Regional Poverty and Inequality in the Xiamen-Zhangzhou-Quanzhou City Cluster in China Based on NPP/VIIRS Night-Time Light Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Data Source
2.3. Time-Series NTL Preprocessing
2.4. Establishment of NPP/VIIRS Night-Time Average Light Index (ALI)
2.5. Establishment of Integrated Poverty Index (IPI) Using Principal Component Analysis (PCA)
2.6. Theil Decomposition Method
3. Results
3.1. Evaluation of NPP/VIIRS NTL Annual Data Correction Results
3.2. ALI and IPI at a County Scale
3.3. Relationship Between ALI and IPI at a County Scale
3.4. Total Inequality and Its Decomposed Components
3.5. Within-Prefecture Economic Inequality
4. Discussion
- Compared with the 22-year time series of DMSP/OLS data from 1992 to 2013, the time series of NPP/VIIRS data is shorter. NOAA/NGDC has only been publishing NPP-VIIRS NTL data for around eight years, since April 2012. Only with a longer period of time can a better understanding of the evolution of regional inequalities be reached.
- As some cities began to switch from high-voltage sodium lamps to more energy-efficient white Light-Emitting Diode (LED) lighting, NPP/VIIRS detected a reduction in light pollution because it was insensitive to wavelengths below 500 nm (and LEDs emit a lot of bluish light in the spectrum) [42]. However, DMSP/OLS has a wavelength range from 0.4 to 1.1 μm and may have a better chance of detecting LED lighting.
- The NPP/VIIRS transit time occurred after approximately 1:30 am local time [20]. At this time, the socioeconomic lighting activity on the ground is generally less than the transit time of 20:30-21:30 for DMSP/OLS.
- The NTL of NPP/VIIRS in some years is lower than that in previous years, which has a great influence on small- and medium-scale research.
5. Conclusions
- Noise in the original NPP-VIIRS night-time light data has a great influence on the accuracy of multiscale estimation. In this study, we used a series of pretreatment methods to reduce the negative impact of the background noise in the original data, averaged the corrected NPP/VIIRS monthly NTL data, and synthesized the NPP/VIIRS annual composite data. The corrected VIIRS NTL data showed a significant positive correlation with GDP at the municipal and district levels.
- Regression analysis was performed on the multidimensional poverty indicators IPI and NPP/VIIRS ALI, which were created by the principal component method. The results showed that IPI and ALI had a good correlation, with a determination coefficient of R2=0.877. This result shows that NPP/VIIRS ALI is feasible to estimate poverty problems in small and medium-sized regions. Therefore, we suggest that local governments use NPP/VIIRS ALI night light data as an effective data source for estimating poverty in small and medium-sized areas.
- There is a difference in using NPP/VIIRS NTL and GDP to calculate the Theil index. In addition, the regression analysis results showed that the correlation between the Theil indexes calculated by the two was weak, with a determination coefficient of R2 = 0.563. This indicates that the use of NPP/VIIRS NTL in estimating regional economic inequality at small and medium scales needs careful consideration.
