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Abstract: The Nightfire algorithm detects and characterizes sub-pixel hot sources using 

multispectral data collected globally, each night, by the Suomi National Polar Partnership 

(NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The spectral bands utilized 

span visible, near-infrared (NIR), short-wave infrared (SWIR), and mid-wave infrared 

(MWIR). The primary detection band is in the SWIR, centered at 1.6 μm. Without solar 

input, the SWIR spectral band records sensor noise, punctuated by high radiant emissions 

associated with gas flares, biomass burning, volcanoes, and industrial sites such as steel 

mills. Planck curve fitting of the hot source radiances yields temperature (K) and emission 

scaling factor (ESF). Additional calculations are done to estimate source size (m2), radiant 

heat intensity (W/m2), and radiant heat (MW). Use of the sensor noise limited M7, M8, and 

M10 spectral bands at night reduce scene background effects, which are widely reported 

for fire algorithms based on MWIR and long-wave infrared. High atmospheric 

transmissivity in the M10 spectral band reduces atmospheric effects on temperature and 

radiant heat retrievals. Nightfire retrieved temperature estimates for sub-pixel hot sources 

ranging from 600 to 6,000 K. An intercomparison study of biomass burning in Sumatra 

from June 2013 found Nightfire radiant heat (MW) to be highly correlated to Moderate 

Resolution Imaging Spectrometer (MODIS) Fire Radiative Power (MW).  

Keywords: SNPP; VIIRS; fire detection; gas flaring; biomass burning; fossil fuel 

carbon emissions 
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1. Introduction 

A pyrometer is a non-contacting instrument that measures radiation emitted by hot objects. Satellite 

pyrometry is a favored approach for the global detection and characterization of combustion sources. 

Variables of interest that can potentially be derived from satellite based pyrometric data include 

temperature, source size, heat release, combustion efficiency, fuel consumption rate, and composition 

of combustion sources. Satellite based pyrometry has a proven track record of successful detection of 

combustion sources. Fire characterization is limited by the sensors, how the sensors are operated, and 

how the data are processed. 

Thermal infrared data collected by Earth observing satellites have been used for pyrometry since the 

1980s [1,2]. Satellite data collected by NOAA’s Geostationary Operational Environmental Satellites 

(GOES), Advanced Very High Resolution Radiometer (AVHRR), NASA’s Moderate Resolution 

Imaging Spectrometer (MODIS), and the NASA/NOAA Visible Infrared Imaging Radiometer Suite 

(VIIRS) are currently used for both regional and global detection of hot spots, with a focus on the 

detection of biomass burning [3–5] These data are useful to government agencies engaged in managing 

fires and by-products such as carbon emissions, smoke, and haze.  

The fundamental basis of pyrometry is Planck’s Law, which defines the emission spectra of 

blackbodies based on their absolute temperature. The general equation of Planck’s Law is 

shown below: ܴ ൌ 2݄ܿଶߣହ 1expሺ݄ܿ/ሺ݇ߣ஻ ܶሻ ሻ െ 1 (1)

where R denotes spectral radiance, λ is the wavelength, T is the absolute temperature of the material (K), 

kB is the Boltzmann constant, h is the Planck constant, and c is the speed of light. Planck’s Law serves as 

the foundation for two additional laws that are important to pyrometric calculations. 

Wien’s Displacement Law states that as the temperature of an object increases the wavelength of 

peak radiant emission shifts to shorter wavelengths. ߣ௠ ൌ ܣ ܶ⁄  (2)

where λm is the wavelength of maximum spectral radiant emittance, A is Wien’s displacement constant, 

and T is the absolute temperature of the black body (K). With this law, it is possible to calculate the 

temperature of a sub-pixel source if the wavelength of peak radiant emission can be determined. 

With an estimate of temperature, it is possible to calculate total radiant output using the  

Stefan-Boltzmann’s Law. ܫ ൌ ସ (3)ܶߪߝ

where I is the total radiant output from the surface of a material (W/m2), σ is Stefan-Boltzmann Constant, 

T is the absolute temperature of the emitting material (K), and ε is the emissivity of a material. 

There are two main branches to pyrometry: full field-of-view and sub-pixel. In full field-of-view 

pyrometry, the object being measured fills the entire field-of-view of the sensor. The temperature of 

the object can estimated based on the emitted radiance in a single spectral channel (Figure 1). This 

technique relies on the progressive increase in emitted radiance as the temperature of an object 

increases, as expression of the Stefan-Boltzmann’s Law. There is no need to locate the wavelength of 

peak radiant emission, since the Planck curves do not cross or intersect. Full field of view pyrometry 
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can be achieved with ground-based pyrometers and with high spatial resolution remote sensing data. 

There are three considerations in the selection of a suitable spectral band for full field of view 

pyrometry: (1) The spectral band should cover a bandpass where there are significant changes in 

emitted radiance for the temperature range of interest, (2) the bandpass should be located in a relatively 

clear atmospheric window, and (3) the bandpass should be largely free of solar contamination, to work 

well, both day and night. For day and night full field of view pyrometry, the spectral range of choice is 

in the 3–5 μm atmospheric window, which has low solar irradiance and measureable radiant emissions 

spanning a wide range of temperatures. 

Figure 1. When the hot object fills the entire field of view, the temperature of the object 

can be estimated based on the radiance observed in a single spectral band that is clear of 

radiance from external sources. Knowledge of the emissivity of the object and an 

atmospheric correction can improve the accuracy of the temperature estimate. 

 

In most cases, satellite detections of “hot pixels” involve sub-pixel sources that are substantially 

smaller than the pixel footprint. In this case the emitted radiance has both a background and a hot 

source component. The longwave background component is the radiance emitted by the Earth surface 

and atmosphere (e.g., clouds), with a Planck curve centered in the 8–12 μm atmospheric window. The 

shortwave scene background is reflected sunlight. The presence of a hot source is indicated by 

anomalously high radiances or brightness temperatures at shorter wavelengths, which cannot be 

attributed to reflected sunlight. 

