Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects
Abstract
:1. Introduction
2. Plant Survival and Biophysical Constraints of Flooding and Submergence in the Rice Field
3. Rice germ Plasm Tolerant to Different Flooding Regimes
4. Molecular and QTL
5. SUB1’s Gene: From Landrace to Modern Cultivar
6. Challenges and Future Prospects
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ismail, A.M.; Singh, U.S.; Singh, S.; Dar, M.H.; Mackill, D.J. The contribution of submergence–tolerant (Sub1) rice varieties to food security in flood–prone rainfed lowland areas in Asia. Field Crops Res. 2013, 152, 83–93. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Z. Disaster risks and disaster management policies and practices in Pakistan: A critical analysis of Disaster Management Act 2010 of Pakistan. Int. J. Dis. Risk Reduct. 2013, 4, 15–20. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen–Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Agri-Business Promotion and Statistics Division. Statistical Information on Nepalese Agriculture 2012/2013; Agriculture Business Promotion and Statistics DivisionMoADC, HMG/N, Singh Durbar: Kathmandu, Nepal, 2012.
- Bailey-Serres, J.; Fukao, T.; Ronald, P.C.; Ismail, A.M.; Heuer, S.; Mackill, D. Submergence tolerant rice: SUB1′s journey from landrace to modern cultivar. Rice 2010, 3, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S.; et al. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar]
- Sarkar, R.K.; Das, K.K.; Panda, D.; Reddy, J.N.; Patnaik, S.S.C.; Patra, B.C.; Singh, D.P. Submergence Tolerance in Rice: Biophysical Constraints, Physiological Basis and Identification of Donors; Central Rice Research Institute: Cuttck, India, 2014; pp. 1–36. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Colmer, T.; Voesenek, L.A.C.J. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 2009, 36, 665–681. [Google Scholar] [CrossRef]
- Voesenek, L.A.; Bailey-Serres, J. Flooding tolerance: O2 sensing and survival strategies. Curr. Opin. Plant Biol. 2013, 16, 647–653. [Google Scholar] [CrossRef]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Okporie, E.; Jalloh, M. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol. Biotechnol. Equip. 2019, 33, 440–455. [Google Scholar] [CrossRef] [Green Version]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, M.H.; Chakravorty, R.; Waza, S.A.; Sharma, M.; Zaidi, N.W.; Singh, A.N.; Ismail, A.M. Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security. Food Secur. 2017, 9, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.M.; Ella, E.S.; Vergara, G.V.; Mackill, D.J. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Bot. 2008, 103, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angaji, S.A.; Septiningsih, E.M.; Mackill, D.J.; Ismail, A.M. Identification of QTLs associated with tolerance of anaerobic conditions during germination in rice (Oryza sativa L.). Euphytica 2010, 172, 159–168. [Google Scholar] [CrossRef]
- Singh, A.; Septiningsih, E.M.; Balyan, H.S.; Singh, N.K.; Rai, V. Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant Cell Physiol. 2017, 58, 185–197. [Google Scholar]
- Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Mackill, D.J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006, 442, 705. [Google Scholar] [CrossRef]
- Winkel, A.; Colmer, T.D.; Ismail, A.M.; Pedersen, O. Internal aeration of paddy field rice (Oryza sativa) during complete submergence–importance of light and floodwater O2. New Phytol. 2013, 197, 1193–1203. [Google Scholar] [CrossRef]
- Sarkar, R.K.; Reddy, J.N.; Sharma, S.G.; Ismail, A.M. Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr. Sci. 2006, 91, 899–906. [Google Scholar]