Author Contributions
Funding
Conflicts of Interest
References
- Powell, M.; Boyne, G.; Ashworth, R. Towards a geography of people poverty and place poverty. Policy Politics 2001, 29, 243–258. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Liu, Y. Comprehensive measurement of county poverty and anti-poverty targeting after 2020 in China. Acta Geogr. Sin. 2018, 73, 1478–1493. [Google Scholar]
- Ding, J.; Leng, Z. Regional poverty analysis in a view of geography science. Acta Geogr. Sin. 2018, 73, 232–247. [Google Scholar]
- Pedroni, P.; Yao, J.Y. Regional income divergence in China. J. Asian Econ. 2006, 17, 294–315. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Lessmann, C.; Seidel, A. Regional inequality, convergence, and its determinants—A view from outer space. Eur. Econ. Rev. 2017, 92, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Ma, T.; Zhou, C.; Xu, T. Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sens. 2015, 7, 1242–1262. [Google Scholar] [CrossRef] [Green Version]
- Shu, H.; Xiong, P. The Gini coefficient structure and its application for the evaluation of regional balance development in China. J. Clean. Prod. 2018, 199, 668–686. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cheng, H.; Zhang, L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Adv. Space Res. 2012, 49, 1253–1264. [Google Scholar] [CrossRef]
- Ye, X.; Ma, L.; Ye, K.; Chen, J.; Xie, Q. Analysis of Regional Inequality from Sectoral Structure, Spatial Policy and Economic Development: A Case Study of Chongqing, China. Sustainability 2017, 9, 633. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Lin, X.; Liang, Y.; Li, L. Regional Inequality in Underdeveloped Areas: A Case Study of Guizhou Province in China. Sustainability 2016, 8, 1141. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M. Shedding Light on the Global Distribution of Economic Activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of Gross Domestic Product at Sub-National Scales using Nighttime Satellite Imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, S.; Zheng, S. Exploring Urban Expansion and Socioeconomic Vitality Using NPP-VIIRS Data in Xia-Zhang-Quan, China. Sustainability 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of Urbanization Levels in China from 1992 to 2012: Perspective from DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef] [Green Version]
- Doll, C.N.H.; Muller, J.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.; Elvidge, C. Night-Time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Archila Bustos, M.F.; Hall, O.; Andersson, M. Nighttime lights and population changes in Europe 1992–2012. AMBIO 2015, 44, 653–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.; Zhizhin, M.; Hsu, F.; Baugh, K. VIIRS Nightfire: Satellite Pyrometry at Night. Remote Sens. 2013, 5, 4423–4449. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Chang, L.; Liu, X.; Su, S.; Cai, Z.; Huang, X.; Li, B. Monitoring the spatiotemporal dynamics of poor counties in China: Implications for global sustainable development goals. J. Clean. Prod. 2019, 227, 392–404. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Z.; Niu, F.; Long, Y. An evaluation of China’s urban agglomeration development from the spatial perspective. Spat. Stat. 2017, 21, 475–491. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Nagy, J.; Benedek, J.; Ivan, K. Measuring Sustainable Development Goals at a Local Level: A Case of a Metropolitan Area in Romania. Sustainability 2018, 10, 3962. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zhou, C.; Pei, T.; Susan, H.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Akita, T. Decomposing regional income inequality in China and Indonesia using two-stage nested Theil decomposition method. Ann. Reg. Sci. 2003, 37, 55–77. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Luo, Q.; Li, X. The Research Progress of Foreign Rural Poverty Geography. Econ. Geogr. 2014, 34, 1–8. [Google Scholar]