A bi-spectral sub-pixel pyrometry technique was pioneered for satellite remote sensing data by 

Dozier [1], who worked with nighttime data from the mid-wave infrared (MWIR) and long-wave 

infrared (LWIR) AVHRR data. It was observed that pixels containing hot sources had higher 

brightness temperatures in the 3.7 μm (MWIR) channel when compared to the local background. Some 

of the MWIR hotspots also had elevated brightness temperatures in the 11 μm (LWIR) channel. In the 

classic Dozier method, the temperature and size of a sub-pixel hot source can be calculated if the 
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temperature of the background can be reasonably determined and if there is a detectable hot source 

signal in both the MWIR and LWIR channels. 

While the technique to calculate the temperature and size of sub-pixel hot sources was 

demonstrated, the approach has not been operationally implemented for data from AVHRR or its 

follow on systems (e.g., NASA’s Moderate Resolution Imaging Spectrometer (MODIS) and the 

NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS)) due to several complications. 

While large numbers of hot pixels can be detected with MWIR channel data, relatively few of those 

pixels also have anomalously high brightness temperature in the LWIR region, which eliminates the 

Dozier calculation as an option. Dozier method error sources include differences in pointing and  

point-spread function between the MWIR and LWIR pixels, errors in background temperature 

estimates, atmospheric correction errors, temperature variations in extended hot sources, and saturation 

in the MWIR spectral band [2–5]. Giglio and Kendall [2] examined these issues and concluded: 

“Limitations in current moderate resolution sensors make Dozier’s technique for fire property retrieval 

operationally useful for only stable, uniform high temperature sources over very uniform backgrounds 

such as gas flares on offshore oil platforms.” 

Following Dozier’s lead, the standard fire product from MODIS is processed from a pair of spectral 

bands (MWIR and LWIR) [6,7]. The product indicates the pixels containing hot sources, but provides 

no estimate of the temperature or source size. In lieu of Planck curve fitting, the MODIS active fire 

product provides an estimate of Fire Radiative Power using Kaufman’s 1998 formula [8], empirically 

derived from field observations of fuel consumption rates for vegetation fires ranging from smoldering 

(600 K ± 100 K) to flaming (1,000 K ± 200 K). At present, the VIIRS active fire product simply 

indicates the pixels with hot source detection. 

The inquiry that led to Nightfire arose from a project to improve the quality of natural gas flaring 

estimates from satellite data sources. Initially, these estimates were produced from DMSP (Defense 

Meteorological Satellite Program) nighttime lights data, collected in a single panchromatic spectral 

band [9]. The DMSP low light imaging data could be termed semi-quantitative, since there is no  

in-flight calibration and there is typically saturation in city centers and gas flares. Several years ago the 

authors explored MODIS data and found that large gas flares had relatively weak signals in the MWIR 

MODIS channel used in fire detection. What we did not realize is that flares burn at such a high 

temperature that the peak radiant emissions are at substantially shorter wavelengths. The MWIR is 

literally on the trailing edge of the gas flare emission spectrum. Thus, even largest gas flares will have 

modest radiant emissions in the MWIR. 

When VIIRS data became available, the authors decided to examine images from each of the 

spectral bands collected by VIIRS to discover which ones may be useful for detecting and 

characterizing gas flares. The daytime collections looked very similar to MODIS. At night, VIIRS 

collects data in nine spectral bands (Table 1 and Figure 2). In reviewing nighttime images collected 

over well-known gas flaring regions, it was discovered that gas flares have a strong signal in data 

collected by the 1.6 μm channel (M10) at night. The flare features are generally too weak to be 

detected in daytime M10 data due to solar reflectance. At night the vast majority of the M10 pixels are 

recording system noise, which is dominated by dark current, the signal a radiometer records when light 

is blocked from entry into the aperture. Pixels with hot sources stand out clearly against the system 

noise in nighttime M10 data. These 1.6 μm nighttime phenomena have been previously reported with 
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ATSR data [10,11]. The M7 and M8 data collected at night by VIIRS show a similar capability to 

detect pixels containing hot sources. The low light imaging day-night band (DNB) detects both electric 

lighting and combustion sources. Some of the larger flares can be identified in the mid-wave infrared 

images (M12 and M13), however algorithmic detection here is complicated by scene feature content, 

which is dominated by temperature differences between different surface types and clouds. Hot pixel 

detections decline as wavelength increases, with very little expression of hot pixel radiance in the 

LWIR channels (M14, M15, and M16). 

Table 1. Characteristics of the Nine Visible Infrared Imaging Radiometer Suite (VIIRS) 

Spectral Bands Collecting Data at Night [12] 

Band 

Designation 

Spectral Range Bandpass  

(μm) 

Band Center 

(μm) 

Lmin (W/(m2·μm·sr)) 

Requirement 

Lmax (W/(m2·μm·sr)) 

Requirement 

DNB Panchromatic 0.5–0.9 0.7 3.0E–5 W/(m2·sr) 200 W/(m2·sr) 

M7 Near infrared 0.843–0.881 0.862 3.4 349 

M8 Near infrared 1.225–1.252 1.2385 3.5 164.9 

M10 Short-wave IR 1.571–1.631 1.601 1.1 71.2 

M12 Mid-wave IR 3.598–3.791 3.6945 0.0078 2.84 

M13 Mid-wave IR 3.987–4.145 4.066 0.00216 406 

M14 Long-wave IR 8.407–8.748 8.5775 0.373 19.5 

M15 Long-wave IR 10.234–11.248 10.741 0.729 17.1 

M16 Long-wave IR 11.405–12.322 11.865 0.876 14.5 

Based on these findings, the authors decided to develop a new multispectral pyrometric system for 

nighttime VIIRS data and to base the initial detection of hot pixels on the M10 spectral channel. This 

paper outlines the algorithm and data from the resulting system, which we refer to as Nightfire. 

