Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Sampling
2.3. Soil Analysis
2.4. Determination of SOC and TN Stocks
2.5. Data Analysis
3. Results
3.1. Effect of Topographic Position on SOC and TN Contents and Stocks
3.2. SOC and TN Contents and Stocks for Different Land Uses across Soil Depths
3.3. Effect of Agro-ecosystem on SOC and TN Contents and Stocks
4. Discussion
4.1. Effects of Land-Use Type on SOC and TN Contents and Stocks Across Topographic Positions
4.2. Effect of Soil Depth on SOC and TN Contents and Stocks
4.3. Effect of Agro-Ecosystem on SOC and TN Contents and Stocks
4.4. Implications of SOC and TN Stocks as Indicators for Sustainable Land Management in the Upper Blue Nile Watershed
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, L.-F.; He, Z.-B.; Du, J.; Yang, J.-J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Bio. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Wang, J. Impact of land use change on profile distributions of soil organic carbon fractions in the Yanqi Basin. Catena 2014, 115, 79–84. [Google Scholar] [CrossRef]
- Martin, D.; Lal, T.; Sachdev, C.B.; Sharma, J.P. Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agri. Ecosyst. Environ. 2010, 138, 64–73. [Google Scholar] [CrossRef]
- Assefa, D.; Rewald, B.; Sandén, H.; Rosinger, C.; Abiyu, A.; Yitaferu, B.; Godbold, D.L. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 2017, 153, 89–99. [Google Scholar] [CrossRef]
- Lal, R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. Biosci. 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Fan, S.; Guan, F.; Xu, X.; Forrester, D.; Ma, W.; Tang, X. Ecosystem Carbon Stock Loss after Land Use Change in Subtropical Forests in China. Forests 2016, 7, 142. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Wesemael, B.V.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Change Bio. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Euro. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, H.; Guo, S. Soil organic carbon as a function of land use and topography on the Loess Plateau of China. Ecol. Eng. 2015, 83, 249–257. [Google Scholar] [CrossRef]
- IPCC. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge Univ. Press: Cambridge, UK, 2013. [Google Scholar]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agri. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Fu, X.; Shao, M.; Wei, X.; Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 2010, 155, 31–35. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Organic Carbon and Nitrogen Associated with Soil Aggregates and Particle Sizes Under Different Land Uses in Tigray, Northern Ethiopia. Land Degrad. Dev. 2015, 26, 690–700. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, south-eastern highlands of Ethiopia. For. Ecol. Manag. 2007, 242, 337–342. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Tsunekawa, A.; Tsubo, M.; Ali, S.A.; Haregeweyn, N. Land-use change and its socio-environmental impact in Eastern Ethiopia’s highland. Reg. Environ. Change 2014, 14, 757–768. [Google Scholar] [CrossRef]
- Alem, S.; Pavlis, J. Conversion of grazing land into Grevillea robusta plantation and exclosure: Impacts on soil nutrients and soil organic carbon. Environ. Mon. Ass. 2014, 186, 4331–4341. [Google Scholar] [CrossRef]
- Lemenih, M.; Olsson, M.; Karltun, E. Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia. For. Ecol. Manag. 2004, 195, 57–67. [Google Scholar] [CrossRef]
