The Methodology of Landscape Quality (LQ) Indicators Analysis Based on Remote Sensing Data: Polish National Parks Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Spatial Units Being Analyzed
2.2. Selection of Indicators’ Type(s)
2.3. Selection of a Set of Specific Indicators
2.4. Calculation of Indicator Set no 1
2.5. Analysis of Correlation
2.6. Selection of a Finals Set of Indicators
2.7. Analysis of Effectiveness
3. Results
4. Discussion
4.1. Landscape Quality of Test Areas
4.2. Methodology of LQ Analysis Based on the Application of Remote-Sensing
5. Conclusions
- The categorization, composed of ten, mainly composite indicators, is adequate to conclude on different levels of LQ.
- Both test areas featuring high values in relation to structural, ecological and visual LQ, and low, while analyzing the cultural dimension.
- Applied indicators’ categorization occurred to be effective to reflect diverse landscape characteristics by dealing with diverse LC forms in the same manner. It was achieved by the application of indicators based on the state of anthropogenic transformation and the positive/negative impact on perceived visual quality.
- The research showed that data, both on national and European/Pan-European level, could be used to calculate LQ indicators. More test areas should be analyzed to fully examine this issue.
- Differences between different spatial scales occurred to be statistically insignificant, indicating that the effectiveness of indices is not affected by the spatial extent. Taken into account, however, different characters of each dimension of LQ better solution is to calculate indicators for different spatial extents, than only in relation to one spatial scale.
- To fully examine the issue of the selection of LQ indicators the comparison between protected areas of the different regime, as well as between protected and non-protected areas together with the comparison of result with non-spectral data sources, especially these referring to the intangible values, is needed. To do so, presented methodology based on the application of remote sensing data constituting the first, fundamental step.
Author Contributions
Funding
Conflicts of Interest
References
- Council of Europe 2007. The European Landscape Convention Text. Available online: http://conventions.coe.int/treaty/en/Treaties/Html/176.htm (accessed on 12 December 2019).
- Battisti, L.; Corsini, F.; Gusmerotti, N.M.; Larcher, F. Management and Perception of Metropolitan Natura 2000 Sites: A Case Study of La Mandria Park (Turin, Italy). Sustainability 2019, 11, 6169. [Google Scholar] [CrossRef] [Green Version]
- Canedoli, C.; Bullock, C.; Collier, M.J.; Joyce, D.; Padoa-Schioppa, E. Public Participatory Mapping of Cultural Ecosystem Services: Citizen Perception and Park Management in the Parco Nord of Milan (Italy). Sustainability 2017, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- Conrad, E.; Fazey, J.; Christie, M.; Galdies, C. Choosing landscapes for protection: Comparing expert and public views in Gozo, Malta. Landsc. Urban Plan. 2019, 191, 103621. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; Chmielewski, T.J. A new approach of the identification of Landscape Quality Objectives (LQOs) as a set of indicators. J. Environ. Manag. 2016, 184, 596–608. [Google Scholar] [CrossRef]
- Cassatella, C.; Peano, A. Landscape Indicators. In Assessing and Monitoring Landscape Quality; Cassatella, C., Peano, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Vizzari, M. Spatial modelling of potential landscape quality. Appl. Geogr. 2011, 31, 108–118. [Google Scholar] [CrossRef]