Figure 2. Sample images of Southern Iraq from the nine VIIRS spectral bands which 

collect data at night. The area has a large number of persistent gas flares. 
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Figure 2. Cont. 

 

2. Methods 

The hot source detection component of Nightfire runs on VIIRS SDR (Sensor Data Records) files. 

Cloud conditions are rated using the VIIRS cloud mask and cloud optical thickness products. The 

MODTRAN 5 [13] atmospheric correction is parameterized with atmospheric temperature and water 

vapor profiles produced from data collected by the Advanced Technology Microwave Sounder 

(ATMS) and Cross-track Infrared Sounder (CrIS) instruments [14], collected simultaneously to the 

VIIRS data. The global version of Nightfire currently runs on a 24 hour delay on data delivered to 

National Geophysical Data Center (NGDC) for archive. 

2.1. Detection of Hot Pixels in the M10 Band 

At night the M10 spectral band records the noise of the instrument, except for the few pixels which 

contain an infrared emitter, such as a gas flare, biomass burning, or hot lava. The set of candidate 

pixels containing sub-pixel hot sources are identified based on anomalously high values in the M10 

spectral band centered at 1.6 μm [15]. Data with solar contamination are excluded by thresholding out 

pixels that have solar zenith angles less than 95 degrees. The outline of the useable pixel set is 

recorded for use in temporal compositing. The M10 hot pixel detection analysis is performed on the 

unsigned integers recorded in the SDR files. Each M10 SDR file has a scale and offset for converting 

the unsigned integers to radiances. 

The VIIRS constrains the expansion of the M-band pixel footprints from nadir to the edge of scan 

by systematically varying the number of pixels aggregated on-board [12]. In the region ±31.72 degrees 

out from nadir, three pixels are aggregated (Figure 3). The instrument then switches to aggregate two 

pixels out to ±44.86 degrees. In the final segment of the scan (out to ±56.28 degrees) no aggregation is 

used and the instrument records signal from single pixels. 

While successfully controlling the footprint size, this aggregation scheme alters the signal-to-noise 

ratios in the aggregation zones. To make Nightfire as sensitive as possible, three sets of means and 

standard deviations are calculated on each SDR file, pooling the pixels from the three pixel 

aggregation zones. Obvious hot pixels are excluded from the background pixel set by screening out 

digital values over 100. Both the mean and standard deviation become progressively higher as the 

number of pixels aggregated shifts from three, to two, and one (Figure 4). Candidate hot pixels are 

identified as those with digital numbers exceeding the mean plus four standard deviations. Details of 

the M10 hot pixels are recorded in a comma-separated value (CSV) file, including the unsigned 
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integer, radiance, source file name, line and sample numbers, latitudes and longitudes, quality flags, 

and other metadata. 

Figure 3. Horizontal sample interval chart shows how the growth of VIIRS M-band 

ground field of view from nadir to edge of scan is constrained by switching the number of 

pixels that are aggregated [12]. In aggregation zone 1, from nadir to 31.72 degrees, the 

signal from three pixels are averaged. In aggregation zone two, the signal from two pixels 

are averaged. In aggregation zone three, signal from a single pixel is recorded. 

 
While all the M10 hot pixels are recorded in the CSV, currently only the pixels containing M10 

local maxima are recorded in the Zipped KML (Keyhole Markup Language). The M10 local maxima 

are identified as pixels where the immediate neighbors have lower radiances. The local maxima are 

filtered to eliminate bowtie duplicates. 

2.2. Processing of Other Spectral Bands 

The line and sample numbers for the M10 hot pixels are used as guides to locate the corresponding 

pixels in the other seven M bands (M7–8, M12–16) for entry of the radiance values in the CSV. M7 

and M13 are dual gain bands, with radiances recorded in the SDR. The SDR values in the other M 

bands are unsigned integers, with scale and offset recorded in the HDF5. For M8 and M12–16 the 

radiances are calculated from the unsigned integers prior to recording in the CSV. 

Following this, the SDR data in M7–8 and M12–13 are analyzed to determine if the M10 hot pixels 

are also hot in the other spectral bands. The M7 and M8 are NIR bands, and, like the M10 band, the 

nighttime images contain instrument noise background with high values in pixels containing hot 

sources. Therefore, the same procedure to determine M10 hot pixel thresholds outlined in Section 2.1 

is applied to M7 and M8. The M7 and M8 hot pixel detection thresholds are recorded in the CSV. 

Detection flags are set in the CSV to indicate the M7 and M8 hot pixels.  
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Figure 4. Charts show variability of column means and standard deviations for an M10 

image collected over ocean with no combustion sources present the night of 5 March 2013. 

Note that the three detector aggregation zones show up in both the mean and standard 

deviation, which are lowest in zone 1 and step up incrementally in zone 2 and zone 3. The 

detection threshold analysis is performed on the unsigned integers provided in the SDR. 

These can be converted to radiances by applying a scale and offset. A slight error is 

indicated in the offset term, resulting in negative radiance values. 

 

The M12 and M13 are MWIR bands, so the analysis is complicated by the presence of earth surface 

and cloud features. Thresholds for the M12 and M13 detection of hot pixels are calculated using a 10 

by 10 window established for each M10 hot pixel. The M10 hot pixels are excluded and the remaining 
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pixels are used to calculate a mean plus standard deviation. If the number of background pixels found 

is less than 50, then the window is expanded to 100 by 100. Hot pixel detection thresholds are 

calculated as the background mean plus three standard deviations. All the hot pixel thresholds, 

radiances, SDR quality flags, and for M12 and M13 the average background radiance values, are also 

recorded in the CSV. Detection flags are set in the CSV to indicate the M12 and M13 hot pixels. 