- Do, Q.; Iyer, L. Geography, poverty and conflict in Nepal. J. Peace Res. 2010, 47, 735–748. [Google Scholar] [CrossRef]
- Bigman, D.; Fofack, H. Geographical Targeting for Poverty Alleviation: An Introduction to the Special Issue. World Bank Econ. Rev. 2000, 14, 129–145. [Google Scholar] [CrossRef]
- Partridge, M.D.; Rickman, D.S. Distance from urban agglomeration economies and rural poverty. J. Reg. Sci. 2008, 48, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|
KMO value | 0.766 | 0.726 | 0.682 | 0.705 | 0.705 | 0.701 | 0.683 |
Chi-square | 415.722 | 426.447 | 451.546 | 443.956 | 468.208 | 445.29 | 433.77 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Component | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Total | % of variance | Cumulative % | Total | % of variance | Cumulative % | |
1 | 7.618 | 63.481 | 63.481 | 6.620 | 55.163 | 55.163 |
2 | 2.155 | 17.956 | 81.438 | 3.153 | 26.275 | 81.438 |
Variables | Variable Name | PCs | |
---|---|---|---|
1 | 2 | ||
X1 | Urbanization rate | 0.137 | −0.032 |
X2 | Per capita fixed asset investment | −0.119 | 0.325 |
X3 | Per capita public expenditure | −0.072 | 0.314 |
X4 | Per capita public revenue | −0.026 | 0.269 |
X5 | Per capita retail sales of consumer goods | 0.152 | −0.105 |
X6 | Per capita GDP | −0.052 | 0.308 |
X7 | Per capita disposable income of all residents | 0.163 | −0.049 |
X8 | The per capita living consumption expenditure of all residents | 0.153 | −0.024 |
X9 | Per capita disposable income of urban residents | 0.167 | −0.073 |
X10 | Per capita consumption expenditure of urban residents | 0.166 | −0.070 |
X11 | Per capita disposable income of rural residents | 0.113 | 0.042 |
X12 | Per capita consumption expenditure of rural residents | 0.099 | 0.069 |
City | County | 12_IPI | 13_IPI | 14_IPI | 15_IPI | 16_IPI | 17_IPI | 18_IPI |
---|---|---|---|---|---|---|---|---|
Zhangzhou | Zhangzhou Municipal District | 0.18 | 0.18 | 0.18 | 0.23 | 0.30 | 0.26 | 0.26 |
Longhai | −0.59 | −0.54 | −0.48 | −0.45 | −0.41 | −0.37 | −0.38 | |
Yunxiao | −0.95 | −0.98 | −0.87 | −0.85 | −0.84 | −0.83 | −0.82 | |
Zhangpu | −0.69 | −0.68 | −0.58 | −0.57 | −0.54 | −0.53 | −0.53 | |
Zhao’an | −0.83 | −0.87 | −0.91 | −0.90 | −0.89 | −0.93 | −0.93 | |
Changtai | −0.66 | −0.62 | −0.60 | −0.46 | −0.43 | −0.33 | −0.34 | |
Dongshan | −0.66 | −0.60 | −0.47 | −0.41 | −0.39 | −0.33 | −0.34 | |
Nanjin | −0.79 | −0.82 | −0.81 | −0.80 | −0.81 | −0.80 | −0.80 | |
Pinghe | −0.88 | −0.92 | −0.89 | −0.90 | −0.90 | −0.93 | −0.94 | |
Hua’an | −0.87 | −0.84 | −0.81 | −0.72 | −0.73 | −0.68 | −0.71 | |
Xiamen | Siming | 1.76 | 1.69 | 1.73 | 1.71 | 1.76 | 1.67 | 1.67 |
Haichang | 1.11 | 1.19 | 1.20 | 1.29 | 1.25 | 1.35 | 1.37 | |
Huli | 0.96 | 0.99 | 1.01 | 0.95 | 0.96 | 0.84 | 0.82 | |
Jimei | 0.69 | 0.77 | 0.77 | 0.85 | 0.86 | 0.87 | 0.90 | |
Tong’an | 0.08 | 0.10 | 0.07 | 0.10 | 0.10 | 0.19 | 0.21 | |
Xiang’an | −0.33 | −0.28 | −0.34 | −0.27 | −0.29 | −0.22 | −0.21 | |
Quanzhou | Licheng | 0.90 | 1.06 | 0.98 | 0.87 | 0.86 | 0.75 | 0.73 |
