Next Article in Journal
Mainstreaming Disaster Risk Reduction into Local Development Plans for Rural Tropical Africa: A Systematic Assessment
Next Article in Special Issue
Developing a Sustainable Management Strategy for Quantitative Estimation of Optimum Nitrogen Fertilizer Recommendation Rates for Maize in Northeast China
Previous Article in Journal
Consumer Considerations for the Implementation of Sustainable Packaging: A Review
Previous Article in Special Issue
Comparison of Active Nitrogen Loss in Four Pathways on a Sloped Peanut Field with Red Soil in China under Conventional Fertilization Conditions
Open AccessArticle

Simulating and Predicting Crop Yield and Soil Fertility under Climate Change with Fertilizer Management in Northeast China Based on the Decision Support System for Agrotechnology Transfer Model

College of Land and Environment, Shenyang Agriculture University, Shenyang 110866, China
Author to whom correspondence should be addressed.
Sustainability 2020, 12(6), 2194;
Received: 15 February 2020 / Revised: 7 March 2020 / Accepted: 9 March 2020 / Published: 12 March 2020
(This article belongs to the Special Issue Sustainable Cropping Practices to Counteract Environmental Stresses)
The risks of climate change and soil degradation for the agricultural environment and crop production are increasingly prominent. Based on the limitations of land resources, it is important to explore a sustainable and effective fertilization strategy to reduce risks and ensure there is a high yield of grain and sustainable development of agriculture. Soil fertility underpins cultivated land, which is the most important resource of agricultural production, and is also the key for maintaining agricultural sustainability. The central elements of soil fertility are soil organic carbon (SOC) and soil nitrogen (SN). This study applied the Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) and the CENTURY-based soil module to simulate the trends of crop yields, SN storages and SOC storages until the end of this century under different climate change circumstances, based on a 36-year long-term experiment established at Shenyang site, China. Four fertilizer practices were applied: control (CK), combined chemical fertilizer of nitrogen, phosphorus, and potassium (NPK), NPK with manure (MNPK), and NPK fertilizers plus a high application rate of manure (hMNPK). The outcomes indicated that the DSSAT model can fully simulate the yields of maize and soybean as well as the dynamic stocks of the SN and SOC. Three Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5) for future development were chosen from the fifth assessment report of the United Nations Intergovernmental Panel on Climate Change (IPCC). Moreover, a baseline was installed. Crop yields, SN, and SOC storages from 2016 to 2100 were estimated under four climate scenarios (RCP 2.6, RCP 4.5, RCP 8.5, and Baseline). The RCP scenarios in some treatments reduced SN and SOC stocks and maize yield, and had no effect on soybean yield. However, the application of NPK with manure could improve crop yields, while it increased SN and SOC storages substantially. To some extent, the negative effects of climate scenarios could be mitigated by applying manure. In the RCP 4.5, maize yields of NPK, MNPK, and hMNPK treatments declined by 14.8%, 7.7%, and 6.2%, respectively, compared with that of NPK under Baseline. The NPK fertilizers plus manure treatments could cut the reduction of maize yield caused by climate change in half. Additionally, the SOC storage and SN of chemical fertilizers plus manure treatments under RCP scenarios increased by 20.2%–33.5% and 13.7%–21.7% compared with that of NPK under baseline, respectively. It was concluded that a rational combination of organic and inorganic fertilizer applications is a sustainable and effective agricultural measure to maintain food security and relieve environmental stresses. View Full-Text
Keywords: climate change; sustainability; yield; soil fertility; DSSAT climate change; sustainability; yield; soil fertility; DSSAT
Show Figures

Figure 1

MDPI and ACS Style

Yan, W.; Jiang, W.; Han, X.; Hua, W.; Yang, J.; Luo, P. Simulating and Predicting Crop Yield and Soil Fertility under Climate Change with Fertilizer Management in Northeast China Based on the Decision Support System for Agrotechnology Transfer Model. Sustainability 2020, 12, 2194.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop