Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador)
Abstract
:1. Introduction
2. Review of the Literature
3. Materials and Methods
3.1. Study Area
3.2. Waste Management System
3.3. Market Demand
3.4. Methodology
3.4.1. Assessment of Avoided Emissions
- For the production of plastic, the emissions associated with energy consumption for the production of virgin plastic pellets are considered;
- For paper and cardboard, the emissions associated with anaerobic decomposition into the landfill are taken into account;
- For glass, emissions associated with energy consumption for the production of virgin glass containers corresponding to the preparation and mixing of raw materials during the melting stage are considered;
- For metal, emissions associated with energy consumption for the production of virgin iron are taken into consideration.
- Glass waste only replaces the preparation and mixing of raw materials prior to the melting stage;
- The only source of energy consumed is electricity. Fossil fuels are not used;
- The remaining steps of glass production in containers are not considered.
3.4.2. Socioeconomic Analysis
3.5. Survey Data
4. Results and Discussion
4.1. Emissions Avoided
4.2. Socio-Descriptive Analysis of Recyclers in Cuenca
4.3. CE Model and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Material (i) | Volume | Virgin Resources (1,2,3,4) | Recycled Resources (1,2,3,4) | Adjustment Factor | Emission Factor (5) | CH4 Emission Factor (6) | ||
---|---|---|---|---|---|---|---|---|
(Qi) | SECBl,i | SFCBl,i | SEC rec | Li (7) | EF el,y | EF FF,CO2 | BECH4,SWDS | |
PET | 44 | 1.11 | 4.16 | 0.83 | 0.75 | 0.18 | 0.2 | - |
HDPE | 52 | 0.83 | 4.16 | 0.83 | 0.75 | 0.18 | 0.2 | - |
LDPE | 53 | 1.67 | 4.16 | 0.83 | 0.75 | 0.18 | 0.2 | - |
PP | - | 0.56 | 3.2 | 0.83 | 0.75 | 0.18 | - | - |
Glass | 72 | 0.026 | - | 0.02 (10) | 0.88 | 0.18 | - | - |
Paper/cardboard | 306 | 4.98 | - | 1.47 | 0.82 (8) | 0.18 | - | 8.95 |
Iron | 67 | 6.84 | - | 0.9 | 0.68 (9) | 0.18 | - | - |
- (1)
- Gomes and Nóbrega [82]
- (2)
- Pimenteira et al. [83]
- (3)
- King and Gutberlet [25]
- (4)
- UNFCCC [22]
- (5)
- Calculated in lines 268–271. Specific heat data came from Parra [76]
- (6)
- Calculated from line 327 onwards.
- (7)
- Rigamonti et al. [84]
- (8)
- Merrild et al. [85]
- (9)
- Damgaard et al. [86]
- (10)
- Colling et al. [81]
Recycler Profile | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Age | ||||||||||||||
Woman | 74% | Dispersion | 14–77 | ||||||||||||
Men | 26% | Average | 55 | ||||||||||||
Social Characterization | |||||||||||||||
Education Level | Living place | ||||||||||||||
Literate | Primary | Homeownership | Habitants per home | Rooms | Services | General condition | |||||||||
Yes | 78% | Yes | 60% | Yes | 45% | Dispersion | 1–10 | Average | 2 | Drinking water | 93% | Swerage | 74% | Good | 29% |
No | 22% | No | 40% | No | 65% | Population | 4 | Pepople per room | 2 | Telephone | 27% | Internet | 9% | Medium | 57% |
Electricity | 96% | School | 77% | Bad | 10% | ||||||||||
Sanitary facilities | 88% | Health center | 61% | ||||||||||||
Carbage collection | 84% | ||||||||||||||
Labor Condition | |||||||||||||||
Year as recycler | Socail Security | Working hours | Association Member | Internet in associating | Initial interest in the activity | Precious work | |||||||||
Dispersion | 0.1–40 | State | 18% | Week days | 4.5 | Yes | 21% | Yes | 39% | Curiosity | 13% | Lake of moner | 70% | yes | 98% |
