How Does the Composition of Asset Portfolios Affect Household Consumption: Evidence from China Based on Micro Data
Abstract
:1. Introduction
2. The Model and Data
2.1. The Model
2.2. The Data
3. Regression Result Analysis
3.1. Results of Wealth Effects
3.2. Results between Rural Households and Urban Households
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rural Households | Urban Households | |||||||||||
Living Con. | Developing Con. | Enjoying Con. | Living Con. | Developing Con. | Enjoying Con. | Living Con. | Developing Con. | Enjoying Con. | Living Con. | Developing Con. | Enjoying Con. | |
asset(t − 1) | 0.009 ** | 0.016 ** | 0.001 ** | 0.003 * | 0.007 * | 0.002 *** | ||||||
(0.003) | (0.005) | (0.000) | (0.002) | (0.003) | (0.001) | |||||||
Δp | 0.008 *** | 0.012 ** | 0.000 *** | 0.008 *** | 0.012 *** | 0.000 *** | 0.003 *** | 0.005 ** | 0.002 *** | 0.003 *** | 0.006 ** | 0.002 *** |
(0.002) | (0.004) | (0.000) | (0.002) | (0.004) | (0.000) | (0.001) | (0.002) | (0.000) | (0.001) | (0.002) | (0.000) | |
housing asset(t − 1) | 0.009 *** | 0.015 ** | 0.001 *** | 0.002 | 0.006 | 0.002 ** | ||||||
(0.002) | (0.005) | (0.000) | (0.002) | (0.004) | (0.001) | |||||||
financial asset(t − 1) | −0.036 | 0.015 | 0.006 | 0.008* | 0.005 | 0.002 * | ||||||
(0.020) | (0.008) | (0.003) | (0.004) | (0.004) | (0.001) | |||||||
production asset(t − 1) | 0.011*** | 0.016 ** | 0.000 | 0.001 | 0.010 ** | 0.002 ** | ||||||
(0.003) | (0.006) | (0.000) | (0.002) | (0.003) | (0.001) | |||||||
vehicle asset(t − 1) | 0.011 | 0.026 ** | 0.001 | 0.007 | 0.017 | −0.002 | ||||||
(0.008) | (0.008) | (0.000) | (0.007) | (0.009) | (0.003) | |||||||
durable asset(t − 1) | −0.042 | −0.046 | −0.008 | 0.008 ** | 0.009 * | 0.009 ** | ||||||
(0.048) | (0.056) | (0.007) | (0.003) | (0.004) | (0.003) | |||||||
income | 0.084 *** | 0.116 *** | 0.006 *** | 0.084 *** | 0.116 *** | 0.006 *** | 0.035 *** | 0.054 ** | 0.018 *** | 0.035 *** | 0.055 ** | 0.018 *** |
(0.017) | (0.030) | (0.001) | (0.018) | (0.031) | (0.001) | (0.010) | (0.021) | (0.004) | (0.010) | (0.021) | (0.003) | |
age | −0.005 | 0.007 | −0.001 | −0.006 | 0.007 | −0.001 | −0.011 | 0.002 | −0.001 | −0.012 | 0.002 | −0.001 |
(0.012) | (0.011) | (0.002) | (0.012) | (0.011) | (0.002) | (0.011) | (0.012) | (0.004) | (0.011) | (0.011) | (0.004) | |
gender | 0.554 | 1.002 | −0.059 | 0.448 | 0.976 | −0.051 | −0.004 | −0.310 | −0.228 | −0.019 | −0.290 | −0.226 |
(0.407) | (1.012) | (0.064) | (0.432) | (0.992) | (0.065) | (0.295) | (0.332) | (0.164) | (0.300) | (0.306) | (0.164) | |
educational year | 0.045 | 0.208 | 0.003 | 0.040 | 0.208 | 0.004 | −0.028 | 0.098 | 0.006 | −0.032 | 0.101 | 0.006 |
(0.078) | (0.150) | (0.008) | (0.079) | (0.146) | (0.008) | (0.059) | (0.085) | (0.023) | (0.060) | (0.084) | (0.022) | |
_Imarriage_2 | −0.308 | 0.025 | 0.028 | −0.328 | 0.014 | 0.029 | 0.029 | 0.193 | 0.144 | 0.047 | 0.175 | 0.148 |