The DNB images have a different pixel width than the M-band images, so the M-band line and 

sample values cannot be used directly to extract the DNB radiances. Instead, the algorithm uses line 

and scan angle to get an approximate spatial match. Currently, the DNB values are only extracted for 

the M10 hot pixels that are also local maxima. For each M10 local maximum, a corresponding DNB 

local maxima is sought in the same line where the scan angles match. If a corresponding DNB local 

max is found, the radiance is recorded along with DNB quality flag, latitude, longitude, line, and 

sample values are also recorded. 

2.3. Noise Filtering 

The M10 nighttime data is subject to noise spikes due to high energy particle impacts on detectors 

in the South Atlantic Anomaly and in auroral zones. Most of this noise can be filtered by excluding 

M10 hot pixel detections that cannot be confirmed by hot pixel detections in at least one additional 

spectral band [15]. A detection flag is set to indicate the M10 pixels where the hot pixel is confirmed. 

2.4. Atmospheric Correction 

Nightfire can be run with or without an atmospheric correction. Coefficients for correcting losses in 

radiance due to atmospheric absorption and scatter are derived for each spectral band using 

MODTRAN 5 [13] parameterized with atmospheric temperature and water vapor profiles processed 

from the CrIS and ATMS sensors (CrIMSS data) [14]. 

2.5. Planck Curve Fitting 

Planck curve fitting is applied using radiances from spectral bands that are above the detection 

thresholds using the Simplex Optimization Method [16]. For M7, M8, and M10, the observed 

radiances are used directly. For M12 and M13, the local background average, discussed in Section 2.2, 

is subtracted from the observed radiance. The sub-pixel hot sources appear as a graybodies, due to the 

fact that they only occupy a small portion of the pixel footprint on the ground. Therefore, we define the 

emissivity term in the Planck function as an emission scaling factor (ESF) and subsequently use ESF 

to estimate the source size.  

The Planck curve fitting is done based on two variables: temperature and ESF. The initial 

temperature of the fitting procedure is 1,000 degrees K and an ESF of 1.0. The fitting typically 

converges on a solution within twenty iterations. The output of the fitting is an estimate of the 

temperature and ESF of the hot source present in the pixel, which are recorded in the CSV. 

The Planck curve fitting results in unrealistically low temperatures for two categories of hot pixels. 

The most widely occurring type is for pixels with a M10 detection that are confirmed by a DNB 

detection, but unsupported by hot pixel detection in any of the other four spectral bands. These are the 

weakest detections coming from Nightfire. The Planck curve fitting gives unrealistic results because 
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the long wavelength side of the fitting (>1.6 μm) is unconstrained, resulting in an unreasonably low 

temperature. Currently, the temperature for two band detection pixels with DNB and M10 are set to 

1,810 K, the temperature of an object with peak radiance in M10. The other category are pixels with 

large low temperature hot sources, where the combination of low M10 radiance and high radiances in 

M12 and M13 occasionally result in Planck curve fits that fail to pass through or close to the M10 

radiance. This pixel category is discussed in more detail in Section 3.3. 

2.6. Calculation of Source Area 

Several additional calculations are made using temperature, ESF, and the M band pixel footprint 

size on the ground. The M band pixel footprint size (A) is the product of VIIRS along scan (ΔS) and 

along track pixel size (ΔT). ΔT and ΔS are derived from following equations: Δܵ ൌ ܴ௘ כ ݏܵ ቆ cos ሻଶݎ/ඥሺሺܴ௘ߠ െ ሻߠଶ݊݅ݏ െ 1ቇ כ (4) ݔ1

Δܶ ൌ ݎ כ ݐܵ ቀܿߠݏ݋ െ ඥሺሺܴ௘/ݎሻଶ െ  ሻቁߠଶ݊݅ݏ
(5)

where Re = 6,378.137 km (radius of the Earth), H = 833 km (satellite nominal altitude), r = Re + H. 

Ss = px_x / H, St = px_y / H, where px_x = 0.776 km (pixel size along scan), px_t = 0.742 km (pixel 

size along track). To address the three pixel aggregation zones, the multiplier (x) is designated 

as follow: ݔ ൌ ቐ 1, ݂݅ ߠ ൑ 31.72°1.5, ݂݅ 31.72° ൏ ߠ ൑ 44.86°3, ݂݅ 44.86° ൏ ߠ  (6)

The source size (a) can be then derived in square meters by multiplying ESF by the estimated size 

of the sub-pixel hot M band pixel footprint from the following equation: a ൌ ܨܵܧ כ ܣ ൌ ܨܵܧ כ Δܵ כ Δܶ (7)

2.7. Calculation of Radiant Heat 

The radiant heat intensity (I, in W/m2) is calculated using Stefan-Boltzmann’s Law with 

temperature (T) and ESF as inputs. Radiant heat (Q, in MW) is calculated by multiplying radiant heat 

intensity by the square meters of the pixel footprint as shown in the following equation: ܳ ൌ ܫ כ (8) ܣ

For gas flares, an estimate is made of the quantity of methane combustion (m3/s) required to 

produce the observed radiant heat [18]. This is termed “methane equivalents” since there are typically 

minor quantities of other hydrocarbons present. The methane equivalents are used to calculate carbon 

dioxide emission rates (g/s). 
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2.8. Treatment of Clouds 

Clouds obscure combustion sources by absorbing radiant emissions. The obscuration can range 

from partial to total. Nightfire reports all hotspot detections and records the cloud conditions reported 

in the VIIRS cloud mask and cloud optical thickness products. With each VIIRS data aggregate there 

is typically an associated cloud mask and very often a cloud optical thickness product. The cloud mask 

has four values: 0 = confidently clear, 1 = probably clear, 2 = probably cloudy, and 3 = confidently 

cloudy [19]. The smallest of these classes in terms of spatial extent is 2 (probably cloudy) which rings 

the outer margins of almost every identified cloud features. 

In examining the cloud mask, it was found that gas flares are frequently misidentified as having 

cloud cover (Figure 5). These are isolated patches marked as “probably cloudy” or “confidently 

cloudy”. This may be a type of spectral confusion. A cloud-clearing algorithm is run to reset the cloud 

mask values for isolated clouds associated with M10 hot pixels. 