Average | 9.9 | None | 82% | Daily hours | 6.7 | No | 79% | No | 61% | Family tradition | 1% | Extra time | 12% | No | 2% |
Motor vehicle | Do another activity | Family recyclers | Collection Volume | Material processing | Municiplal support | ||||||||||
Yes | 1% | Yes | 41% | Yes | 21% | Volume (t/month) | 1.1 | Selection and classification | 69% | Torn | 55 | Others | 0% | Yes | 33% |
No | 99% | No | 59% | No | 79% | Cleaning | 5% | Trituration | 0% | No | 16% | ||||
Compaction | 4% | Reuse | 2% | ||||||||||||
Economic Profile | |||||||||||||||
Monthly income from recycling | Family contribution | Departdent relatives | Family income | ||||||||||||
0$–100$ | 94% | Yes | 21% | Dispersion | 1–10 | Dispesion | 50$–700$ | ||||||||
100$–200$ | 6% | No | 79% | Family member | 2 | Money income | 220$ | ||||||||
Occupational health | |||||||||||||||
Work satisfaction | Quality of life | Life improvement | Actual problems | Feel valued | Healthy food | Habits | PPE | ||||||||
Happy | 26% | Good | 4% | Got better | 5% | Money | 54% | Yes | 54% | Yes | 73% | Alcohol | 7% | Yes | 61% |
Regular | 32% | Medium | 49% | Same | 34% | Health | 32% | No | 26% | No | 27% | Smoke | 11% | No | 39% |
Discontent-compliant | 27% | Bad | 34% | Got worse | 45% | Public support | 57% | Doesn’t work | 20% | ||||||
Nonconforming | 6% | Security | 39% | ||||||||||||
Work accidents | 15% | ||||||||||||||
Problems between recyclers | 6% |
References
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Van Buren, N.; Demmers, M.; van der Heijden, R.; Witlox, F. Towards a circular economy: The role of Dutch logistics industries and governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Ellen, M.; Company, M. Towards the Circular Economy: Accelerating the scale-up across global supply chains. World Econ. Forum 2014, 3, 1–64. [Google Scholar]
- Johnston, R.B. Arsenic and the 2030 Agenda for sustainable development. In Proceedings of the 6th International Congress on Arsenic in the Environment (As2016), Stockholm, Sweden, 19–23 June 2016; pp. 12–14. [Google Scholar]
- Feldman, L.; Hart, P.S. Climate change as a polarizing cue: Framing e ff ects on public support for low-carbon energy policies. Glob. Environ. Chang. 2018, 51, 54–66. [Google Scholar] [CrossRef]
- Mccright, A.M.; Charters, M.; Dentzman, K. Examining the Effectiveness of Climate Change Frames in the Face of a Climate Change Denial Counter-Frame. Top. Cogn. Sci. 2016, 8, 76–97. [Google Scholar] [CrossRef]
- Walker, J.A.; Kurz, T.; Russel, D. University of Bath Towards an understanding of when non-climate frames can generate public support for climate change policy University of Exeter, United Kingdom NOTE. Environ. Behav. 2018, 50, 781–806. [Google Scholar]
- Petrovic, N.; Madrigano, J.; Zaval, L. Motivating mitigation: When health matters more than climate change. Clim. Chang. 2014, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.; Mingo, S.; Fernandez, V. Strategic management in Latin America: Challenges in a changing world. J. Bus. Res. 2019, 105, 306–309. [Google Scholar] [CrossRef]
- Desarrollo, B.I. De Creciendo con Productividad: Una Agenda Para la Región Andina; Creciendo con Product: Andalusia, Spain, 2018. [Google Scholar]
- Constitución de la Republica del Ecuador Publicación del Registro Oficial 449 de 20 de octubre de. 2008. Available online: https://www.oas.org/juridico/pdfs/mesicic4_ecu_const.pdf (accessed on 14 April 2020).