- Loreti, E.; van Veen, H.; Perata, P. Plant responses to flooding stress. Curr. Opin. Plant Biol. 2016, 33, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Pucciariello, C.; Voesenek, L.A.; Perata, P.; Sasidharan, R. Plant responses to flooding. Front. Plant Sci. 2014, 5, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, R.D.; Viola, R. Biosynthesis and catabolism of L-ascorbic acid in plants. Crit. Rev. Plant Sci. 2005, 24, 167–188. [Google Scholar] [CrossRef]
- Das, K.K.; Panda, D.; Nagaraju, M.; Sharma, S.G.; Sarkar, R.K. Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryza sativa L.) as determinants of anaerobic seedling establishment capacity. Bulg. J. Plant Physiol. 2004, 30, 34–44. [Google Scholar]
- Kende, H.; van der Knaap, E.; Cho, H.T. Deep-water rice: A model plant to study stem elongation. Plant Physiol. 1998, 118, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Schaller, G.E.; Bleecker, A.B. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 1995, 270, 1809–1811. [Google Scholar] [CrossRef]
- Métraux, J.P.; Kende, H. The role of ethylene in the growth response of submerged deep-water rice. Plant Physiol. 1983, 72, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Raskin, I.; Kende, H. Role of gibberellin in the growth response of submerged deep-water rice. Plant Physiol. 1984, 76, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Rafii, M.Y.; Ismail, M.R.; Juraimi, A.S.; Rahim, H.A.; Asfaliza, R.; Latif, M.A. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Res. Int. 2012, 2013, 963525. [Google Scholar] [CrossRef]
- Mommer, L.; Visser, E.J.W. Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity. Ann. Bot. 2005, 96, 581–589. [Google Scholar] [CrossRef]
- Ella, E.; Kawano, N.; Yamauchi, Y.; Tanaka, K.; Ismail, A.M. Blocking ethylene perception enhances flooding tolerance in rice seedlings. Funct. Plant Biol. 2003, 30, 813–819. [Google Scholar] [CrossRef]
- Das, K.K.; Sarkar, R.K.; Ismail, A.M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci. 2005, 168, 131–136. [Google Scholar] [CrossRef]
- Singh, S.; Mackill, D.J.; Ismail, A.M. Responses of Sub1 rice introgression lines to submergence in the field: Yield and grain quality. Field Crops Res. 2009, 113, 12–23. [Google Scholar] [CrossRef]
- Colmer, T.D.; Armstrong, W.; Greenway, H.; Ismail, A.M.; Kirk, G.J.D.; Atwell, B.J. Physiological mechanisms in flooding tolerance of rice: Transient complete submergence and prolonged standing water. Prog. Bot. 2014, 75, 255–307. [Google Scholar]
- Ismail, A.M. Submergence tolerance in rice: Resolving a pervasive quandary. New Phytol. 2018, 218, 1298–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergara, B.S.; Mazaredo, A. Screening for Resistance to Submergence under Greenhouse Conditions; Bangladesh International Rice Research Institute: Dhaka, Bangladesh, 1975; pp. 67–70. [Google Scholar]
- Dwivedi, J.L. Screening Techniques and Genetics of Elongation Ability and Submergence Tolerance in Deep-Water Rice; International Rice Research Institute: Los Banos, Philippines, 1992. [Google Scholar]
- Vergara, B.S.; Jackson, B.; De Datta, S.K. Deep Water Rice and its Response to Deep Water Stress. Climate and Rice; International Rice Research Institute: Los Banos, Philippines, 1976; pp. 301–319. [Google Scholar]
- HilleRisLambers, D.; Vergara, B.S. Summary Results of an International Collaboration on Screening Methods for Flood Tolerance; International Rice Research Institute: Los Baños, Philippines, 1982; pp. 347–353. [Google Scholar]
- Toledo, A.M.U.; Ignacio, J.C.I.; Casal, C.; Gonzaga, Z.J.; Mendioro, M.S.; Septiningsih, E.M. Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. Plant Breed. Biotechnol. 2015, 3, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Puckridge, D.W.; Kupkanchanul, T.; Palaklang, W.; Kupkanchanakul, K. Production of rice and associated crops in deeply flooded areas of the Chao Phraya delta. In Proceedings of the International Conference: The Chao Phraya Delta: Historical Development, Dynamics and Challenges of Thailand’s Rice Bowl, Bangkok, Thailand, 12–15 December 2000; pp. 12–15. [Google Scholar]