- Swetnam, R.D.; Tweed, F.S. A tale of two landscapes: Transferring landscape quality metrics from Wales to Iceland. Land Use Policy 2018, 76. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Mueller, G.; Knöpfel, M.; Kienast, F. Evaluating outcomes in planning: Indicators and reference values for Swiss landscapes. Ecol. Indic. 2017, 77, 96–104. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B. The application of surrogate measures of ecological quality assessment: The introduction of the Indicator of Ecological Landscape Quality (IELQ). Ecol. Indic. 2017, 73, 224–234. [Google Scholar] [CrossRef]
- OECD. The OECD-JRC Handbook on Practices for Developing Composite Indicators. In Paper Presented at the OECD Committee on Statistics; OECD: Paris, France, 2004. [Google Scholar]
- Santé, I.; Fernández-Ríos, A.; Tubío, J.M.; García-Fernández, F.; Farkova, E.; Miranda, D. The Landscape Inventory of Galicia (NW Spain): GIS-web and public participation for landscape planning. Land Res. 2018, 44, 212–240. [Google Scholar] [CrossRef]
- Asur, F. An evaluation of visual landscape quality of coastal settlements: A case study of coastal areas in the Van Lake Basin (Turkey). Appl. Ecol. Environ. Res. 2019, 17, 1849–1864. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B. Review of cultural heritage indicators: Types, categorisation schemes and their usefulness in landscape quality assessment. Ecol. Indic. 2017, 81, 526–542. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v3: Spatial Pattern Analysis Program for Categorical and Continuous Maps, Computer Software Pro-Gram Produced by the Authors at the University of Massachusetts; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- Otieno, F.; Olumuyiwa, O.; Ochieng, G. Land cover change assessment of vaal harts irrigation scheme using multi-temporal satellite data. Arch. Environ. Prot. 2013, 39, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Van Eetvelde, V.; Antrop, M. A stepwise multi-scaled landscape typology and for trans-regional integration, applied on the federal state of Belgium. Landsc. Urban Plan. 2009, 9, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Chundi, C.; Shengjun, W.; Douglas, M.C.; Maohua, M.; Juanjuan, Z.; Mingquan, L.; Xiaoxiao, T. Effects of local and landscape factors on exotic vegetation in the riparian zone of a regulated river: Implications for reservoir conservation. Landsc. Urban Plan. 2017, 157, 45–55. [Google Scholar]
- Mello Coelho, L.F.; Ribeiro, M.C.; Pereira, R.A.S. Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes. Acta Oecol. 2014, 57, 109–116. [Google Scholar] [CrossRef]
- Warren, S.D.; Alt, M.; Olson, K.D.; Irl, S.D.H.; Steinbauer, M.J.; Jentsch, A. The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness. Ecol. Inform. 2014, 24, 160–168. [Google Scholar] [CrossRef]
- Mapfumo, R.B.; Murwira, A.; Masocha, M.; Andriani, R. The relationship between satellite-derived indices and species diversity across African savanna ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 306–317. [Google Scholar] [CrossRef]
- Narantsetseg, A.; Kang, S.; Lkhamsuren, B.E.; Jang, K.; Ko, D.W. Assessment of biotic and abiotic factors controlling herbaceous biodiversity in Mongolian steppes. Ecol. Inform. 2015, 29, 221–229. [Google Scholar] [CrossRef]
- Hill, M.J.; Heino, J.; White, J.C.; Ryves, D.B.; Wood, P.J. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol. Conserv. 2019, 237, 348–357. [Google Scholar] [CrossRef]
- Qua, Y.; Sun, G.; Luo, C.; Zeng, X.; Zhang, H.; Murray, N.J.; Xu, N. Identifying restoration priorities for wetlands based on historical distributions of biodiversity features and restoration suitability. J. Environ. Manag. 2019, 231, 1222–1231. [Google Scholar] [CrossRef]
- Gottero, E. Identifying vulnerable farmland: An index to capture high urbanisation risk areas. Ecol. Indic. 2019, 98, 61–67. [Google Scholar] [CrossRef]
- Szücs, L.; Anders, U.; Bürger-Arndt, R. Assessment and illustration of cultural ecosystem services at the local scale −A retrospective trend analysis. Ecol. Indic. 2015, 50, 120–134. [Google Scholar] [CrossRef]
- Loomis, D.K.; Paterson, S.K. Human dimensions indicators of coastal ecosystem services: A hierarchical perspective. Ecol. Indic. 2014, 44, 63–68. [Google Scholar] [CrossRef]