- Gudynas, E. Value, Growth, Development: South American Lessons for a New Ecopolitics. Capital. Nat. Social. 2019, 30, 234–243. [Google Scholar] [CrossRef]
- Latorre, S.; Malo-Larrea, A. Policy-making Related Actors’ Understandings About Nature-society Relationship: Beyond Modern Ontologies? The Case of Cuenca, Ecuador. Ecol. Econ. 2019, 156, 387–396. [Google Scholar] [CrossRef]
- Vallejo, M.C. Biophysical structure of the Ecuadorian economy, foreign trade, and policy implications. Ecol. Econ. 2010, 70, 159–169. [Google Scholar] [CrossRef]
- Latorre, S.; Farrell, K.N.; Martínez-Alier, J. The commodification of nature and socio-environmental resistance in Ecuador: An inventory of accumulation by dispossession cases, 1980-2013. Ecol. Econ. 2015, 116, 58–69. [Google Scholar] [CrossRef]
- WorldBank Ecuador. Available online: https://data.worldbank.org/country/ecuador (accessed on 29 February 2020).
- Instituto Nacional Ecuatoriano de Cifras Estadística de Información Ambiental Económica en Gobiernos Autónomos Descentralizados Municipales 2015, Gestión Integral de Residuos Sólidos. Available online: https://anda.inec.gob.ec/anda/index.php/catalog/639 (accessed on 1 April 2020).
- Instituto Nacional Ecuatoriano de Cifras Información Ambiental en hogares. 2014. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Hogares_2014/Modulo_ECV/Resultados Principales ECV Ambiental.pdf (accessed on 1 April 2020).
- EMAC-EP Relleno sanitario Pichacay. Available online: https://www.emac.gob.ec/?q=content/relleno-sanitario-de-pichacay. (accessed on 4 January 2020).
- Cossu, R.; Williams, I.D. Urban mining: Concepts, terminology, challenges. Waste Manag. 2015, 45, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Iniciativa Regional del Reciclaje Reciclaje inclusivo y recicladores de base en Ecuador. Available online: https://www.yumpu.com/en/document/read/54482978/libro-reciclaje-inclusivo-y-recicladores-de-base-en-ecuador (accessed on 5 April 2020).
- United Nation Framework Convention on Climate Change Recovery and recycling of materials from solid wastes. Available online: https://cdm.unfccc.int/filestorage/2/P/Y/2PYNW9CMSL14D8JH3BZAVF7QOKTE6G/EB100_repan07_AMS-III.AJ.pdf?t=UVl8cTh3aHVxfDAStbVkXp4Otys00yexMEf1 (accessed on 14 April 2020).
- United Nation Framework Convention on Climate Change Tool to calculate the emission factor for an electricity system. Available online: https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-07-v7.0.pdf (accessed on 5 April 2020).
- United Nation Framework Convention on Climate Change Emissions from Solid Waste Disposal Sites. Available online: https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-04-v8.0.pdf (accessed on 5 April 2020).
- King, M.F.; Gutberlet, J. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil. Waste Manag. 2013, 33, 2771–2780. [Google Scholar] [CrossRef] [PubMed]
- Parchomenko, A.; Nelen, D.; Gillabel, J.; Rechberger, H. Measuring the circular economy - A Multiple Correspondence Analysis of 63 metrics. J. Clean. Prod. 2019, 210, 200–216. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Morioka, S.N.; de Carvalho, M.M.; Evans, S. Business models and supply chains for the circular economy. J. Clean. Prod. 2018, 190, 712–721. [Google Scholar] [CrossRef]
- Stewart, R.; Niero, M. Circular economy in corporate sustainability strategies: A review of corporate sustainability reports in the fast-moving consumer goods sector. Bus. Strateg. Environ. 2018, 27, 1005–1022. [Google Scholar] [CrossRef] [Green Version]
- Ellen MacArthur Completing the Picture. How the Circular Economy Tackles Climate Change. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/Completing_The_Picture_How_The_Circular_Economy-_Tackles_Climate_Change_V3_26_September.pdf (accessed on 15 April 2020).
