175 | - | - |
Phosphorus | −0.160 ** | 0.074 | - | - |
Nitrogen | −0.160 ** | 0.078 | - | - |
Plant date (0,1) | −0.436 * | 0.245 | - | - |
Graze on crop residues (0,1) | 0.532 ** | 0.279 | ||
Use ZT (0,1) | −0.571 ** | 0.248 | - | - |
Soil depth (0,1) | −0.105 | 0.542 | - | - |
Soil salinity (0,1) | 0.138 | 0.245 | - | - |
Constant | −0.418 | 1.864 | - | - |
Inefficiency function | ||||
Plant date (0,1) | 0.804 *** | 0.290 | −0.021 | 0.330 |
Graze on crop residues (0,1) | −1.310 *** | 0.450 | 0.189 | 0.320 |
Level of education | −0.403 *** | 0.099 | −0.305 *** | 0.093 |
Experience (year) | −0.012 | 0.010 | −0.003 | 0.014 |
Soil depth (0,1) | 1.095 *** | 0.378 | 0.942 ** | 0.396 |
Soil salinity (0,1) | 0.155 | 0.251 | 0.977 *** | 0.226 |
Constant | −0.306 | 0.484 | −1.257 * | 0.735 |
Sigma-squared | 0.176 *** | 0.035 | 0.176 *** | 0.035 |
Gamma | 0.906 *** | 0.162 | 0.906 *** | 0.162 |
Log-likelihood function | −212.3 | −237.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shater, T.; Mugera, A.; Yigezu, Y.A. Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production. Sustainability 2020, 12, 3640. https://doi.org/10.3390/su12093640
El-Shater T, Mugera A, Yigezu YA. Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production. Sustainability. 2020; 12(9):3640. https://doi.org/10.3390/su12093640
Chicago/Turabian StyleEl-Shater, Tamer, Amin Mugera, and Yigezu A. Yigezu. 2020. "Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production" Sustainability 12, no. 9: 3640. https://doi.org/10.3390/su12093640
APA StyleEl-Shater, T., Mugera, A., & Yigezu, Y. A. (2020). Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production. Sustainability, 12(9), 3640. https://doi.org/10.3390/su12093640