(0.195) | (0.269) | (0.024) | (0.197) | (0.264) | (0.024) | (0.238) | (0.305) | (0.096) | (0.230) | (0.299) | (0.097) | |
_Imarriage_3 | 0.304 | 2.511 | 0.027 | 0.733 | 2.518 | −0.020 | 0.431 | 0.487 | 0.151 | 0.442 | 0.435 | 0.160 |
(0.764) | (2.743) | (0.042) | (0.976) | (2.713) | (0.056) | (0.390) | (0.412) | (0.134) | (0.382) | (0.409) | (0.138) | |
_Imarriage_4 | 0.002 | 0.169 | 0.057 | −0.052 | 0.150 | 0.060 | −0.740 * | −0.766 | 0.199 * | −0.741 * | −0.802 | 0.210 * |
(0.261) | (0.494) | (0.053) | (0.249) | (0.496) | (0.055) | (0.362) | (0.868) | (0.100) | (0.357) | (0.862) | (0.104) | |
_Imarriage_5 | −0.324 | 0.097 | 0.031 | −0.351 | 0.059 | 0.032 | −0.098 | −0.499 | 0.199 * | −0.092 | −0.515 | 0.200 * |
(0.236) | (0.300) | (0.028) | (0.238) | (0.285) | (0.028) | (0.263) | (0.698) | (0.094) | (0.257) | (0.695) | (0.095) | |
_Imarriage_6 | −0.644 ** | −0.024 | 0.030 | −0.653 ** | −0.032 | 0.031 | −0.100 | 0.304 | 0.076 | −0.082 | 0.302 | 0.079 |
(0.220) | (0.338) | (0.026) | (0.220) | (0.335) | (0.027) | (0.256) | (0.340) | (0.114) | (0.251) | (0.336) | (0.115) | |
_Iparty_2 | 0.075 | 0.134 | −0.043 | 0.031 | 0.126 | −0.039 | −0.034 | 0.255 | −0.023 | −0.027 | 0.243 | −0.021 |
(0.142) | (0.137) | (0.033) | (0.140) | (0.135) | (0.028) | (0.084) | (0.185) | (0.033) | (0.085) | (0.184) | (0.032) | |
_Iparty_3 | 0.324 | 0.709 | −0.063 | 0.397 | 0.722 | −0.065 | −0.156 | 0.662 | 0.137 | −0.097 | 0.676 | 0.140 |
(0.447) | (0.700) | (0.083) | (0.441) | (0.728) | (0.079) | (0.336) | (0.461) | (0.139) | (0.330) | (0.474) | (0.144) | |
_Iparty_4 | 0.061 | 0.164 | −0.069 | 0.048 | 0.168 | −0.067 | −0.169 | 0.328 | −0.046 | −0.142 | 0.316 | −0.041 |
(0.209) | (0.223) | (0.061) | (0.220) | (0.223) | (0.053) | (0.151) | (0.343) | (0.060) | (0.152) | (0.341) | (0.060) | |
ratio of people aged under 23 | −0.002 | 0.472 | 0.008 | −0.039 | 0.478 | 0.006 | −0.196 | 0.573 | 0.011 | −0.146 | 0.509 | 0.023 |
(0.436) | (0.488) | (0.076) | (0.436) | (0.493) | (0.068) | (0.531) | (0.814) | (0.161) | (0.514) | (0.815) | (0.161) | |
ratio of people aged over 55 | −0.706 | −0.419 | 0.005 | −0.717 | −0.398 | 0.008 | −0.562 | −1.011 | −0.038 | −0.571 | −0.978 | −0.041 |
(0.467) | (0.561) | (0.062) | (0.466) | (0.563) | (0.062) | (0.347) | (0.586) | (0.093) | (0.346) | (0.581) | (0.094) | |
family size | 0.140 * | −0.015 | −0.014 * | 0.136 * | −0.015 | −0.014 | 0.085 | −0.095 | −0.030 | 0.083 | −0.095 | −0.028 |
(0.055) | (0.076) | (0.007) | (0.056) | (0.076) | (0.007) | (0.111) | (0.082) | (0.037) | (0.110) | (0.083) | (0.037) | |
_cons | 0.278 | −2.856 | 0.185 | 0.648 | −2.802 | 0.159 | 3.166 ** | −0.219 | 0.376 | 3.285 ** | −0.217 | 0.341 |
(1.001) | (2.323) | (0.132) | (1.028) | (2.262) | (0.131) | (0.993) | (1.322) | (0.416) | (1.036) | (1.222) | (0.413) | |
year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 9966 | 9966 | 9966 | 9966 | 9966 | 9966 | 17,469 | 17,469 | 17,469 | 17,469 | 17,469 | 17,469 |