- Peña, L.; Casado-Arzuaga, I.; Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 2015, 13, 108–118. [Google Scholar] [CrossRef]
- Bruni, D. Landscape quality and sustainability indicators. Agric. Agric. Sci. Procedia 2016, 8, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, N.; Tosun, C. Environmental performance of tourism accommodations in the protected areas: Case of Goreme Historical National Park. Int. J. Hosp. Manag. 2009, 28, 406–414. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B. Index of Landscape Disharmony (ILDH) as a new tool combining the aesthetic and ecological approach to landscape assessment. Ecol. Indic. 2016, 70, 166–180. [Google Scholar] [CrossRef]
- Sowińska-Świerkosza, B.; Soszyński, D. The index of the Prognosis Rural Landscape Preferences (IPRLP) as a tool of generalizing peoples’ preferences on rural landscape. J. Environ. Manag. 2019, 248, 109272. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, X.; Xu, Y.; Yang, H.; Wu, X.; Li, Y.; Zhang, Y. Assessing the visual quality of green landscaping in rural residential areas: The case of Changzhou, China. Environ. Monit. Assess. 2012, 184, 951–967. [Google Scholar] [CrossRef]
- Clay, G.R.; Smidt, R.K. Assessing the validity and reliability of descriptor variables used in scenic highway analysis. Landsc. Urban Plan. 2004, 66, 239–255. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; Chmielewski, T.J. Comparative Assessment of Public Opinion on the Landscape Quality of Two Biosphere Reserves in Europe. Environ. Manag. 2014, 54, 531–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andelman, S.J.; Willig, M.R. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conserv. Biol. 2002, 16, 1352–1363. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.R.; Greco, S.E.; Thorne, J.H. Spatial scale effects on conservation network design: Tradeoffs and omissions in regional versus local scale planning. Land. Ecol. 2010, 25, 683–695. [Google Scholar] [CrossRef]
- Rouget, M. Measuring conservation value at fine and broad scales: Implications for a diverse and fragmented region, the Agulhas Plain. Biol. Conserv. 2003, 112, 217–232. [Google Scholar] [CrossRef]
- Jalilian, M.A.; Shayesteh, K.; Danehkar, A.; Salmanmahiny, A. A new ecosystem-based land classification of Iran for conservation goals. Environ. Monit. Assess. 2020, 192, 182. [Google Scholar] [CrossRef]
- Sowińska, B.; Chmielewski, T.J. Local landscapes: Delineation, diagnosis, design guidelines. Probl. Landsc. Ecol. 2012, 33, 277–290. (In Polish) [Google Scholar]
- Sowińska-Świerkosz, B.; Soszyński, D. Landscape structure versus the effectiveness of nature conservation: Roztocze region case study (Poland). Ecol. Indic. 2014, 43, 143–153. [Google Scholar] [CrossRef]
- Corine Land Cover (CLC 2018). Copernicus. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 7 December 2019).
- Baza Danych Obiektów Topograficznych. Available online: http://www.gugik.gov.pl/strona-glowna (accessed on 10 December 2019).
- Ortofotomapa. Available online: http://www.gugik.gov.pl/pzgik/zamow-dane/ortofotomapa (accessed on 10 December 2019).
- Lindenmayer, D.; Pierson, J.; Barton, P.; Beger, M.; Branquinho, C.; Calhoun, A.; Caro, T.; Greig, H.; Gross, J.; Heino, J.; et al. A new framework for selecting environmental surrogates. Sci. Total. Environ. 2015, 538, 1029–1038. [Google Scholar] [CrossRef]
- Repetti, A.; Desthieux, G. A relational indicator set model for urban land-use planning and management: Methodological approach and application in two case studies. Landsc. Urban Plan. 2006, 77, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Hermes, J.; Albert, C.; von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 2018, 31, 296–307. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, U. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Chmielewski, T.J.; Kułak, A.; Michalik-Śnieżek, M.; Lorens, B. Physiognomic structure of agro-forestry landscapes: Method of evaluation and guidelines for design, on the example of the West Polesie Biosphere Reserve. Int. Agrophys. 2016, 30, 415–429. [Google Scholar] [CrossRef]
