Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant and Soil Analyses
2.3. Modeling
2.4. Statistical Analyses
3. Results and Discussion
3.1. Bulk Soil and Rhizosphere pH
3.2. Root-induced Mobilization of P
3.3. Effect of N Forms on P Uptake
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Faucon, M.-P.; Houben, D.; Reynoird, J.-P.; Mercadal-Dulaurent, A.-M.; Armand, R.; Lambers, H. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Adv. Agron. 2015, 134, 51–79. [Google Scholar]
- Houben, D.; Michel, E.; Nobile, C.; Lambers, H.; Kandeler, E.; Faucon, M.-P. Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Appl. Soil Ecol. 2019, 137, 178–186. [Google Scholar] [CrossRef]
- Dawson, C.J.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, S14–S22. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef]
- Tansel, B.; Lunn, G.; Monje, O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere 2018, 194, 504–514. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Scholz, M.; Nolasco, M.A. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. J. Environ. Manag. 2019, 248, 109268. [Google Scholar] [CrossRef]
- Parsons, S.A.; Smith, J.A. Phosphorus removal and recovery from municipal wastewaters. Elements 2008, 4, 109–112. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef]
- Rech, I.; Withers, P.J.A.; Jones, D.L.; Pavinato, P.S. Solubility, diffusion and crop uptake of phosphorus in three different struvites. Sustainability 2019, 11, 134. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio 2015, 44, 217–227. [Google Scholar] [CrossRef]
- do Nascimento, C.A.C.; Pagliari, P.H.; Faria, L.D.A.; Vitti, G.C. Phosphorus mobility and behavior in soils treated with calcium, ammonium, and magnesium phosphates. Soil Sci. Soc. Am. J. 2018, 82, 622–631. [Google Scholar] [CrossRef]
- Bhuiyan, M.I.H.; Mavinic, D.S.; Beckie, R.D. A solubility and thermodynamic study of struvite. Environ. Technol. 2007, 28, 1015–1026. [Google Scholar] [CrossRef]
- Massey, M.S.; Davis, J.G.; Ippolito, J.A.; Sheffield, R.E. Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agron. J. 2009, 101, 323–329. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011; ISBN 978-0-12-384906-9. [Google Scholar]
- Hinsinger, P.; Plassard, C.; Tang, C.X.; Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 2003, 248, 43–59. [Google Scholar] [CrossRef]
- Riley, D.; Barber, S.A. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Am. J. 1971, 35, 301–306. [Google Scholar] [CrossRef]
- Hinsinger, P.; Gilkes, R.J. Mobilization of phosphate from phosphate rock and alumina–sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur. J. Soil Sci. 1996, 47, 533–544. [Google Scholar] [CrossRef]
- Wang, X.; Guppy, C.N.; Watson, L.; Sale, P.W.G.; Tang, C. Availability of sparingly soluble phosphorus sources to cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) with different forms of nitrogen as evaluated by a 32P isotopic dilution technique. Plant Soil 2011, 348, 85. [Google Scholar] [CrossRef]
- Gahoonia, T.S. Influence of root-induced pH on the solubility of soil aluminium in the rhizosphere. Plant Soil 1993, 149, 289–291. [Google Scholar] [CrossRef]
- Ruan, J.; Zhang, F.; Wong, M.H. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant Soil 2000, 223, 65–73. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Mwamila, L.B.; Kergoat, K. The pH dependence of phosphate sorption and desorption in Swedish agricultural soils. Geoderma 2012, 189–190, 304–311. [Google Scholar] [CrossRef]
- FAO. IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015 International Soils Classification System for Naming Soils and Creating Legends for Soil Maps; World Resources Reports No. 106; FAO: Roma, Italy, 2015; p. 192. [Google Scholar]
- Yacoumas, A.; Honvault, N.; Houben, D.; Fontaine, J.; Meglouli, H.; Laruelle, F.; Tisserant, B.; Faucon, M.-P.; Sahraoui, A.L.-H.; Firmin, S. Contrasting response of nutrient acquisition traits in wheat grown on bisphenol A-contaminated soils. Water. Air Soil Pollut. 2020, 231, 23. [Google Scholar] [CrossRef]
- Bravin, M.N.; Michaud, A.M.; Larabi, B.; Hinsinger, P. RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability. Environ. Pollut. 2010, 158, 3330–3337. [Google Scholar] [CrossRef]
- Houben, D.; Sonnet, P. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 2015, 139, 644–651. [Google Scholar] [CrossRef]
- Lambrechts, T.; Couder, E.; Bernal, M.P.; Faz, A.; Iserentant, A.; Lutts, S. Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test. Water. Air Soil Pollut. 2011, 217, 333–346. [Google Scholar] [CrossRef]
- Lange, B.; Faucon, M.-P.; Meerts, P.; Shutcha, M.; Mahy, G.; Pourret, O. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 2014, 379, 275–287. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Glanville, H.C.; Harris, M.; Emmett, B.A.; Pingree, M.R.A.; de Sosa, L.L.; Cerdá-Moreno, C.; Jones, D.L. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biol. Biochem. 2015, 88, 110–119. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Conyers, M.K.; Conyers, M.K.; Poile, G.J.; Poile, G.J.; Cullis, B.R.; Cullis, B.R. Lime responses by barley as related to available soil aluminium and manganese. Aust. J. Agric. Res. 1991, 42, 379–390. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ, Version 3.1. KTH, Royal Institute of Technology. Stockholm. 2014. Available online: http://vminteq.lwr.kth.se (accessed on 1 October 2019).