R2 | 0.142 | 0.166 | 0.030 | 0.163 | 0.168 | 0.043 | 0.057 | 0.070 | 0.089 | 0.063 | 0.073 | 0.095 |
References
- Chinese Rural Investigation Team of National Bureau of Statistics. Poverty Monitoring Report of Rural China (2018); China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Wang, M.; Yang, Y.; Zhang, B.; Liu, M.; Liu, Q. How Does Targeted Poverty Alleviation Policy Influence Residents’ Perceptions of Rural Living Conditions? A Study of 16 Villages in Gansu Province, Northwest China. Sustainability 2019, 11, 6944. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R.; Riskin, C. Income and Inequality in China: Composition, Distribution and Growth of Household Income, 1988 to 1995. China Q. 1998, 154, 221–253. [Google Scholar] [CrossRef]
- Gustafsson, B.; Shi, L.; Zhong, W. The distribution of wealth in urban China and in China as a whole in 1995. Rev. Income Wealth 2006, 52, 173–188. [Google Scholar] [CrossRef]
- Li, S.; Wei, Z.; Gustafsson, B. Distribution of wealth among urban and township households in China. Jingji Yanjiu (Econ. Res. J.) 2000, 3, 16–23. [Google Scholar]
- Meng, X. Wealth Accumulation and Distribution in Urban China. Econ. Dev. Cult. Chang. 2007, 55, 761–791. [Google Scholar] [CrossRef] [Green Version]
- United Nations General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 17 March 2020).
- Somanje, A.N.; Mohan, G.; Lopes, J.; Mensah, A. Challenges and Potential Solutions for Sustainable Urban-Rural Linkages in a Ghanaian Context. Sustainability 2020, 12, 507. [Google Scholar] [CrossRef] [Green Version]
- Koch, F.; Krellenberg, K. How to Contextualize SDG 11? Looking at Indicators for Sustainable Urban Development in Germany. ISPRS Int. J. Geo Inf. 2018, 7, 464. [Google Scholar] [CrossRef] [Green Version]
- Wan, G.; Zhang, Y.; Niu, J. Liquidity constraints, uncertainty and household consumption in China. Jingji Yanjiu (Econ. Res. J.) 2001, 11, 35–44. [Google Scholar]
- Li, T.; Chen, B. Real assets, wealth effect and household consumption: Analysis based on China household survey data. Jingji Yanjiu (Econ. Res. J.) 2014, 3, 62–75. [Google Scholar]
- Hang, B. Rural households’ buffer-stock saving with habit formation. Jingji Yanjiu (Econ. Res. J.) 2009, 1, 96–105. [Google Scholar]
- Cheng, L.; Zhang, Y. Does famine experience in childhood influence one’s saving decision? A new explanation of China’s high household saving rate. Jingji Yanjiu (Econ. Res. J.) 2011, 8, 119–132. [Google Scholar]
- Wei, S.-J.; Zhang, X. The Competitive Saving Motive: Evidence from Rising Sex Ratios and Savings Rates in China. J. Political Econ. 2011, 119, 511–564. [Google Scholar] [CrossRef]
- Caner, A.; Wolff, E.N. Asset poverty in the United States: Its Persistence in an Expansionary Economy. Available online: http://www.wealthandwant.com/issues/assetpoverty/ap_in_us_persistence.htm (accessed on 25 November 2019).