- Chmielewski, T.J.; Chmielewski, S.; Kułak, A.; Michalik-Śnieżek, M.; Maślanko, W. Landscapes of the West Polesie. In Regional Identity and Its Transformation over the Last Half Century; University of Life Sciences in Lublin: Lublin, Poland, 2015. [Google Scholar]
- Kubacka, M. Evaluation of the ecological efficiency of landscape protection in areas of different protection status. A case study from Poland. Landsc. Res. 2019, 44, 628–641. [Google Scholar] [CrossRef]
- Amaral, Y.T.; Santos, E.M.D.; Ribeiro, M.C.; Barreto, L. Landscape structural analysis of the Lençóis Maranhenses national park: Implications for conservation. J. Nat. Conserv. 2019, 51, 125725. [Google Scholar] [CrossRef]
- Chunyan, L.; Chunying, R.; Zongming, W.; Bai, Z.; Weidong, M.; Hao, Y.; Yibin, G.; Mingyue, L. Monitoring and Assessment of Wetland Loss and Fragmentation in the Cross-Boundary Protected Area: A Case Study of Wusuli River Basin. Remote Sens. 2019, 11, 2581. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, T.J. Landscape systems. In Structure, Funcioning, Planning; Polish Scientific Publishing (PWN): Warszawa, Poland, 2012. (In Polish) [Google Scholar]
- Arriaza, M.; Canas-Ortega, J.F.; Canas-Madueno, J.A.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Bulut, Z.; Yilmaz, H. Determination of landscape beauties through visual quality assessment method: A case study for Kemaliye. Environ. Monit. Assess. 2008, 141, 121–129. [Google Scholar] [CrossRef]
- Howley, P. Landscape aesthetics: Assessing the general publics’ preferences towards rural landscapes. Ecol. Econ. 2011, 72, 161–169. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Carmona, A.; Laterra, P.; Barrena, J.; Aguayo, M. A mapping approach to assess intangible cultural ecosystem services: The case of agriculture heritage in Southern Chile. Ecol. Indic. 2014, 40, 90–101. [Google Scholar] [CrossRef]
- Boyd, J.; Banzhaf, S. What Are Ecosystem Services? The Need for Standardized Environmental Accounting Units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R. Report of Results of a Survey to Assess the Use of CICES, 2016. Support to EEA tasks under the EU MAES Process. Negotiated procedure No EEA/NSS/16/002. Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Current State and Trends. Volume 1. Findings of the Conditions and Trends. In Working Group of the Millennium Ecosystems Assessment; Island Press: Washington, DC, USA, 2005; pp. 1–917. [Google Scholar]
- Cole, B.; Smith, G.; Balzter, H. Acceleration and fragmentation of CORINE land cover changes in the United Kingdom from 2006–2012 detected by Copernicus IMAGE2012 satellite data. Intern. J. Appl. Earth Obs. Geoinf. 2018, 73, 107–122. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Coscieme, L.; Vignini, P.; Cicolani, B. Scale and ecological dependence of ecosystem services evaluation: Spatial extension and economic value of freshwater ecosystems in Italy. Ecol. Indic. 2013, 32, 259–263. [Google Scholar] [CrossRef]
- Diaz-Pacheco, J.; Gutiérrez, J. Exploring the limitations of CORINE land cover for monitoring urban land-use dynamics in metropolitan areas. J. Land Use Sci. 2014, 9, 243–259. [Google Scholar] [CrossRef]
- Loupa Ramos, I. Exploratory landscape scenarios in the formulation of landscape quality objectives. Futures 2010, 42, 682–692. [Google Scholar] [CrossRef]
- Van Eetvelde, V.; Antrop, M. From Landscape Atlas to Flemish Heritage Landscapes. Using landscape inventories to formulate landscape quality objectives in a participative process. Landscapes of Everyday Life. In Crossed Perspectives on Research and Action, Proceedings of the PDD International Conference, Perpignan, France and Gerona, Spain, 16–18 March 2011; Terrason, D., Ed.; UNISCAPE: Zoetermeer, The Netherlands; p. 2011.