Figure 5. Gas flares often have isolated patches of cloud in the VIIRS cloud mask. 

M10     Confident Cloudy 

 

Only pixels deemed to be confidently cloudy have cloud optical thickness values. Some clouds are 

optically thin, with minimal impact on the radiances from hot sources. We identified pixels with 

optically thin clouds using an upper cloud optical thickness threshold of 0.01, corresponding to an 

atmospheric transmissivity value of 99%. 

3. Results 

Nightfire CSV files are generated for each M10 SDR file processed. These are then merged to form 

CSV files containing a full day of observations. In addition, a KMZ is generated containing data for 

the M10 local maxima. These output files are available at: http://www.ngdc.noaa.gov/eog/viirs/ 

download_viirs_fire.html. A low temporal latency version of Nightfire runs on data collected by 

ground stations operated by the CIMSS University of Wisconsin and Oregon State University 

(http://www.ngdc.noaa.gov/eog/viirs/download_cimss_fire.html), providing coverage over the 

continental US and portions of Canada and Mexico. 
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3.1. Detection Numbers 

The number of confirmed (multiband detection) daily hot pixel detections ranges from 15,000 to 

22,000 (Figure 6). The number of local maxima is typically 30% of the confirmed hot pixel tallies. The 

chart also shows tallies of pixels with only an M10 detection, where the detection of a hot pixel could 

not be confirmed by hot pixel detection in any other spectral band. These pixels are recorded in the 

CSV and marked as unconfirmed using a quality flag. The number of unconfirmed M10 detections 

average 44% of the confirmed detections. While many of the unconfirmed M10 detections are noise, 

some are genuine hot pixels with weak signals. 

Figure 6. Tallies of Nightfire M10 hot pixels and local maxima for a sixteen day period 

starting 18 March 2013. The third column shows tallies of M10 detections that could not be 

confirmed with detection in at least one additional spectral band. These single band 

detections are treated as noise. 

 

3.2. Temperature Distribution of Detections 

With detections spanning from visible to MWIR, Nightfire successfully retrieves temperatures over 

a wide range. There is a distinctly bimodal temperature distribution to the detections (Figure 7). 

Biomass burning detections are primarily in the range of 600 to 1,200 K, with a median near 1,000 K. 

Gas flare temperatures overlap with the high end of temperatures associated with biomass burning 

(1,400 K) and have a median near 1,750 K. In terms of the number of local maxima detected in a day, 

the two predominant types of detections (biomass burning and gas flares) are on par with each other. 

Approximately 15% of the observations have temperatures fixed at 1,810 degrees K due to the  

dual-band detection style, with M10 and DNB only, as discussed in Section 2.5. 
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Figure 7. Histogram of temperature results from 3 July 2013. There is a spike in the 

histogram bin covering 1810 K due to the assumption that detections made with M10 and 

DNB only have peak radiant emission in the M10 spectral band. 

 

3.3. Detection Limits 

Nightfire detection limits are defined by the minimal detectable radiance of the M10 spectral band 

at night. Since the radiances detected in M10 are entirely from the hot sources present in the pixel 

footprint, the M10 minimal detectable radiance can be used to define the source area required to 

achieve a detection for any given temperature. Figure 8 shows a plot of a full day of Nightfire 

temperatures and source area estimates. Note there is a zone below the data cloud that is devoid of 

detections. The detection limit (red line) has been modeled with the typical nadir M10 detection limit 

and Planck’s Law by calculating the source size required to generate a detectable M10 radiance for 

temperatures ranging from 500 to 2,800 K. The modeled detection limit falls along the lower surface 

of the data cloud, indicating that Nightfire’s detection limits closely match the theoretical limits based 

on the M10 detection limit. The detection limit line shifts slightly upward at the edge of scan due to the 

gradual increase in the pixel footprint size and the increase in the M10 detection threshold, as discussed 

in Section 2.1. Modeled source area detection limits at nadir for a range of temperatures are shown in 

Table 2. The lower detection limit for Nightfire is estimated at 500 K, which is the temperature where a 

full pixel hot source (ESF = 1) would be required to generate a M10 detection at nadir. 

On Figure 8 there is a set of seven pixels that fall below the red line, labeled as “misfits”. At the low 

end of the temperature range (under 700 K), the radiance in M10 is low compared to M12 and M13. 

The Planck curve fits for misfit pixels do not pass through or even close to the M10 radiance. The 

results are temperature estimates that are low, pulling the pixels below the red line in Figure 8. It may 

be possible to address this problem with an adjustment to the Planck curve fitting procedure to add 

weight to the M10 radiance.  
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Figure 8. Plot of Nightfire temperature vs. source area estimates. The red line indicates the 

theoretical detection limit modeled based on the M10 detection limit. The green line is the 

hypothetical detection limit based on the published M10 minimum detectable radiance 

(Lmin) requirement [12]. 

 

Table 2. Nightfire Source Area Detection Limits by Temperature. 

Temperature (K) Source Area (m2) 

500 104,031 

600 5,298 

700 631.8 

800 128.2 

900 37.1 

1,000 13.7 

1,100 6.10 

1,200 3.10 

1,300 1.75 

1,400 1.07 

1,500 0.698 

1,600 0.481 

1,700 0.346 

1,800 0.258 

1,900 0.198 

2,000 0.156 

2,100 0.126 

2,200 0.103 

2,300 0.086 

2,400 0.073 

2,500 0.063 

2,600 0.055 
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Table 2. Cont. 

Temperature (K) Source Area (m2) 

2,700 0.048 

2,800 0.042 

2,900 0.038 

3,000 0.034 

The green line in Figure 8 marks the detection limit defined based on the published detection limit 

(Lmin) for the M10 spectral band [12]. The published detection limit is 1.1 W/(m2·μm·sr) (Table 1). 

Nightfire achieves a detection limit of 0.03 W/(m2·μm·sr), substantially lower than the 

requirement Lmin. 