- Guteta, D.; Abegaz, A. Dynamics of selected soil properties under four land uses in Arsamma watershed, Southwestern Ethiopian Highlands. Phys. Geog. 2017, 38, 83–102. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Wang, K.; Hou, Y. Soil organic carbon and total nitrogen as affected by land use types in karst and non-karst areas of northwest Guangxi, China. J. Sci. Food Agri. 2012, 92, 1086–1093. [Google Scholar] [CrossRef]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: The case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agri. Ecosyst. Environ. 2017, 247, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Teferi, E.; Bewket, W.; Simane, B. Effects of land use and land cover on selected soil quality indicators in the headwater area of the Blue Nile basin of Ethiopia. Environ. Mon. Ass. 2016, 188, 83. [Google Scholar] [CrossRef] [PubMed]
- Feyisa, K.; Beyene, S.; Angassa, A.; Said, M.Y.; de Leeuw, J.; Abebe, A.; Megersa, B. Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. Catena 2017, 159, 9–19. [Google Scholar] [CrossRef]
- Mekuria, W.; Langan, S.; Noble, A.; Johnston, R. Soil Restoration after seven Years of Exclosure Management in Northwestern Ethiopia. Land Degrad. Dev. 2017, 28, 1287–1297. [Google Scholar] [CrossRef]
- Mekuria, W.; Wondie, M.; Amare, T.; Wubet, A.; Feyisa, T.; Yitaferu, B. Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 2018, 4, e00764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, D.; Lehmann, J.; Zech, W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: Carbon, nitrogen, lignin and carbohydrates. Agri. Ecosyst. Environ. 2000, 78, 203–213. [Google Scholar] [CrossRef]
- Dessalegn, D.; Beyene, S.; Ram, N.; Walley, F.; Gala, T.S. Effects of topography and land use on soil characteristics along the toposequence of Ele watershed in southern Ethiopia. Catnea 2014, 115, 47–54. [Google Scholar] [CrossRef]
- Dialynas, Y.G.; Bastola, S.; Bras, R.L.; Billings, S.A.; Markewitz, D.; Richter, D.d. Topographic variability and the influence of soil erosion on the carbon cycle. Glob. Biogeochem. Cycles 2016, 30, 644–660. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Lü, Y.; Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena 2011, 85, 58–66. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, J.; Guo, S.; Huang, D.; Zhu, Q.; Ge, T.; Lei, T. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena 2014, 120, 64–72. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward. Glob. Change Bio. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Crowther, T.W.; Thomas, S.M.; Maynard, D.S.; Baldrian, P.; Covey, K.; Frey, S.D.; van Diepen, L.T.; Bradford, M.A. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. USA 2015, 112, 7033–7038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Fang, J. Soil respiration and human effects on global grasslands. Glob. Planet. Change 2009, 67, 20–28. [Google Scholar] [CrossRef]
- Takoutsing, B.; Weber, J.C.; Tchoundjeu, Z.; Shepherd, K. Soil chemical properties dynamics as affected by land use change in the humid forest zone of Cameroon. Agrofor. Sys. 2015, 90, 1089–1102. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci Total Environ. 2017, 574, 95. [Google Scholar] [CrossRef] [Green Version]
- Gebremicael, T.G.; Mohamed, Y.A.; Betrie, G.D.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 482, 57–68. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Meshesha, D.T.; Masunaga, T.; Aklog, D.; Ebabu, K. Analyzing the runoff response to soil and water conservation measures in a tropical humid Ethiopian highland. Phys. Geog. 2017, 38, 423–447. [Google Scholar] [CrossRef]