- Kyriakopoulos, G.L.; Kapsalis, V.C.; Aravossis, K.G.; Zamparas, M.; Mitsikas, A. Evaluating circular economy under a multi-parametric approach: A technological review. Sustainability 2019, 11, 6139. [Google Scholar] [CrossRef] [Green Version]
- Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular economy performance assessment methods: A systematic literature review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Ong, B.H.Y.; Klemeš, J.J.; Tan, R.R.; Varbanov, P.S. Circular Integration of processes, industries, and economies. Renew. Sustain. Energy Rev. 2019, 107, 507–515. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Calderón Márquez, A.J.; Cassettari Filho, P.C.; Rutkowski, E.W.; de Lima Isaac, R. Landfill mining as a strategic tool towards global sustainable development. J. Clean. Prod. 2019, 226, 1102–1115. [Google Scholar] [CrossRef]
- Gusukuma, M.; Kahhat, R. Electronic waste after a digital TV transition: Material flows and stocks. Resour. Conserv. Recycl. 2018, 138, 142–150. [Google Scholar] [CrossRef]
- Park, J.; Díaz-Posada, N.; Mejía-Dugand, S. Challenges in implementing the extended producer responsibility in an emerging economy: The end-of-life tire management in Colombia. J. Clean. Prod. 2018, 189, 754–762. [Google Scholar] [CrossRef]
- Margallo, M.; Ziegler-Rodriguez, K.; Vázquez-Rowe, I.; Aldaco, R.; Irabien, Á.; Kahhat, R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Sci. Total Environ. 2019, 689, 1255–1275. [Google Scholar] [CrossRef] [PubMed]
- Mikulčić, H.; Baleta, J.; Klemeš, J.J. Sustainability through combined development of energy, water and environment systems. J. Clean. Prod. 2020, 251. [Google Scholar] [CrossRef]
- Méndez-Fajardo, S.; Böni, H.; Vanegas, P.; Sucozhañay, D. Improving Sustainability of E-waste Management Through the Systemic Design of Solutions: The Cases of Colombia and Ecuador; Butterworth-Heinemann: Oxford, UK, 2020; ISBN 9780128170304. [Google Scholar]
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal solid waste generation, composition, and management: The world scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.C.; Gorritty Portillo, M.A.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Paredes, C.; López, M.; López-Lluch, D.B.; Gavilanes-Terán, I.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Jaramillo, D.; Játiva, E.; Kaparaju, P. Waste-To-Energy Technologies: An opportunity of energy recovery from Municipal Solid Waste, using Quito - Ecuador as case study. Energy Procedia 2017, 134, 327–336. [Google Scholar] [CrossRef]
- Stern, J.; Southgate, D.; Strasma, J. Improving garbage collection in Latin America’s slums: Some lessons from Machala, Ecuador. Resour. Conserv. Recycl. 1997, 20, 219–224. [Google Scholar] [CrossRef]
- Ministerio del Ambiente Ecuador Programa Nacional para la Gestión Integral de Desechos Sólidos. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2016/02/PNGIDS.pdf (accessed on 8 April 2020).
- Botello-Álvarez, J.E.; Rivas-García, P.; Fausto-Castro, L.; Estrada-Baltazar, A.; Gomez-Gonzalez, R. Informal collection, recycling and export of valuable waste as transcendent factor in the municipal solid waste management: A Latin-American reality. J. Clean. Prod. 2018, 182, 485–495. [Google Scholar] [CrossRef]
- Brunner, P.H. Urban Mining A Contribution to Reindustrializing the City. Ind. Ecol. 2011, 15. [Google Scholar] [CrossRef]
- Gutberlet, J. Cooperative urban mining in Brazil: Collective practices in selective household waste collection and recycling. Waste Manag. 2015, 45, 22–31. [Google Scholar] [CrossRef]
- Aparcana, S. Approaches to formalization of the informal waste sector into municipal solid waste management systems in low- and middle-income countries: Review of barriers and success factors. Waste Manag. 2017, 61, 593–607. [Google Scholar] [CrossRef] [Green Version]
- Fidelis, R.; Colmenero, J.C. Evaluating the performance of recycling cooperatives in their operational activities in the recycling chain. Resour. Conserv. Recycl. 2018, 130, 152–163. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef]
- Vinyes, E.; Oliver-Solà, J.; Ugaya, C.; Rieradevall, J.; Gasol, C.M. Application of LCSA to used cooking oil waste management. Int. J. Life Cycle Assess. 2013, 18, 445–455. [Google Scholar] [CrossRef]
- Hacer Ak, W.B. Sustainable Municipal Solid Waste Management Decision Making: Development and Implementation of a Single Score Sustainability Index. Available online: https://www.emerald.com/insight/content/doi/10.1108/MEQ-03-2015-0028/full/pdf?title=sustainable-municipal-solid-waste-management-decision-making-development-and-implementation-of-a-single-score-sustainability-index (accessed on 15 April 2020).