Figure 9. Plot of M13 vs. M12 radiances for Nightfire local maxima pixels from 

4 April 2013. Across the upper tier of the chart there is a line of M12 saturated pixels 

pegged at the saturation radiance (3.39 W/(m2·μm·sr)). The quality flag for these pixels is 

correctly set for saturation. The pixels in the shaded area exhibit the pattern expected for 

sub-pixel saturation and are from aggregation zones 1 and 2 (three and two pixel 

aggregations). The original data have no quality flag setting for sub-pixel saturation. The 

Nightfire algorithm identifies M12 sub-pixel saturation and records a quality flag for these 

pixels in the CSV. 

 

3.4. Filtering of M12 Saturation 

The only spectral band where an indication of saturation has been found for pixels containing hot 

sources is M12—centered at 3.8 μm. The M12 saturation radiance is 3.39 W/(m2·μm·sr), somewhat 

higher than the 2.84 requirement listed in Table 1. However, there can be sub-pixel saturation in 

aggregation zones 1 and 2 (Figure 3). Averaging saturated and unsaturated pixels results in radiances 
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below the saturation radiance. Figure 9 shows M13 vs. M12 radiances for confirmed hot pixel 

detections from 4 April 2013. There is a line of pixels saturated in M12 pegged at radiances of 3.39. 

These were correctly indicated as saturated in the SDR quality flags. Nearly all of these fully saturated 

pixels are from the third aggregation zone (single pixel collections) and in this case none are from 

aggregation zone one (three pixel aggregation). On the right side of the chart there are pixels that are 

low in M12 relative to M13, falling away from the primary data cloud. All of these pixel are from 

aggregation zones one and two (Figure 3). These pixels did not have their SDR quality flag set for  

sub-pixel saturation. Examination of the full spectra for these pixels indicates that they are affected by 

sub-pixel saturation in M12, with anomalous dips in M12 radiance relative to M10 and M13. 

Currently, the pixels with M12 sub-pixel saturation are identified as falling in the shaded area on 

Figure 9. A quality flag is set in the CSV for pixels falling in this zone and the M12 radiance is 

excluded from the Planck curve fitting. 

3.5. Effects of Atmospheric Correction 

To examine the effects of atmospheric correction on the combustion parameters we examined plots 

of the temperature, source size and radiant heat with and without atmospheric correction. In the case of 

temperature and radiant heat, atmospheric correction results in a highly linear shift in the estimates 

(Figures 10 and 11). This is good news in that it indicates that non-atmospherically corrected Nightfire 

data could potentially be shifted to achieve the benefit of an atmospheric correction without the 

computational burden. The source area estimates are more heavily impacted by atmospheric correction 

(Figure 12). This is attributed to variability in the ESF terms derived from the Planck curve fitting.  

Figure 10. Plot of local maxima temperature estimates with and without atmospheric 

correction from 4 April 2013. The shaded area encompasses the 99% confidence interval 

around the regression line. 

Temperature (K) 
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Figure 11. Plot of local maxima radiant heat estimates with and without atmospheric 

correction from 4 April 2013. The shaded area encompasses the 99% confidence interval 

around the regression line. 

Radiant Heat (MW) 

 

Figure 12. Plot of local maxima source area estimates with and without atmospheric 

correction from 4 April 2013. The shaded area encompasses the 99% confidence interval 

around the regression line. 

Source Area (m2) 

 

Another test was performed to compare the transmissivity of the six spectral bands used in Nightfire 

for two distinctly different atmospheres: wet vs. dry. The MODTRAN model was run for Nightfire 
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detections in the Iraq region (dry atmosphere) and Nigeria region (wet atmosphere). The transmissivities 

were analyzed to identify the median and quartiles. For each spectral band the transmissivities through 

the wet atmosphere are lower (Figure 13). The band with the highest transmissivity is M10, with a 

median near 90% transmissivity for both the wet and dry atmosphere. In addition, the quartile range of 

transmissivities is narrowest for the M10 spectral band. In contrast, the DN Band M13 have median 

transmissivities near 70% and wide dispersion in transmissivities, as indicated by the quartiles. Inclusion 

of the M10 spectral band in the Planck curve fitting may explain the relatively minor atmospheric effects 

on temperature and radiant heat estimates shown in Figures 10 and 11. 

Figure 13. Plot of median and four quartiles for the MODTRAN derived transmissivity of 

the six spectral bands used in Nightfire for a wet and a dry atmosphere. Processed from 

Nightfire detections for 2 June 2013. 

 

4. Validation 

Nightfire is a new data product that will take some time for full validation. However, the authors are 

able to report a limited set of validation results at this time. This includes comparisons with MODIS 

active fire product, the operational VIIRS active fire product, an accuracy assessment for the 

identification of gas flares, temperature stability of a gas flare, and temperature of a high temperature 

xenon-arc sky beam. 

4.1. Intercomparison with MODIS Fire Radiant Power 

Nightfire radiant heat (RH) was compared to MODIS Aqua Fire Radiative Power (FRP) for 471 

individual clusters of fire detections observed during a major outburst of burning in Sumatra which 

occurred on 19 June 2013. The units for RH and FRP are the same (MW). The two sensors collected 

data over Sumatra within six minutes of each other. The analysis was confined to land since offshore 

gas flare detections are excluded from the MODIS product. FRP and RH gridded images were produced 
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at 15 arc second resolution. The MODIS active fire product cloud masking procedure was applied to the 

Nightfire data to further narrow differences between the two datasets. An automatic clustering algorithm 

identified overlapping Nightfire and MODIS cloud-free pixel clusters and summed the MW signal. 

Figure 14 indicates that the MODIS FRP and Nightfire RH are highly correlated. 

Figure 14. Plot Nightfire Radiant heat (MW) vs. MODIS Fire Radiative Power (MW) from 

471 fire clusters observed within six minutes of each other on 19 June 2013. 