- Shefrin, H.M.; Thaler, R.H. The Behavioral Life-Cycle Hypothesis. Econ. Inq. 1988, 26, 609–643. [Google Scholar] [CrossRef]
- Sherraden, M. Stakeholding: Notes on a Theory of Welfare Based on Assets. Soc. Serv. Rev. 1990, 64, 580–601. [Google Scholar] [CrossRef]
- Brandolini, A.; Magri, S.; Smeeding, T.M. Asset-based measurement of poverty: Asset-Based Measurement of Poverty. J. Pol. Anal. Manag. 2010, 29, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Obiols-Homs, F.; Urrutia, C. Transitional Dynamics and the Distribution of Assets. Econ. Theory 2005, 25, 381–400. [Google Scholar] [CrossRef]
- Zimmerman, F.J.; Carter, M.R. Asset smoothing, consumption smoothing and the reproduction of inequality under risk and subsistence constraints. J. Dev. Econ. 2003, 71, 233–260. [Google Scholar] [CrossRef]
- Azpitarte, F. Measurement and identification of asset-poor households: A cross-national comparison of Spain and the United Kingdom. J. Econ. Inequal. 2011, 9, 87–110. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Hayashi, Y.; Cao, X. Evaluating Land-Use Change in Rapidly Urbanizing China: Case Study of Shanghai. J. Urban Plan. Dev. 2009, 135, 166–171. [Google Scholar] [CrossRef]
- Case, K.E.; Quigley, J.M.; Shiller, R.J. Comparing Wealth Effects: The Stock Market versus the Housing Market. Adv. Macroecon. 2005, 5, 1235. [Google Scholar] [CrossRef]
- Dvornak, N.; Kohler, M. Housing Wealth, Stock Market Wealth and Consumption: A Panel Analysis for Australia. Econ. Rec. 2007, 83, 117–130. [Google Scholar] [CrossRef]
- Ludwig, A.; Sløk, T. The Relationship between Stock Prices, House Prices and Consumption in OECD Countries. Top. Macroecon. 2004, 4. [Google Scholar] [CrossRef] [Green Version]
- Chowa, G.A.; Masa, R.D.; Sherraden, M. Wealth Effects of an Asset-Building Intervention Among Rural Households in Sub-Saharan Africa. J. Soc. Soc. Work Res. 2012, 3, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Sharma, E.; Alter, A.L. Financial Deprivation Prompts Consumers to Seek Scarce Goods. J. Consum. Res. 2012, 39, 545–560. [Google Scholar] [CrossRef]
- Jia, X.; Guo, P. Evolution of Rural Finance in China: Institutional “Lock In” or Gradualism? Sav. Dev. 2008, 32, 279–299. [Google Scholar]
- NBSC (China National Bureau of Statistics). China Statistical Yearbook 2008; China Statistics Press: Beijing, China, 2009. [Google Scholar]
- Li, S.; Wei, Z.; Ding, S. Empirical analysis on the inequality and the reason of China residents’ property distribution. Jingji Yanjiu (Econ. Res. J.) 2005, 6, 4–15. [Google Scholar]
- Chi, W.; Cai, X. Capital income and income inequality in urban area of China. Shuliang Jingji Jishu Yanjiu (J. Quant. Tech. Econ.) 2012, 2, 100–112. [Google Scholar]
- Liang, Y. Financial Reform, Property Income Growth and the Potential Impacts on Inequality in China. J. Econ. Issues 2009, 43, 389–401. [Google Scholar] [CrossRef]
- Bewley, T. The permanent income hypothesis: A theoretical formulation. J. Econ. Theory 1977, 16, 252–292. [Google Scholar] [CrossRef]
- Bewley, T. A Difficulty with the Optimum Quantity of Money. Econometrica 1983, 51, 1485–1504. [Google Scholar] [CrossRef]