- Simensen, T.; Holvorsen, R.; Erikstad, L. Methods for landscape characterisation and mapping: A systematic review. Land Use Policy 2018, 75, 557–569. [Google Scholar] [CrossRef]
- Kause, C. Our visual landscape: Managing the landscape under special consideration of visual aspects. Landsc. Urban Plan. 2001, 54, 239–254. [Google Scholar]
- Nijhuis, S.; van Lammeren, R.; van der Hoeven, F. Exploring the Visual Landscape. In Advances in Physiognomic Landscape Research in the Netherlands; IOS Press: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Nijnik, M.; Zahvoyska, L.; Nijnik, A.; Ode, A. Public evaluation of landscape content and change: Several examples from Europe. Land Use Policy 2008, 26, 77–86. [Google Scholar] [CrossRef]
- White, M.A.; Cornett, M.W.; Wolter, P.T. Two scales are better than one: Monitoring multiple-use northern temperate forests. For. Ecol. Manag. 2017, 384, 44–53. [Google Scholar] [CrossRef]
Structural | Ecological | Cultural | Visual |
---|---|---|---|
Area and edge metrics Shape metrics Core area metrics Contrast metrics Aggregation metrics Diversity metrics | Geomorphometric indicators Indicators based on spectral variability Indicators based on landscape structure | Spatial Architectonical Historical Social Political Economical | Social perception Presence/absence of given objects Compatibility of land use with landscape type |
Indicator Name | Indicator Abbreviation | Formula |
---|---|---|
Structural Quality | ||
Percentage of landscape occupied by a class of the highest share | PLAND | |
Mean Patch Area | MPA | *(1/10000) |
Edge Density | ED | *(10000) |
Contagion Index | CONTAG | |
Data and methods: Based on two data sources: Corine Land Cover (2018) and Database of topographic objects (BDOT 2012) updated to Orthophotomap (2019); metrics were calculated using Fragstat software [15] | ||
aij– area (m2) of patch I typ j; TA—total area (ha) of landscape; Pi—proportion (%) of the landscape occupied by patch type (class) I; gik—number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method; m—number of patch types (classes) present in the landscape, including the landscape border if present; N—number of patches; TE—total length of borders | ||
Ecological Quality | ||
Ecological barriers | ECOLBAR | (Lroad + Lrail)/Area |
Modified Shannon Diversity Index | MSDI | |
Data and methods: ECOLBAR and MSDI were based on Corine Land Cover (2018), and Database of topographic objects (BDOT 2012) updated to the newest Orthophotomap (pixel size 0.5m, 2019) and were calculated based on the methodology of Sowińska-Świerkosz [10] | ||
Lrail—length (m) of railways crossing natural, semi-natural and anthropogenic type 1 forms of LC; s—total numbers of LC types; I1—index which takes into account the ecological significance of LC forms: I1 = 1 for natural LC forms I1 = 0.75 for semi-natural LC forms; I1 = 0.5 for type 1 artificial LC forms; I1 = 0 for type 2 artificial LC forms | ||
Cultural Quality | ||
Historical monuments | PROTAP | |
Historical landscape elements | HLE | |
Data and methods: PROTAP and HLE are based on the national register of monuments (Geospatial service of Monuments) | ||
—number of cultural monuments; —area of spatial unit being analyzed (km2); —area (km2) of historical parks, gardens and avenue of trees | ||
Visual Quality | ||
Share of positive landscape elements | PLE | |
Form and Color Disharmony Index | FCDHI | |
Shape Disharmony Index | SDHI | |
Data and methods: FCDHI and SDHI are based on the methodology of Sowińska-Świerkosz [22] based on two data sources Corine Land Cover (2018) and Database of topographic objects (BDOT 2012) updated to Orthophotomap (pixel size 0.5m, 2019); FRAC was calculated using Fragstat software [15] | ||