- Lu, Y.T.; Lee, Y.M.; Hong, C.Y. Inventory analysis and social life cycle assessment of greenhouse gas emissions from waste-to-energy incineration in Taiwan. Sustainability 2017, 9, 1959. [Google Scholar] [CrossRef] [Green Version]
- Aparcana, S.; Salhofer, S. Application of a methodology for the social life cycle assessment of recycling systems in low income countries: Three Peruvian case studies. Int. J. Life Cycle Assess. 2013, 18, 1116–1128. [Google Scholar] [CrossRef]
- Ibáñez-Forés, V.; Bovea, M.D.; Coutinho-Nóbrega, C.; de Medeiros, H.R. Assessing the social performance of municipal solid waste management systems in developing countries: Proposal of indicators and a case study. Ecol. Indic. 2019, 98, 164–178. [Google Scholar] [CrossRef]
- Qu, S.; Guan, D.; Ma, Z.; Yi, X. A study on the optimal path of methane emissions reductions in a municipal solid waste landfill treatment based on the IPCC-SD model. J. Clean. Prod. 2019, 222, 252–266. [Google Scholar] [CrossRef]
- Potdar, A.; Singh, A.; Unnnikrishnan, S.; Naik, N.; Naik, M.; Nimkar, I. Innovation in solid waste management through Clean Development Mechanism in India and other countries. Process Saf. Environ. Prot. 2016, 101, 160–169. [Google Scholar] [CrossRef]
- John, B.; Luederitz, C.; Lang, D.J.; von Wehrden, H. Toward Sustainable Urban Metabolisms. From System Understanding to System Transformation. Ecol. Econ. 2019, 157, 402–414. [Google Scholar] [CrossRef]
- Sasson, A.; Malpica, C. Bioeconomy in Latin America. New Biotechnol. 2018, 40, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Velvizhi, G.; Shanthakumar, S.; Das, B.; Pugazhendhi, A.; Priya, T.S.; Ashok, B.; Nanthagopal, K.; Vignesh, R.; Karthick, C. Jo ur of. Sci. Total Environ. 2020, 138049. [Google Scholar] [CrossRef]
- Xavier, L.H.; Giese, E.C.; Ribeiro-Duthie, A.C.; Lins, F.A.F. Sustainability and the circular economy: A theoretical approach focused on e-waste urban mining. Resour. Policy 2019, 101467. [Google Scholar] [CrossRef]
- Instituto Nacional Ecuatoriano de Cifras Conozcamos Cuenca a través de sus cifras. Available online: http://www.ecuadorencifras.gob.ec/conozcamos-cuenca-a-traves-de-sus-cifras/ (accessed on 8 April 2020).
- Instituto Nacional Ecuatoriano de Cifras Censo de población y vivienda Ecuador 2010- Azuay. Available online: https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/ (accessed on 8 April 2020).
- Instituto Nacional Ecuatoriano de Cifras Encuesta nacional de empleo,desempleo y subempleo. Available online: https://www.ecuadorencifras.gob.ec/pobreza-diciembre-2019/ (accessed on 4 April 2020).
- Azuay una provincia con buenos niveles de actividad económica. Available online: https://www.ekosnegocios.com/articulo/azuay-una-provincia-con-buenos-niveles-de-actividad-economica (accessed on 4 April 2020).
- Parra, R. Inventario de Emisiones Atmosféricas del Cantón Cuenca. 2014. Available online: https://www.researchgate.net/publication/311789933_Inventario_de_Emisiones_Atmosfericas_del_Canton_Cuenca_2014 (accessed on 4 April 2020).
- EMAC-EP Sitema integral de reciclaje de la ciudad de Cuenca. Available online: https://www.emac.gob.ec. (accessed on 10 April 2020).