- Huang, J.; Tu, M. Housing wealth and consumption: Evidence from micro household data. Guanli Shijie (Manag. World) 2009, 7, 42–52. [Google Scholar]
- Zhang, D.; Cao, H. Wealth effect on consumption: Evidence from China’s household survey data. Jingji Yanjiu (Econ. Res.) 2012, S1, 53–65. [Google Scholar]
- Campbell, J.Y.; Cocco, J.F. How do house prices affect consumption? Evidence from micro data. J. Monet. Econ. 2007, 54, 591–621. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.R.; Rausser, G.C. Effects of Misspecifications of Log-Linear Functions When Sample Values Are Zero or Negative: Reply. Am. J. Agric. Econ. 1971, 53, 673–674. [Google Scholar] [CrossRef]
- Ekwaru, J.P.; Veugelers, P.J. The Overlooked Importance of Constants Added in Log Transformation of Independent Variables with Zero Values: A Proposed Approach for Determining an Optimal Constant. Stat. Biopharm. Res. 2018, 10, 26–29. [Google Scholar] [CrossRef]
- The Data Source of this Paper is from China Household Finance Survey(CHFS) conducted by the Survey and Research Center for China Household Finance at the Southwestern University of Finance and Economics(SWUFE), China. Available online: https://chfs.swufe.edu.cn/ (accessed on 30 March 2020).
- Mandič, S. The changing role of housing assets in post-socialist countries. J. Hous. Built Environ. 2010, 25, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.L.; Shapiro, T.M. Wealth of a Nation: A Reassessment of Asset Inequality in America Shows at Least One Third of Households Are Asset-Poor. Am. J. Econ. Sociol. 1990, 49, 129–151. [Google Scholar] [CrossRef]
- Mehra, Y.P. The Wealth Effect in Empirical Life-Cycle Aggregate Consumption Equations; Social Science Research Network: Rochester, NY, USA, 2001. [Google Scholar]
- Davis, M.A.; Palumbo, M. A Primer on the Economics and Time Series Econometrics of Wealth Effects; Social Science Research Network: Rochester, NY, USA, 2001. [Google Scholar]
- Lettau, M.; Ludvigson, S.C. Understanding Trend and Cycle in Asset Values: Reevaluating the Wealth Effect on Consumption. Am. Econ. Rev. 2004, 94, 276–299. [Google Scholar] [CrossRef] [Green Version]
- Slacalek, J. What Drives Personal Consumption? The Role of Housing and Financial Wealth; Social Science Research Network: Rochester, NY, USA, 2009. [Google Scholar]
- De Bonis, R.; Silvestrini, A. The effects of financial and real wealth on consumption: New evidence from OECD countries. Appl. Financ. Econ. 2012, 22, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Nolan, B.; Whelan, C.T. Using Non-Monetary Deprivation Indicators to Analyze Poverty and Social Exclusion: Lessons from Europe? J. Policy Anal. Manag. 2010, 29, 305–325. [Google Scholar] [CrossRef]
- Kishor, N.; Kumari, S. Consumption-Wealth Ratio and Expected Housing Return. J. Real Estate Res. 2014, 36, 87–108. [Google Scholar]
- Browning, M.; Gørtz, M.; Leth-Petersen, S. Housing Wealth and Consumption: A Micro Panel Study. Econ. J. 2013, 123, 401–428. [Google Scholar] [CrossRef]
- Liu, Q. China will Increase Farmers’ Property Rights. Available online: http://www.china.org.cn/china/2013-11/14/content_30599289.htm (accessed on 25 November 2019).