- Sisay, K.; Thurnher, C.; Belay, B.; Lindner, G.; Hasenauer, H. Volume and Carbon Estimates for the Forest Area of the Amhara Region in Northwestern Ethiopia. Forests 2017, 8, 122. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M. Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 2019, 87, 104052. [Google Scholar] [CrossRef]
- Mekonnen, G. Soil Characterization Classification and Mapping of Three Twin Watersheds in the Upper Blue Nile basin, Ethiopia; Amhara Design and Supervision Works Enterprise: Bahir Dar, Ethiopia, 2016. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Sys. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, D.T.; Abele, S. Factors influencing small-scale farmers’ adoption of sustainable land management technologies in north-western Ethiopia. Land Use Policy 2017, 67, 57–64. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of the Lake Tana basin, Ethiopia. J. Maps 2013, 9, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; ISBN 3-900051-07-0. [Google Scholar]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Chai, H.; Yu, G.R.; He, N.P.; Wen, D.; Li, J.; Fang, J.P. Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems. Chi. Geog. Sci. 2015, 25, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Zhu, G.-Y.; Tang, Z.-S.; Shangguan, Z.-P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Berihu, T.; Girmay, G.; Sebhatleab, M.; Berhane, E.; Zenebe, A.; Sigua, G.C. Soil carbon and nitrogen losses following deforestation in Ethiopia. Agron. Sustain. Dev. 2016, 37. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Li, Z.; Ding, K.; Huang, B.; Nie, X.; Lu, Y.; Xiao, H. Soil erosion, organic carbon and nitrogen dynamics in planted forests: A case study in a hilly catchment of Hunan Province, China. Soil Tillage Res. 2016, 155, 69–77. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochem 2007, 85, 91–118. [Google Scholar] [CrossRef]
- van Breugel, P.; Friis, I.; Demissew, S.; Lillesø, J.-P.B.; Kindt, R. Current and Future Fire Regimes and Their Influence on Natural Vegetation in Ethiopia. Ecosystems 2015, 19, 369–386. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Change Bio. 2011, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, M.A.; Bravo-Oviedo, A.; Bravo, F.; Kidane, B.; Bekele, K.; Sertse, D. Selection of Tree Species and Soil Management for Simultaneous Fuelwood Production and Soil Rehabilitation in the Ethiopian Central Highlands. Land Degrad. Dev. 2015, 26, 665–679. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, D.T.; Abele, S. Factors Affecting Small-Scale Farmers’ Land Allocation and Tree Density Decisions in an Acacia decurrens-Based taungya System in Fagita Lekoma District, North-Western Ethiopia. Small-Scale For. 2016, 16, 219–233. [Google Scholar] [CrossRef]
- Wondie, M.; Mekuria, W. Planting of Acacia decurrens and Dynamics of Land Cover Change in Fagita Lekoma District in the Northwestern Highlands of Ethiopia. Mt. Res. Dev. 2018, 38, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Sultan, D.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Meshesha, D.T.; Masunaga, T.; Aklog, D.; Fenta, A.A.; Ebabu, K. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia. Environ. Manag. 2018, 61, 860–874. [Google Scholar] [CrossRef]
- Tesfaye, M.A.; Bravo, F.; Ruiz-Peinado, R.; Pando, V.; Bravo-Oviedo, A. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 2016, 261, 70–79. [Google Scholar] [CrossRef]
- Assefa, D.; Rewald, B.; Sandén, H.; Godbold, D. Fine Root Dynamics in Afromontane Forest and Adjacent Land Uses in the Northwest Ethiopian Highlands. Forests 2017, 8, 249. [Google Scholar] [CrossRef]