AreaPLE—area of LC forms perceiving as positive for LQ; N—share of LC forms perceiving as negative for LQ, if the case of N<1 the FCDHI = 0; SSN—proportion of semi-natural LC forms; SA—proportion of anthropogenic LC forms; FRACN—FRAC index calculated for natural LC forms; FRACSN—FRAC index calculated for semi-natural LC forms |
Area/ Indicator | Polesie NP | Roztocze NP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NP with Functional Zone | NP | Local Landscape | NP with Buffer Zone | NP | Local Landscape | |||||||
CORINE | BDOT | CORINE | BDOT | CORINE | BDOT | CORINE | BDOT | CORINE | BDOT | CORINE | BDOT | |
PLAND | 27.05 | 36.3 | 11.82 | 34.17 | 58.28 | 60.04 | 35.96 | 34.42 | 47.13 | 50.87 | 58.90 | 75.43 |
MPA | 90.09 | 5.03 | 34.04 | 7.27 | 21.19 | 4.06 | 158.4 | 18.6 | 56.12 | 16.62 | 51.43 | 1.09 |
ED | 33.57 | 103.3 | 28.22 | 67.19 | 26.11 | 94.51 | 24.19 | 83.28 | 17.41 | 53.60 | 32.45 | 63.60 |
CONTAG | 53.90 | 59.46 | 62.02 | 62.44 | 67.66 | 71.99 | 67.75 | 69.71 | 76.29 | 77.18 | 72.16 | 74.44 |
ECOLBAR | 2.16 | 2.47 | 3.83 | 4.25 | 3.58 | 3.58 | 2.93 | 2.81 | 4.23 | 4.33 | 4.01 | 3.28 |
MSDI | 0.66 | 0.68 | 0.78 | 0.74 | 0.62 | 0.61 | 0.77 | 0.79 | 0.86 | 0.90 | 0.74 | 0.75 |
PLE | 0.69 | 0.77 | 0.81 | 0.98 | 0.83 | 0.63 | 0.70 | 0.76 | 0.90 | 0.92 | 0.30 | 0.35 |
FCDHI | 0.57 | 0.57 | 0.00 | 0.50 | 0.58 | 0.55 | 0.60 | 0.60 | 0.50 | 0.48 | 0.64 | 0.62 |
SDHI | 0.16 | 0.13 | 0.12 | 0.12 | 0.02 | 0.10 | 0.15 | 0.12 | 0.24 | 0.22 | 0.57 | 0.50 |
PROTAP | 0.03 | 0.00 | 0.00 | 0.09 | 0.00 | 0.02 | ||||||
HLE | 0.001 | 0.00 | 0.00 | 0.002 | 0.00 | 0.001 |
PLAND | MPA | ED | CONTAG | ECOLBAR | MSDI | PLE | FCDHI | SDHI | PROTAP | HLE | |
---|---|---|---|---|---|---|---|---|---|---|---|
PLAND | 1.0 | ||||||||||
MPA | −0.46 | 1.0 | |||||||||
ED | 0.10 | −0.78 | 1.0 | ||||||||
CONTAG | 0.67 | −0.17 | −0.17 | 1.0 | |||||||
ECOLBAR | 0.18 | −0.08 | −0.27 | 0.56 | 1.0 | ||||||
MSDI | −0.21 | 0.21 | −0.31 | 0.51 | 0.40 | 1.0 | |||||
PLE | −0.41 | 0.01 | −0.15 | −0.03 | 0.52 | 0.37 | 1.0 | ||||
FCDHI | 0.43 | 0.05 | 0.03 | 0.09 | −0.48 | −0.25 | −0.72 | 1.0 | |||
SDHI | 0.26 | 0.21 | −0.25 | 0.48 | 0.14 | 0.42 | −0.32 | 0.30 | 1.0 | ||
PROTAP | 0.02 | 0.20 | 0.09 | −0.03 | −0.62 | 0.10 | −0.63 | 0.82 | 0.36 | 1.0 | |
HLE | −0.09 | 0.23 | 0.13 | −0.15 | −0.71 | 0.06 | −0.58 | 0.75 | 0.30 | 0.98 | 1.0 |
Type of Data | Both type of Data | CORINE | BDOT |
---|---|---|---|
n = 60 | n = 30 | n = 30 | |
median | median | median | |
Polesie NP | 1.53 | 1.49 | 1.73 |
Roztocze NP | 1.04 | 1.91 | 1.01 |
U value | 1768.50 | 412.00 | 436.00 |
p value | 0.869 | 0.574 | 0.836 |
Type of Data | All Type of Spatial Units | NP with Functional Zone | NP | Local Landscape |
---|---|---|---|---|
N = 54 | N = 18 | N = 18 | N = 18 | |
median | median | median | median | |
CORINE | 3.71 | 2.55 | 4.03 | 3.80 |
BDOT | 3.05 | 2.64 | 4.29 | 2.19 |
U value | 1433 | 161.50 | 149.50 | 159.00 |
p value | 0.878 | 0.988 | 0.696 | 0.938 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowińska-Świerkosz, B.; Michalik-Śnieżek, M. The Methodology of Landscape Quality (LQ) Indicators Analysis Based on Remote Sensing Data: Polish National Parks Case Study. Sustainability 2020, 12, 2810. https://doi.org/10.3390/su12072810
Sowińska-Świerkosz B, Michalik-Śnieżek M. The Methodology of Landscape Quality (LQ) Indicators Analysis Based on Remote Sensing Data: Polish National Parks Case Study. Sustainability. 2020; 12(7):2810. https://doi.org/10.3390/su12072810
Chicago/Turabian StyleSowińska-Świerkosz, Barbara, and Malwina Michalik-Śnieżek. 2020. "The Methodology of Landscape Quality (LQ) Indicators Analysis Based on Remote Sensing Data: Polish National Parks Case Study" Sustainability 12, no. 7: 2810. https://doi.org/10.3390/su12072810
APA StyleSowińska-Świerkosz, B., & Michalik-Śnieżek, M. (2020). The Methodology of Landscape Quality (LQ) Indicators Analysis Based on Remote Sensing Data: Polish National Parks Case Study. Sustainability, 12(7), 2810. https://doi.org/10.3390/su12072810