- Schabenberger, O.; Pierce, F.J. Contemporary Statistical Models for the Plant and Soil Sciences; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; ISBN 3-900051-07-0. Available online: https://www.R-project.org (accessed on 1 October 2019).
- Fox, J. The R Commander: A Basic-Statistics Graphical User Interface to R. J. Stat. Softw. 2005, 14, 141489. [Google Scholar] [CrossRef]
- Dijkshoorn, W.; Lampe, J.; Van Broekhoven, L. The effect of soil pH and chemical form of nitrogen fertilizer on heavy-metal contents in ryegrass. Fertil. Res. 1983, 4, 63–74. [Google Scholar] [CrossRef]
- Gahoonia, T.S.; Claassen, N.; Jungk, A. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 1992, 140, 241–248. [Google Scholar] [CrossRef]
- Bradáčová, K.; Sittinger, M.; Tietz, K.; Neuhäuser, B.; Kandeler, E.; Berger, N.; Ludewig, U.; Neumann, G. Maize inoculation with microbial consortia: Contrasting effects on rhizosphere activities, nutrient acquisition and early growth in different soils. Microorganisms 2019, 7, 329. [Google Scholar]
- Nye, P.H. Changes of pH across the rhizosphere induced by roots. Plant Soil 1981, 61, 7–26. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Shen, R.F. Aluminum–nitrogen interactions in the soil–plant system. Front. Plant Sci. 2018, 9, 807. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Peech, M.; Clark, J.S. Solubility criteria for the existence of variscite in soils. Soil Sci. Soc. Am. J. 1959, 23, 357–360. [Google Scholar] [CrossRef]
- Hetrick, J.A.; Schwab, A.P. Changes in aluminum and phosphorus solubilities in response to long-term fertilization. Soil Sci. Soc. Am. J. 1992, 56, 755–761. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; Logan, T.J.; Traina, S.J.; Bigham, J.M. Phosphorus chemistry and mineralogy in excessively fertilized soils: Quantitative analysis of phosphorus-rich particles. Soil Sci. Soc. Am. J. 1990, 54, 1576–1583. [Google Scholar] [CrossRef]
- Gessa, C.E.; Mimmo, T.; Deiana, S.; Marzadori, C. Effect of aluminium and pH on the mobility of phosphate through a soil-root interface model. Plant Soil 2005, 272, 301–311. [Google Scholar] [CrossRef]
- Rout, G.; Samantaray, S.; Das, P. Aluminium toxicity in plants: A review. Agronomie 2001, 21, 3–21. [Google Scholar] [CrossRef]
- Kochian, L.V.; Piñeros, M.A.; Hoekenga, O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Schrey, S.D.; Postma, J.A.; Temperton, V.M.; Jablonowski, N.D. Phosphorus uptake from struvite is modulated by the nitrogen form applied. J. Plant Nutr. Soil Sci. 2019. [Google Scholar] [CrossRef]
- Fan, M.-S.; Li, Z.; Wang, F.-M.; Zhang, J.-H. Growth and phosphorus uptake of oat (Avena nuda L.) as affected by mineral nitrogen forms supplied in hydroponics and soil culture. Pedosphere 2009, 19, 323–330. [Google Scholar] [CrossRef]
- Paredes, C.; Menezes-Blackburn, D.; Cartes, P.; Gianfreda, L.; Luz Mora, M. Phosphorus and nitrogen fertilization effect on phosphorus uptake and phosphatase activity in ryegrass and tall fescue grown in a Chilean Andisol. Soil Sci. 2011, 176, 245–251. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Pang, J.; Postma, J.A.; Schrey, S.D.; Lambers, H.; Jablonowski, N.D. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant Soil 2019, 434, 65–78. [Google Scholar] [CrossRef]