- Twongyirwe, R.; Sheil, D.; Majaliwa, J.G.M.; Ebanyat, P.; Tenywa, M.M.; van Heist, M.; Kumar, L. Variability of Soil Organic Carbon stocks under different land uses: A study in an afro-montane landscape in southwestern Uganda. Geoderma 2013, 193–194, 282–289. [Google Scholar] [CrossRef]
- Lemenih, M.; Feleke, S.; Tadesse, W. Constraints to smallholders production of frankincense in Metema district, North-western Ethiopia. J. Arid Environ. 2007, 71, 393–403. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; Courcelles, V.d.R.d.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Wang, T.; Kang, F.; Cheng, X.; Han, H.; Ji, W. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 2016, 163, 176–184. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob Change Bio. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Cheng, F.; Yin, Y.; Zhang, Y. Variation of soil organic carbon and land use in a dry valley in Sichuan province, Southwestern China. Ecol. Eng. 2016, 95, 501–504. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Euro. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Tesfaye, M.; Negash, M. Combretum—Terminalia vegetation accumulates more carbon stocks in the soil than the biomass along the elevation ranges of dryland ecosystem in Southern Ethiopia. J. Arid Environ. 2018, 155, 59–64. [Google Scholar] [CrossRef]
- Temesgen, D.; Gonzálo, J.; Turrión, M.B. Effects of short-rotation Eucalyptus plantations on soil quality attributes in highly acidic soils of the central highlands of Ethiopia. Soil Use Manag. 2016, 32, 210–219. [Google Scholar] [CrossRef]
- Ostrowska, A.; Porębska, G. Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecol. Ind. 2015, 49, 104–109. [Google Scholar] [CrossRef]
Site Characteristics | Site (Watershed) | ||
---|---|---|---|
Guder (Highland) | Aba Gerima (Midland) | Dibatie (Lowland) | |
Longitude, latitude | 11°0′35.13″ N, 36°56′7.97″ E | 10°45′53.09″ N, 36°16′19.11″ E | 11°39′27.26″ N, 37°30′14.21″ E |
Area (ha) | 343 | 426 | 246 |
Elevation (m a.s.l.) | 2500–2800 | 1900–2200 | 1400–1700 |
Slope gradients (°) a | 0–32 | 0–36 | 0–21 |
Topographic positions (elevation range and mode of slope (%)) | |||
Upper | (2500–2600, 30–50) | (2200–2100, 10–20) | (1700–1600, 10–20) |
Middle | (2600–2700, 10–20) | (2100–2000, 10–20) | (2100–2000, 0–10) |
Lower | (2700–2800, 0–10) | (2000–1900, 0–10) | (2000–1900, 0–10) |
Annual mean temperature (°C) b | 9.4–25 | 13–27 | 25–32 |
Rainfall (mm yr−1) b | 1951–3424 | 895–2037 | 850–1200 |
Agro-ecology c | oceanic subtropical | humid subtropical | tropical wet-dry |
Soil parent material d | Basalt (Quaternary) | Basalt (Oilgo pilocene) | - |
Major soil types e | Acrisols and Leptosols | Leptosols and Luvisols | Luvisols and Vertisols |
Primary soil texture a | clay loam | clay | clay |
Sand, silt, and clay (%) e | 30, 40, and 30 | 15, 30, and 55 | 25, 19, and 56 |
Selected soil properties | |||
pH (water) | 4.2–6.5 | 4.7–6.8 | 5.8–7.4 |
Electric conductivity (dS m−1) | 0.01–0.11 | 0.01–0.12 | 0.02–0.19 |
Cation exchange capacity (cmol kg−1) e | 21.4–65.7 | 23.8–26.8 | 23.2–48.8 |
Land-use types (Area, ha) | bushland (58.8), cropland(106), grazing land (47.1), plantation forest (116.5) | bushland (46.5), cropland (220), grazing land (14.6), plantation forest (38) | bushland (37.6, cropland (151), grazing land (55.3) |
Dry biomass (tones ha−1 yr−1) f | |||
Cropland (teff) | 7.14 | 6.17 | 6.94 |
Grazing land | 3.9 | 3.08 | 7.9 |
Agro-Ecosystem | Source | df | p-Value | |||
---|---|---|---|---|---|---|
SOC Content | TN Content | SOC Stock | TN Stock | |||
Guder | topographic position | 2 | 0.278 | 0.093 | <0.001 | <0.001 |