- EMAC-EP Reforma al Reglamento que Establece los Requisitos Para Obtener la Autorización Para Realizar Labores de Reciclaje de Residuos Sólidos Inorgánicos en el Cantón Cuenca. Available online: http://www.emac.gob.ec/sites/default/files/REGLAMENTODERECICLAJE.pdf (accessed on 10 April 2020).
- Jimbo, E.; Cajamarca, S. De cero a Dinero. Ciencias la Adm. y Econ. 2019, 9–67. [Google Scholar]
- Lago, E.D.; Boaretti, C.; Piovesan, F.; Roso, M.; Lorenzetti, A.; Modesti, M. The effect of different compatibilizers on the properties of a post-industrial PC/PET blend. Materials (Basel) 2018, 12, 1–14. [Google Scholar]
- Agencia de Regulación y Control de Electricidad Ecuador Estadística anual y multianual del sector eléctrico ecuatoriano. Available online: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2018/10/estadistica reducida.pdf (accessed on 8 February 2020).
- Agencia de Regulación y Control de Electricidad Estadística anual y multianual del sector eléctrico ecuatoriano. Available online: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2017/04/Est_2016_Anexos.pdf (accessed on 8 February 2020).
- Agencia de Regulación y Control de Electricidad Ecuador Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano. Available online: https://www.regulacionelectrica.gob.ec/wp-content/plugins/download-monitor/download.php?id=1652&force=0 (accessed on 8 February 2020).
- Parra Narváez, R. Factor de emisión de CO2 debido a la generación de electricidad en el Ecuador durante el periodo 2001-2014. ACI Av. en Ciencias e Ing. 2015, 7. [Google Scholar]
- Intergovernmental Panel on Climate Change Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (accessed on 8 February 2020).
- Chen, T.C.; Lin, C.F. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model. J. Hazard. Mater. 2008, 155, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.; Trois, C. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities. Waste Manag. 2013, 33, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.C.; Araba, A.O.; Chinwah, K.; Cheeseman, C.R. Building recycling rates through the informal sector. Waste Manag. 2009, 29, 629–635. [Google Scholar] [CrossRef]
- Colling, A.V.; Oliveira, L.B.; Reis, M.M.; Da Cruz, N.T.; Hunt, J.D. Brazilian recycling potential: Energy consumption and Green House Gases reduction. Renew. Sustain. Energy Rev. 2016, 59, 544–549. [Google Scholar] [CrossRef]
- Gomes, H.P.; Nóbrega, C.C. Economic viability study of a separate household waste collection in a developing country. J. Mater. Cycles Waste Manag. 2005, 7, 116–123. [Google Scholar] [CrossRef]
- Pimenteira, C.A.P.; Pereira, A.S.; Oliveira, L.B.; Rosa, L.P.; Reis, M.M.; Henriques, R.M. Energy conservation and CO 2 emission reductions due to recycling in Brazil. Waste Manag. 2004, 24, 889–897. [Google Scholar] [CrossRef]
- Rigamonti, L.; Grosso, M.; Giugliano, M. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems. Waste Manag. 2009, 29, 934–944. [Google Scholar] [CrossRef]
- Merrild, H.; Damgaard, A.; Christensen, T.H. Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration. Resour. Conserv. Recycl. 2008, 52, 1391–1398. [Google Scholar] [CrossRef]
- Damgaard, A.; Larsen, A.W.; Christensen, T.H. Recycling of metals: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 773–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Cuenca | Quito | Guayaquil |
---|---|---|---|
White paper | 15% | 10% | 12% |