 

4.2. Intercomparison of VIIRS Active Fire Product and Nightfire 

An intercomparison of Nightfire with the VIIRS active fire product was conducted for the 

19 June 2013 Sumatra fires described in Section 4.1. Since the operational VIIRS active fire product 

only provides a list of pixels containing fires, the intercomparison is limited to analyzing the number of 

detections they have in common vs. the number of detections that are unique to one of the two 

products. As with the MODIS intercomparison, the VIIRS active fire cloud masking procedure was 

followed to ensure the comparsion covered the same areas. Water areas were also masked, since the 

VIIRS active fire product only reports hot pixels on land surfaces. Neither product was filtered to 

remove bow-tie duplicates. The results are summarized in Table 3. Fifty-three percent of the total 

number of fire detections were observed by both sensors. The VIIRS operational product detected 81 

fire pixels (6%) that were not reported by Nightfire. Nightfire had 578 detections (41% of the total) 

that were missing in the VIIRS active fire product. Because there are gas flares present on Sumatra, a 

check was made to see if the large number of Nightfire unique detections could be due to  

under-detection of high temperature gas flares by the VIIRS active fire product. In actuality, the 

Nightfire unique detections are distributed across a wide range of temperatures (Figure 15), with 83% 

in the primary temperature range of biomass burning (550 to 1,050 K). The authors attribute the larger 

number of detections in the Nightfire data to the lack of scene background effects on the M10 hot pixel 

detection thresholding. 
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Table 3. Intercomparison of VIIRS Active Fire vs. Nightfire Pixel Detection Numbers in 

Sumatra from 19 June 2013. 

Type Pixel Tally Percent of Total 

Nightfire & VIIRS Active Fire Product 741 53% 

Nightfire Unique 578 41% 

VIIRS Active Fire Product Unique 81 6% 

TOTAL 1400 100% 

Figure 15. Histogram of temperatures for the pixels detected by the VIIRS active fire 

product and Nightfire (blue) vs. Nightfire only (red). Data are from the 19 June 2013 

Sumatra intercomparison. 

 

4.3. Temperature Stability of a Gas Flare 

The primary combustible gas feeding the typical gas flare is methane. The temperature of a flare is 

largely determined by the composition of the gases and combustion efficiency. It is known that the 

quantity and composition of gases dissolved in petroleum in an oil field change slowly over the 

production lifetime. Based on this, it is reasonable to expect that over a time span such as a month, the 

temperature of a gas flare would be largely stable. Figure 16 shows the temperature of a gas flare in 

Iraq, with thirty observations in the month of January 2013. The temperature is stable, with an average 

of 1720 K and a standard deviation of 61 K. 

4.4. Accuracy of Gas Flare Identifications 

Gas flares should be identifiable based on their high temperature and temporal persistence. To test 

the ability of Nightfire data to correctly identify gas flares, a validation was conducted using a  

cloud-free composite of Nightfire data from January 2013. The detections were sorted to yield a set 

that had average temperatures greater than 1,600 K and detection in at least 20% of the cloud-free 



Remote Sens. 2013, 5 4443 

 

observations. This subset was converted into a KMZ for display using Google Earth. For each point, an 

analyst reviewed the base image present in Google Earth to see if a gas flare or gas flare infrastructure 

features could be identified (e.g., Figure 17). If no gas flare could be located, the analyst noted the type 

of base image data and year of the base image data. The points for which no gas flare could be found 

in Google Earth were filtered to remove cases where the base imagery had coarse spatial resolution 

(e.g., Landsat) or the image data were older than 2012. The filtered set was then used to discount the 

percent accuracy of the gas flare identifications. The results are presented in Table 4. The overall 

accuracy was 99%, indicating that temperature and temporal persistence can be used to filter Nightfire 

detections for the identification of gas flares. 

Figure 16. Temperature stability of a gas flare in Basra, Iraq during the month of January 2013.  

 

Table 4. Percent accuracy of Nightfire gas flare identifications from January 2013. 

Country Flares Identified Unknown Percent Accuracy 

Algeria 118 0 100% 

Bahrain 6 0 100% 

Egypt 78 1 99.73% 

Iran 142 0 100% 

Iraq 91 0 100% 

Kuwait 48 0 100% 

Libya 80 0 100% 

Oman 55 0 100% 

Qatar 18 1 94.74% 

Saudi Arabia 89 5 94.68% 

Syria 26 0 100% 

UA Emirates 25 1 96.15% 

Yemen 25 0 100% 

Total 807 8 99.01% 
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Figure 17. Example of a gas flare in Google Earth base imagery from Digital Globe. The 

site has a fireball and pipeline structures. In other cases the flare is not active and the flare 

stack or pipeline is visible. 

 

Figure 18. The Luxor sky beam. 
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4.5. Temperature of the Luxor Sky Beam 

The Luxor sky beam (Figure 18) in Las Vegas, Nevada is widely recognized as the brightest light 

shining into the sky. The sky beam is generated with a set of 39 closely spaced 7,000 Watt xenon arc 

lamps with reflective casings. The lamps are rated at a 6,000 K color temperature [20]. The lights are 

focused into a single beam, aimed straight up into the sky. On 7 July 2013, VIIRS data were collected 

with the sky beam at nadir. The radiances are high in DNB and M7, and trailing off to lower radiances 

in M8 and M10. The sky beam was not detected in M12 or M13. The Planck curve fit came out to 

6,000 K, matching the temperature quoted for 7,000 W xenon arc lamps [20]. The source size estimate 

is 0.2 m2, which is interpreted as an estimate of the aggregated area of the 39 xenon plasmas 

generating the sky beam. The Luxor sky beam radiances and Planck curve fit are in the upper left 

corner of Figure 19, marked as 6,000 K. 

Figure 19. Nightfire Planck curve fits spanning 600 to 6,000 degrees K. The 6,000 K curve 

is from the Luxor sky beam. 
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Figure 19. Cont. 