land use | 3 | <0.001 | <0.001 | <0.001 | <0.001 | |
topographic position × land use | 5 | 0.034 | 0.019 | <0.001 | <0.001 | |
Aba Gerima | topographic position | 2 | 0.562 | <0.001 | 0.307 | <0.001 |
land use | 3 | <0.001 | <0.001 | <0.001 | <0.001 | |
topographic position × land use | 5 | 0.012 | 0.002 | <0.001 | <0.001 | |
Dibatie | topographic position | 2 | 0.010 | 0.003 | 0.046 | 0.005 |
land use | 2 | 0.024 | 0.003 | 0.492 | 0.004 | |
topographic position × land use | 3 | 0.924 | 0.681 | 0.766 | 0.793 |
Land Use | Site | SOC | TN | C/N Ratio | Bulk Density | ||
---|---|---|---|---|---|---|---|
mg g−1 | Mg ha−1 | mg g−1 | Mg ha−1 | Mg m−3 | |||
Bushland | Guder | 31.63 (1.45) a | 141.19 (6.74) a | 2.63 (0.13) a | 11.73 (0.50) a | 12.16 (0.30) a | 0.90 (0.01) b |
Aba Gerima | 13.42 (1.16) b | 59.23 (7.19) b | 0.96 (0.09) b | 4.13 (1.91) b | 14.01 (0.31) a | 1.09 (0.03) a | |
Dibatie | 15.31 (1.19) b | 85.70 (9.81) a,b | 0.92 (0.06) b | 8.08 (1.51) a | 16.16 (0.57) a | 1.11 (0.04) a | |
Cropland | Guder | 13.07 (1.04) a | 61.00 (2.33) a | 1.02 (0.07) a | 4.77 (0.28) b | 12.52 (0.32) b | 0.96 (0.03) b |
Aba Gerima | 5.01 (0.29) b | 25.97 (7.04) b | 0.39 (0.03) b | 2.14 (1.44) c | 17.63 (2.33) a | 1.12 (0.01) a | |
Dibatie | 13.28 (0.96) a | 72.62 (8.33) a | 0.75 (0.04) a | 6.26 (1.34) a | 17.38 (0.82) a | 1.12 (0.03) a | |
Grazing | Guder | 18.19 (1.20) a | 109.94 (3.69) a | 1.44 (0.09) a | 8.68 (0.31) a | 12.68 (0.20) b | 1.18 (0.04) b |
Aba Gerima | 7.97 (0.49) b | 44.14 (7.55) b | 0.71 (0.04) b | 4.17 (1.19) b | 11.03 (0.17) b | 1.19 (0.03) b | |
Dibatie | 10.84 (0.81) b | 66.42 (4.69) b | 0.63 (0.05) b | 5.65 (1.52) a,b | 17.52 (0.72) a | 1.32 (0.02) a | |
Plantation | Guder | 9.85 (0.87) a | 48.79 (7.15) a | 0.78 (0.06) a | 3.86 (0.65) a | 12.16 (0.41) b | 1.02 (0.02) a |
Aba Gerima | 9.24 (0.79) a | 44.77 (6.33) a | 0.68 (0.06) a | 3.56 (0.38) a | 17.15 (2.62) a | 1.06 (0.03) a |
Source | df | p-Value | |||
---|---|---|---|---|---|
SOC Content | TN Content | SOC Stock | TN Stock | ||
Agro-ecosystem | 2 | <0.001 | <0.001 | <0.001 | <0.001 |
Topographic position | 2 | 0.043 | 0.862 | 0.019 | <0.001 |
Land use | 3 | <0.001 | <0.001 | <0.001 | <0.001 |
Agro-ecosystem × topographic position | 4 | 0.082 | <0.001 | 0.003 | <0.001 |
Agro-ecosystem × land use | 5 | <0.001 | <0.001 | <0.001 | <0.001 |
Agro-ecosystem × topographic position × land use | 13 | 0.058 | <0.001 | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abebe, G.; Tsunekawa, A.; Haregeweyn, N.; Takeshi, T.; Wondie, M.; Adgo, E.; Masunaga, T.; Tsubo, M.; Ebabu, K.; Berihun, M.L.; et al. Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin. Sustainability 2020, 12, 2425. https://doi.org/10.3390/su12062425
Abebe G, Tsunekawa A, Haregeweyn N, Takeshi T, Wondie M, Adgo E, Masunaga T, Tsubo M, Ebabu K, Berihun ML, et al. Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin. Sustainability. 2020; 12(6):2425. https://doi.org/10.3390/su12062425
Chicago/Turabian StyleAbebe, Getu, Atsushi Tsunekawa, Nigussie Haregeweyn, Taniguchi Takeshi, Menale Wondie, Enyew Adgo, Tsugiyuki Masunaga, Mitsuru Tsubo, Kindiye Ebabu, Mulatu Liyew Berihun, and et al. 2020. "Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin" Sustainability 12, no. 6: 2425. https://doi.org/10.3390/su12062425
APA StyleAbebe, G., Tsunekawa, A., Haregeweyn, N., Takeshi, T., Wondie, M., Adgo, E., Masunaga, T., Tsubo, M., Ebabu, K., Berihun, M. L., & Tassew, A. (2020). Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin. Sustainability, 12(6), 2425. https://doi.org/10.3390/su12062425