- Demirgüç-Kunt, A.; Klapper, L. Measuring Financial Inclusion: Explaining Variation in Use of Financial Services across and within Countries. Brook. Pap. Econ. Act. 2013, 2013, 279–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yi, X.; Zhou, C. Changes in value of housing, consumption of urban residents and heterogeneity of wealth effects: Analysis based on the data of CFPS. Jinrong Yanjiu (J. Financ. Res.) 2017, 8, 50–66. [Google Scholar]
- Bebbington, A. Capitals and Capabilities: A Framework for Analyzing Peasant Viability, Rural Livelihoods and Poverty. World Dev. 1999, 27, 2021–2044. [Google Scholar] [CrossRef]
- Núñez-Cacho, P.; Molina-Moreno, V.; Corpas-Iglesias, F.A.; Cortés-García, F.J. Family Businesses Transitioning to a Circular Economy Model: The Case of “Mercadona”. Sustainability 2018, 10, 538. [Google Scholar]
Rural Household | Urban Household | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2012 | 2014 | 2010 | 2012 | 2014 | |||||||
mean | % | mean | % | mean | % | mean | % | mean | % | mean | % | |
total consumption | 24,480 | 29,472 | 30,194 | 40,586 | 49,925 | 55,127 | ||||||
living type | 14,390 | 58.79 | 19,161 | 65.01 | 18,677 | 61.86 | 25,185 | 62.05 | 31,885 | 63.86 | 34,459 | 62.51 |
developing type | 9159 | 37.41 | 9631 | 32.68 | 10,783 | 35.71 | 12,423 | 30.61 | 14,331 | 28.70 | 15,870 | 28.79 |
enjoying type | 930 | 3.80 | 680 | 2.31 | 734 | 2.43 | 2977 | 7.34 | 3710 | 7.43 | 4799 | 8.71 |
total asset | 25,2200 | 242,366 | 304,157 | 752,332 | 854,410 | 1,090,565 | ||||||
housing asset | 157,934 | 62.62 | 124,432 | 51.34 | 184,800 | 60.76 | 557,441 | 74.10 | 630,713 | 73.82 | 792,562 | 72.67 |
financial asset | 25,408 | 10.07 | 23,475 | 9.69 | 26,839 | 8.82 | 92,722 | 12.32 | 98,767 | 11.56 | 149,147 | 13.68 |
production asset | 56,409 | 22.37 | 77,299 | 31.89 | 69,167 | 22.74 | 61,506 | 8.18 | 78,927 | 9.24 | 84,385.7 | 7.74 |
vehicle asset | 6882 | 2.73 | 9643 | 3.98 | 13,575 | 4.46 | 21,933 | 2.92 | 24,251 | 2.84 | 36,223 | 3.32 |
durable asset | 5566 | 2.21 | 7516 | 3.10 | 9776 | 3.21 | 18,730 | 2.49 | 21,752 | 2.55 | 28,248 | 2.59 |
total income | 17,254 | 29,897 | 30,884 | 55,520 | 76,338 | 82,273 | ||||||
number of observations | 3244 | 8932 | 11,654 | 5194 | 19,209 | 25,635 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
asset(t − 1) | 0.002 * | −0.001 | 0.015 *** | |||
(0.001) | (0.001) | (0.004) | ||||
Δp | 0.007 *** | 0.012 *** | 0.012 *** | |||
(0.001) | (0.002) | (0.002) | ||||
housing asset(t − 1) | 0.001 | 0.013 ** | ||||
(0.001) | (0.005) | |||||
financial asset(t − 1) | 0.041 *** | 0.016 * | ||||
(0.006) | (0.007) | |||||