 

5. Conclusions 

NGDC has developed a system called Nightfire, which detects and characterizes sub-pixel 

combustion sources worldwide using nighttime data collected by the NASA-NOAA Suomi NPP 

Visible Infrared Imaging Radiometer Suite (VIIRS). Nightfire takes advantage of data collected at 

night by NIR and SWIR spectral bands designed for daytime imaging. With sunlight eliminated these 

bands record background noise, punctuated by high radiant emissions in pixels containing combustion 

sources. With multispectral detections spanning the visible to the MWIR it is possible to fully model 

the Planck curves of sub-pixel heat sources, enabling the estimation of temperature, source size, and 

radiant heat. Similar instruments, such as MODIS and AVHRR shut down the collection of data from 

daytime imaging bands at night, presumably to reduce data downlink and processing effort.  

Initial detection of pixels containing combustion sources is made in the VIIRS M10 band, centered 

in the SWIR at 1.6 μm. The radiances from five additional spectral bands (DNB, M7, M8, M12, and 

M13) are examined to determine if they are also hot. Radiances from M7–10 are attributed to the hot 

source since the noise background values are extremely low and by design average to zero in 

aggregate. Background subtraction is required to calculate combustion source radiances in M12 and 

M13. The hot source radiances are used to model the Planck curve using temperature and emission 

scaling factor (ESF) as fitting variables. The sources appear as gray-bodies due to the fact that they are 

substantially smaller than the pixel footprints. Nightfire reports the temperature (degrees K), source 

size (m2), and radiant heat (MW) of sub-pixel hot sources. Gas flares can generally be distinguished 

from biomass burning, active volcanoes, and industrial sites, such as steel mills, based on their high 

temperature. Nightfire data can be accessed at http://www.ngdc.noaa.gov/eog/data/viirs_fire/viirs_html/ 

download_viirs_fire.html. NGDC is working on a calibration for estimating flared gas volumes from 

Nightfire data. 

Nightfire is similar to the Dozier method [1] in that the procedure is conducted with nighttime 

satellite data and the objective is to calculate the temperature and source size for sub-pixel hot objects. 

The classic Dozier method uses a 4 μm MWIR band and an 11 μm LWIR band, spectral bands 
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designed for the observation of clouds and the earth surface. A major problem with the classic Dozier 

method is that it is only applicable to pixels where the hot source is detected in both the MWIR and 

LWIR. Because the LWIR is on the trailing edge of hot source Planck curves, very few pixels with hot 

source signal in the MWIR also have signal in the LWIR. In addition, methods used to estimate 

background temperature and atmospheric effects in MWIR and LWIR result in error effects in 

temperature and source size estimates. 

Nightfire mitigates MWIR scene background errors with hot source radiances measured against 

sensor noise backgrounds in three spectral bands: M7, M8, and M10. With zero radiance from the 

scene background in these bands when collected at night, the full measured radiance can be attributed 

to the infrared emitter with no ambiguity. Atmospheric effects on detection and estimation of 

temperature and source size are reduced through reliance on the 1.6 μm (M10) spectral band which is 

in a very clear atmospheric window (Figure 13). By expanding the number of spectral bands and 

widening the wavelength range (from visible to MWIR), Nightfire is able to retrieve temperatures 

spanning from 600 to 6,000 K (Figure 18). 

Another major difference between the Dozier method and Nightfire is the vast expansion in the 

number of pixels for which temperature and source size retrievals are possible. Dozier could only find 

a handful of pixels with hot source signal in both the 3.7 and 11 μm channels on a typical night. It is 

rare to get hot source detection in the 11 μm channel. In contrast, Nightfire is producing temperature 

and source area retrievals for fifteen to twenty thousand VIIRS pixels every night. 

Five types of validation analyses have been performed on Nightfire data. To compare MODIS FRP 

(MW) with Nightfire radiant heat (MW), a study was done for a large set of fires observed in Sumatra 

during June of 2013. The VIIRS and MODIS data were collected within six minutes of each other. 

MODIS FRP and VIIRS radiant heat were found to be highly correlated with each other. Comparison 

of the VIIRS active fire product with Nightfire in the Sumatra data set revealed that Nightfire detects 

substantially more fire pixels, probably due to Nightfire’s ability to detect hot pixels in M10 with no 

scene background effects. The temperature stability of an individual gas flare was demonstrated using 

data from a full month. Finally, the 6,000 K temperature of the Las Vegas, Nevada Luxor sky beam 

was confirmed with a 6,000 K Planck curve fit with Nightfire data. 

There are some problems with the current version of Nightfire that the authors continue to work on. 

The Planck curve fitting results in unrealistic fits for certain pixels in the 500 to 700 K range. We 

attribute this to errors in the M12 and M13 background removal. The authors are exploring the 

possibility of adding an independent M12 and M13 hot pixel detection and analysis system that would 

be coupled to the short-wave Nightfire detection system. The other major weakness of Nightfire is the 

large number of pixels for which a M10 detection goes unconfirmed by any other spectral band or only 

with the DNB. The best solution for this would be to have M11 (2.2 μm) data collected at night by 

VIIRS. The M11 Lmin requirement is ten times lower than the M10 band. The authors believe that 

having M11 data at night would enable full Planck curve fitting for thousands of additional pixels 

every day and assist in noise filtering. 

It could be argued that observations of combustion sources after midnight are of limited value. The 

majority of fires start during daytime hours when ambient temperatures and human activity levels are 

higher. Thus, the after midnight overpass of the SNPP likely under represents the extent of biomass 

burning. There are no known diurnal patterns known for gas flaring, which is the other type of 
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phenomenon widely detected in Nightfire data. The advantage of Nightfire over other global fire 

observation data sources is the ability to consistently model Planck curves from sub-pixel heat sources 

over a wide span of temperatures. To our knowledge, it is the only satellite fire detection system which 

estimates temperature and source size for biomass burning, gas flares, and volcanoes worldwide on a 

daily basis. 
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