Fengze | 1.20 | 1.18 | 1.15 | 0.98 | 0.99 | 0.86 | 0.85 | |
Luojiang | −0.16 | −0.19 | −0.27 | −0.42 | −0.39 | −0.39 | −0.37 | |
Quangang | −0.26 | −0.31 | −0.35 | −0.38 | −0.41 | −0.31 | −0.28 | |
Hui’an | 0.09 | 0.03 | 0.03 | 0.06 | 0.05 | 0.03 | 0.03 | |
Anxi | −0.62 | −0.68 | −0.72 | −0.74 | −0.75 | −0.76 | −0.76 | |
Yongchun | −0.47 | −0.50 | −0.57 | −0.61 | −0.67 | −0.71 | −0.71 | |
Dehua | −0.38 | −0.40 | −0.46 | −0.49 | −0.51 | −0.49 | −0.47 | |
Shishi | 1.34 | 1.27 | 1.32 | 1.26 | 1.20 | 1.19 | 1.18 | |
Jinjiang | 0.58 | 0.53 | 0.53 | 0.52 | 0.49 | 0.49 | 0.48 | |
Nan’an | 0.24 | 0.20 | 0.18 | 0.15 | 0.13 | 0.11 | 0.10 |
City | County | 12_ALI | 13_ALI | 14_ ALI | 15_ALI | 16_ALI | 17_ALI | 18_ALI |
---|---|---|---|---|---|---|---|---|
Zhangzhou | Zhangzhou Municipal District | 4.75 | 5.41 | 6.00 | 6.85 | 6.14 | 7.57 | 8.73 |
Longhai | 2.50 | 2.60 | 2.93 | 3.09 | 3.14 | 3.81 | 4.07 | |
Yunxiao | 0.50 | 0.67 | 0.77 | 0.88 | 0.88 | 1.33 | 1.48 | |
Zhangpu | 0.76 | 0.99 | 1.19 | 1.20 | 1.14 | 1.64 | 1.76 | |
Zhao’an | 0.43 | 0.51 | 0.61 | 0.64 | 0.71 | 1.03 | 1.15 | |
Changtai | 1.39 | 1.65 | 1.87 | 1.64 | 1.42 | 1.88 | 1.98 | |
Dongshan | 3.86 | 3.90 | 3.84 | 3.59 | 3.78 | 4.56 | 4.55 | |
Nanjin | 0.36 | 0.38 | 0.41 | 0.41 | 0.39 | 0.72 | 0.76 | |
Pinghe | 0.33 | 0.39 | 0.35 | 0.38 | 0.28 | 0.51 | 0.53 | |
Hua’an | 0.32 | 0.33 | 0.30 | 0.31 | 0.30 | 0.57 | 0.6 | |
Xiamen | Siming | 23.02 | 26.13 | 24.09 | 27.87 | 24.59 | 33.44 | 31.92 |
Haichang | 15.61 | 14.57 | 13.77 | 14.45 | 13.78 | 19.39 | 20 | |
Huli | 43.35 | 42.56 | 40.22 | 45.26 | 39.43 | 52.03 | 54.96 | |
Jimei | 11.67 | 12.29 | 13.28 | 14.54 | 13.88 | 17.84 | 17.41 | |
Tong’an | 3.76 | 4.28 | 4.15 | 4.37 | 4.53 | 6.25 | 7.48 | |
Xiang’an | 7.20 | 7.79 | 7.56 | 8.04 | 8.33 | 11.98 | 13.89 | |
Quanzhou | Licheng | 17.28 | 20.06 | 19.59 | 19.00 | 16.80 | 20.83 | 20.79 |
Fengze | 16.78 | 16.58 | 15.50 | 16.16 | 15.31 | 18.99 | 18.85 | |
Luojiang | 1.59 | 1.87 | 1.90 | 1.86 | 1.73 | 2.18 | 2.24 | |
Quangang | 5.00 | 5.25 | 5.34 | 5.71 | 5.00 | 5.50 | 5.84 | |
Hui’an | 2.94 | 3.42 | 3.85 | 4.22 | 4.23 | 5.85 | 5.81 | |
Anxi | 0.55 | 0.69 | 0.74 | 0.73 | 0.72 | 1.09 | 1.19 | |
Yongchun | 0.65 | 0.77 | 0.80 | 0.71 | 0.69 | 0.94 | 0.99 | |
Dehua | 0.26 | 0.35 | 0.39 | 0.39 | 0.34 | 0.56 | 0.6 | |
Shishi | 16.19 | 18.81 | 19.41 | 19.27 | 18.49 | 22.14 | 21.2 | |
Jinjiang | 10.26 | 11.28 | 11.33 | 12.35 | 12.09 | 15.15 | 15.28 | |
Nan’an | 2.49 | 2.58 | 2.49 | 2.48 | 2.40 | 2.96 | 3.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Fu, H.; Zheng, P. Regional Poverty and Inequality in the Xiamen-Zhangzhou-Quanzhou City Cluster in China Based on NPP/VIIRS Night-Time Light Imagery. Sustainability 2020, 12, 2547. https://doi.org/10.3390/su12062547
Pan W, Fu H, Zheng P. Regional Poverty and Inequality in the Xiamen-Zhangzhou-Quanzhou City Cluster in China Based on NPP/VIIRS Night-Time Light Imagery. Sustainability. 2020; 12(6):2547. https://doi.org/10.3390/su12062547
Chicago/Turabian StylePan, Wenbin, Hongming Fu, and Peng Zheng. 2020. "Regional Poverty and Inequality in the Xiamen-Zhangzhou-Quanzhou City Cluster in China Based on NPP/VIIRS Night-Time Light Imagery" Sustainability 12, no. 6: 2547. https://doi.org/10.3390/su12062547
APA StylePan, W., Fu, H., & Zheng, P. (2020). Regional Poverty and Inequality in the Xiamen-Zhangzhou-Quanzhou City Cluster in China Based on NPP/VIIRS Night-Time Light Imagery. Sustainability, 12(6), 2547. https://doi.org/10.3390/su12062547