production asset(t − 1) | 0.006 * | 0.015 *** | ||||
(0.003) | (0.004) | |||||
vehicle asset(t − 1) | 0.093 *** | 0.023 * | ||||
(0.018) | (0.011) | |||||
durable asset(t − 1) | 0.021 | 0.026 *** | ||||
(0.011) | (0.006) | |||||
income | 0.074 *** | 0.061 *** | 0.020 ** | 0.083 *** | 0.123 *** | 0.123 *** |
(0.012) | (0.011) | (0.008) | (0.014) | (0.026) | (0.026) | |
age | −0.013 *** | −0.011 *** | −0.003 | −0.010 | −0.008 | −0.008 |
(0.003) | (0.003) | (0.014) | (0.015) | (0.013) | (0.013) | |
gender | 0.335 *** | 0.315 *** | 0.086 | 0.139 | 0.248 | 0.260 |
(0.068) | (0.065) | (0.573) | (0.627) | (0.544) | (0.541) | |
educational year | 0.150 *** | 0.112 *** | 0.155 | 0.133 | 0.124 | 0.126 |
(0.011) | (0.010) | (0.098) | (0.100) | (0.091) | (0.090) | |
_Imarriage_2 | 0.429 * | 0.317 | 0.358 | 0.190 | 0.021 | 0.017 |
(0.174) | (0.172) | (0.280) | (0.253) | (0.223) | (0.222) | |
_Imarriage_3 | 0.179 | 0.170 | 0.995 | 0.863 | 1.137 | 1.083 |
(0.370) | (0.361) | (0.679) | (0.651) | (0.807) | (0.784) | |
_Imarriage_4 | −0.442 | −0.737 * | −0.030 | −0.067 | −0.247 | −0.267 |
(0.320) | (0.346) | (0.621) | (0.576) | (0.517) | (0.518) | |
_Imarriage_5 | −0.653 *** | −0.662 *** | −0.495 | −0.460 | −0.463 | −0.487 |
(0.197) | (0.196) | (0.720) | (0.617) | (0.545) | (0.544) | |
_Imarriage_6 | 0.184 | 0.123 | 0.074 | −0.012 | −0.218 | −0.215 |
(0.192) | (0.190) | (0.338) | (0.313) | (0.289) | (0.289) | |
_Iparty_2 | −0.267 *** | −0.198 ** | 0.160 | 0.174 | 0.180 | 0.178 |
(0.075) | (0.072) | (0.188) | (0.172) | (0.159) | (0.159) | |
_Iparty_3 | 0.265 | 0.436 | 0.635 | 1.027 * | 0.701 | 0.725 |
(0.677) | (0.631) | (0.493) | (0.446) | (0.370) | (0.371) | |
_Iparty_4 | −0.446 *** | −0.324 *** | 0.199 | 0.285 | 0.119 | 0.129 |
(0.085) | (0.082) | (0.346) | (0.316) | (0.287) | (0.286) | |
ratio of people aged under 23 | 1.046 *** | 0.964 *** | 0.675 | 0.579 | 0.354 | 0.361 |
(0.176) | (0.168) | (0.681) | (0.637) | (0.665) | (0.658) | |
ratio of people aged over 55 | −0.643 *** | −0.600 *** | −2.169 *** | −1.614 ** | −1.295 * | −1.277 * |
(0.155) | (0.151) | (0.595) | (0.546) | (0.562) | (0.558) | |
family size | 0.182 *** | 0.176 *** | 0.124 | 0.086 | 0.070 | 0.070 |
(0.021) | (0.021) | (0.088) | (0.082) | (0.080) | (0.080) | |
rural | −1.174 *** | −1.054 *** | −0.271 | −0.170 | −0.048 | −0.043 |
(0.062) | (0.052) | (0.199) | (0.198) | (0.209) | (0.212) | |
_cons | 1.856 *** | 1.822 *** | 1.996 | 2.228 | 1.258 | 1.233 |
(0.269) | (0.260) | (1.650) | (1.915) | (1.569) | (1.557) | |
year fixed effect | No | No | Yes | Yes | Yes | Yes |
observations | 27,435 | 27,435 | 27,435 | 27,435 | 27,435 | 27,435 |