Organic C (%) | Total N (%) | CaAA-EDTA (mg kg−1) | MgAA-EDTA (mg kg−1) | KAA-EDTA (mg kg−1) | PAA-EDTA (mg kg−1) | pH | CEC (cmolc kg−1) |
---|---|---|---|---|---|---|---|
1.54 | 0.18 | 3869 | 101 | 292 | 72 | 7.8 | 12.5 |
pH | PCaCl2 | |||||
---|---|---|---|---|---|---|
Df | F | p-Value | Df | F | p-Value | |
P treatment | 2 | 0.04 | 0.96 | 2 | 3.99 | <0.05 |
N form | 1 | 594.6 | <0.001 | 1 | 26.48 | <0.001 |
Planted/Unplanted | 1 | 694.8 | <0.001 | 1 | 40.88 | <0.001 |
P treatment × N form | 2 | 0.62 | 0.54 | 2 | 1.73 | 0.19 |
P treatment × Plant | 2 | 0.64 | 0.53 | 2 | 1.39 | 0.26 |
N form × Plant | 1 | 403.3 | <0.001 | 1 | 68.30 | <0.001 |
P treatment × N form × Plant | 2 | 1.49 | 0.24 | 2 | 1.54 | 0.23 |
Saturation Index of Variscite | ||
---|---|---|
Bulk Soil | Rhizosphere | |
NO3-N + 0P | −9.46 ± 2.26 | −11.46 ± 0.07 |
NO3-N + TSP | −9.71 ± 2.46 | −11.30 ± 0.12 |
NO3-N + struvite | −9.80 ± 2.46 | −10.80 ± 0.53 |
NH4-N + 0P | −12.28 ± 3.98 | 0.02 ± 0.06 |
NH4-N + TSP | −9.48 ± 2.55 | 0.34 ± 0.12 |
NH4-N + struvite | −1.89 ± 0.36 | 0.33 ± 0.20 |
P uptake by the Whole Plant | |||
---|---|---|---|
Df | F | p-Value | |
P treatment | 2 | 1.24 | 0.32 |
N form | 1 | 13.84 | <0.01 |
P treatment × N form | 2 | 5.57 | <0.05 |
Root Biomass | Shoot Biomass | |||||
---|---|---|---|---|---|---|
Df | F | p-Value | Df | F | p-Value | |
P treatment | 2 | 0.76 | 0.48 | 2 | 1.66 | 0.22 |
N form | 1 | 38.06 | <0.001 | 1 | 6.65 | <0.05 |
P treatment × N form | 2 | 3.00 | 0.08 | 2 | 0.50 | 0.61 |
Root Biomass (g) | Shoot Biomass (g) | Total Biomass (g) | |
---|---|---|---|
NO3-N + 0P | 0.36 ± 0.01 b | 0.96 ± 0.04 a | 1.32 ± 0.05 a |
NO3-N + TSP | 0.34 ± 0.02 ab | 1.08 ± 0.06 a | 1.42 ± 0.07 a |
NO3-N + struvite | 0.40 ± 0.02 b | 1.06 ± 0.05 a | 1.46 ± 0.04 a |
NH4-N + 0P | 0.30 ± 0.01 a | 1.11 ± 0.02 a | 1.41 ± 0.01 a |
NH4-N + TSP | 0.30 ± 0.02 a | 1.16 ± 0.06 a | 1.46 ± 0.05 a |
NH4-N + struvite | 0.29 ± 0.01 a | 1.08 ± 0.04 a | 1.37 ± 0.05 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Suárez, A.D.; Nobile, C.; Faucon, M.-P.; Pourret, O.; Houben, D. Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere. Sustainability 2020, 12, 2212. https://doi.org/10.3390/su12062212
Gómez-Suárez AD, Nobile C, Faucon M-P, Pourret O, Houben D. Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere. Sustainability. 2020; 12(6):2212. https://doi.org/10.3390/su12062212
Chicago/Turabian StyleGómez-Suárez, Andrea Danaé, Cécile Nobile, Michel-Pierre Faucon, Olivier Pourret, and David Houben. 2020. "Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere" Sustainability 12, no. 6: 2212. https://doi.org/10.3390/su12062212
APA StyleGómez-Suárez, A. D., Nobile, C., Faucon, M.-P., Pourret, O., & Houben, D. (2020). Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere. Sustainability, 12(6), 2212. https://doi.org/10.3390/su12062212