Economic paper | 12% | 7% | 14% |
Cardboard | 15% | 17% | 16% |
Soft plastic (LDPE) | 13% | 10% | 13% |
Hard plastic (HDPE) | 11% | 8% | 9% |
Polyethylene terephthalate PET | 13% | 24% | 20% |
Glass | 6% | 3% | 11% |
Metals | 12% | 19% | 5% |
Electronic waste | 3% | 2% | 0% |
CUENCA | |||
---|---|---|---|
Material | Price (USD/kg) | Collection Volume (Kg/day) | Sales Volume (USD/day) |
Paperboard | 0.07 | 7.38 | 0.52 |
White paper | 0.09 | 6.04 | 0.54 |
Economic role | 0.08 | 2.37 | 0.19 |
Soft plastic | 0.14 | 3.51 | 0.49 |
Hard plastic | 0.11 | 3.59 | 0.39 |
Iron | 0.06 | 3.94 | 0.24 |
Glass | 0.13 | 4.4 | 0.57 |
Electronic equipment | 0.05 | 2.65 | 0.13 |
PET | 0.35 | 2.99 | 1.05 |
Total | 37 | 4.12 | |
Monthly per capita income | 123.4 |
Material (i) | Volume (t) | Baseline Emissions (tCO2-eq) | Recycled Material Emissions (tCO2-eq) | Emissions Reduction (tCO2-eq) | CH4 Emissions from Landfill Deviation (tCO2-eq) | Emissions Reduction per ton of Recycled Material (tCO2-eq) |
---|---|---|---|---|---|---|
HDPE | 52 | 38.27 | 7.76 | 30.51 | - | 0.59 |
LDPE | 53 | 47.67 | 7.91 | 39.76 | - | 0.75 |
PET | 44 | 34.04 | 6.57 | 27.47 | - | 0.62 |
Paper and cardboard | 306 | 224.92 | 80.96 | 143.96 | 2738.7 (b) | 0.047-9.42 (c) |
Glass | 72 | 0.036 | 0.00 | 0.036 | - | 0.005 (d) |
Iron (a) | 67 | 58 | 11 | 47.00 | - | 0.70 |
Total | 594 | 402,933.14 | 114.2 | 288,739.03 | 2738.7 | 0.48-4.61 |
Material (i) | Volume (t) | Baseline Emissions (tCO2-eq) | Recycled Material Emissions (tCO2-eq) | Emissions Reduction (tCO2-eq) | CH4 Emissions from Landfill Deviation (tCO2-eq) | Emissions Reduction per ton of Recycled Material (tCO2-eq) | |
---|---|---|---|---|---|---|---|
A: Total emissions avoided, 600 recyclers [69] | HDPE | 380.4 | 279.54 | 56.68 | 222.91 | - | 0.59 |
LDPE | 387.6 | 348.8 | 57.75 | 291.08 | - | 0.75 | |
PET | 318 | 245.81 | 47.38 | 198.43 | - | 0.62 | |
Paper and cardboard | 2298 | 1689.3 | 606.67 | 1082.35 | 20,567.1 | 0.047–9.42 | |
Glass | 526.8 | 0.263 | 0 | 0.262 | - | 0.005 | |
Iron | 490.2 | 424.02 | 80.393 | 343,62 | - | 0.70 | |
Total | 4401 | 2987.56 | 848.879 | 2138.68 | 20,567.1 | 0.48-4.61 | |
B: Total emissions avoided, 3472 recyclers [21] | HDPE | 2201.24 | 1617.9 | 327.98 | 1289.9 | - | 0.59 |
LDPE | 2242.9 | 2018.61 | 334.19 | 1684.41 | - | 0.75 | |
PET | 1840.16 | 1422.44 | 274.18 | 1148.25 | - | 0.62 | |
Paper and cardboard | 13,297.76 | 9773.85 | 3510.6 | 6263.24 | 119,014.95 | 0.047–9.42 | |
Glass | 3048.4 | 1524 | 0 | 1.524 | - | 0.005 | |
Iron | 2836.6 | 2453.65 | 465,202 | 1988.46 | - | 0.70 | |
Total | 22,630.46 | 17,288.03 | 4912.17 | 12,375.82 | 119,014.95 | 0.48-4.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burneo, D.; Cansino, J.M.; Yñiguez, R. Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador). Sustainability 2020, 12, 3406. https://doi.org/10.3390/su12083406
Burneo D, Cansino JM, Yñiguez R. Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador). Sustainability. 2020; 12(8):3406. https://doi.org/10.3390/su12083406
Chicago/Turabian StyleBurneo, Damián, José M. Cansino, and Rocio Yñiguez. 2020. "Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador)" Sustainability 12, no. 8: 3406. https://doi.org/10.3390/su12083406
APA StyleBurneo, D., Cansino, J. M., & Yñiguez, R. (2020). Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador). Sustainability, 12(8), 3406. https://doi.org/10.3390/su12083406