R2 | 0.183 | 0.241 | 0.018 | 0.108 | 0.157 | 0.159 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Panel A: Rural Households | ||||||
asset (t − 1) | 0.009 ** | 0.016 ** | 0.001 ** | |||
(0.003) | (0.005) | (0.000) | ||||
Δp | 0.008 *** | 0.012 ** | 0.000 *** | 0.008 *** | 0.012 *** | 0.000 *** |
(0.002) | (0.004) | (0.000) | (0.002) | (0.004) | (0.000) | |
housing asset (t − 1) | 0.009 *** | 0.015 ** | 0.001 *** | |||
(0.002) | (0.005) | (0.000) | ||||
financial asset (t − 1) | −0.036 | 0.015 | 0.006 | |||
(0.020) | (0.008) | (0.003) | ||||
production asset (t − 1) | 0.011 *** | 0.016 ** | 0.000 | |||
(0.003) | (0.006) | (0.000) | ||||
vehicle asset (t − 1) | 0.011 | 0.026 ** | 0.001 | |||
(0.008) | (0.008) | (0.000) | ||||
durable asset (t − 1) | −0.042 | −0.046 | −0.008 | |||
(0.048) | (0.056) | (0.007) | ||||
income | 0.084 *** | 0.116 *** | 0.006 *** | 0.084 *** | 0.116 *** | 0.006 *** |
(0.017) | (0.030) | (0.001) | (0.018) | (0.031) | (0.001) | |
observations | 9966 | 9966 | 9966 | 9966 | 9966 | 9966 |
Panel B: Urban Households | ||||||
asset (t − 1) | 0.003 * | 0.007 * | 0.002 *** | |||
(0.002) | (0.003) | (0.001) | ||||
Δp | 0.003 *** | 0.005 ** | 0.002 *** | 0.003 *** | 0.006 ** | 0.002 *** |
(0.001) | (0.002) | (0.000) | (0.001) | (0.002) | (0.000) | |
housing asset (t − 1) | 0.002 | 0.006 | 0.002 ** | |||
(0.002) | (0.004) | (0.001) | ||||
financial asset (t − 1) | 0.008 * | 0.005 | 0.002 * | |||
(0.004) | (0.004) | (0.001) | ||||
production asset (t − 1) | 0.001 | 0.010 ** | 0.002 ** | |||
(0.002) | (0.003) | (0.001) | ||||
vehicle asset (t − 1)) | 0.007 | 0.017 | −0.002 | |||
(0.007) | (0.009) | (0.003) | ||||
durable asset (t − 1) | 0.008 ** | 0.009 * | 0.009 ** | |||
(0.003) | (0.004) | (0.003) | ||||
income | 0.035 *** | 0.054 ** | 0.018 *** | 0.035 *** | 0.055 ** | 0.018 *** |
(0.010) | (0.021) | (0.004) | (0.010) | (0.021) | (0.003) | |
observations | 17,469 | 17,469 | 17,469 | 17,469 | 17,469 | 17,469 |
control variables | Yes | Yes | Yes | Yes | Yes | Yes |
year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Si, F. How Does the Composition of Asset Portfolios Affect Household Consumption: Evidence from China Based on Micro Data. Sustainability 2020, 12, 2946. https://doi.org/10.3390/su12072946
Han H, Si F. How Does the Composition of Asset Portfolios Affect Household Consumption: Evidence from China Based on Micro Data. Sustainability. 2020; 12(7):2946. https://doi.org/10.3390/su12072946
Chicago/Turabian StyleHan, Hongyun, and Fan Si. 2020. "How Does the Composition of Asset Portfolios Affect Household Consumption: Evidence from China Based on Micro Data" Sustainability 12, no. 7: 2946. https://doi.org/10.3390/su12072946