- Haque, Q.A.; Lambers, D.H.R.; Tepora, N.M.; Dela Cruz, Q.D. Inheritacne of submergence tolerance in rice. Euphytica 1989, 41, 247–251. [Google Scholar] [CrossRef]
- Toojinda, T.; Siangliw, M.; Tragoonrung, S.; Vanavichit, A. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann. Bot. 2003, 91, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Mackill, D.J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 1996, 2, 219–224. [Google Scholar] [CrossRef]
- Ramiah, K.; Ramaswami, K. Floating habit in rice. Indian J. Agric. Sci. 1940, 11, 1–8. [Google Scholar]
- Hamamura, K.; Kupkanchankul, T. Inheritance of floating ability of rice. Jpn. J. Breed. 1979, 29, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, R.S.; Rao, M.J.B. Inheritance studies of characters associated with floating habit and their linkage relationship in rice. Euphytica 1985, 34, 875–881. [Google Scholar] [CrossRef]
- Suge, H. Physiological genetics of internode elongation under submergence in floating rice. Jpn. J. Genet. 1987, 62, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Eiguchi, M.; Hirano, H.Y.; Sano, Y.; Morishima, H. Effect of water depth on internode elongation and floral induction in a deep-water–tolerant rice line carrying the dw3 gene. Jpn. J. Breed. 1993, 43, 135–139. [Google Scholar] [CrossRef]
- Xu, K.; Xu, X.; Ronald, P.C.; Mackill, D.J. A high–resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol. Gen. Genet. 2000, 263, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Septiningsih, E.M.; Sanchez, D.L.; Singh, N.; Sendon, P.M.; Pamplona, A.M.; Heuer, S. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor. Appl. Genet. 2012, 124, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Sripongpangkul, K.; Posa, G.B.T.; Senadhira, D.W.; Brar, D.; Huang, N.; Khush, G.S. Genes/QTL affecting flood tolerance in rice. Theor. Appl. Genet. 2000, 101, 1074–1081. [Google Scholar] [CrossRef]
- Kawano, R.; Doi, K.; Yasui, H.; Mochizuki, T.; Yoshimura, A. Mapping of QTL for floating ability in rice. Breed. Sci. 2008, 58, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Nemoto, K.; Ukai, Y.; Tang, D.Q.; Kasai, Y.; Morita, M. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses. Theor. Appl. Genet. 2004, 109, 42–47. [Google Scholar] [CrossRef]
- Hattori, Y.; Miura, K.; Asano, K.; Yamamoto, E.; Mori, H.; Kitano, H. A major QTL confers rapid internode elongation in response to water rise in deep-water rice. Breed. Sci. 2007, 57, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Hattori, Y.; Nagai, K.; Mori, H.; Kitano, H.; Matsuoka, M.; Ashikari, M. Mapping of three QTLs that regulate internode elongation in deep–water rice. Breed. Sci. 2008, 58, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Nagai, K.; Kuroha, T.; Ayano, M.; Kurokawa, Y.; Angeles-Shim, R.B.; Shim, J.H. Two novel QTLs regulate internode elongation in deep-water rice during the early vegetative stage. Breed. Sci. 2012, 62, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltazar, M.D.; Ignacio, J.C.; Thomson, M.J.; Ismail, A.M.; Mendioro, M.S.; Septiningsih, E.M. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica 2014, 97, 251–260. [Google Scholar] [CrossRef]
- Kretzschmar, T.; Pelayo, M.A.F.; Trijatmiko, K.R.; Gabunada, L.F.; Alam, R.; Jimenez, R. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat. Plants 2015, 1, 15124. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Miah, G.; Hussin, G.; Ramli, A. Genotype× Environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 590–606. [Google Scholar] [CrossRef]
- Paterson, A.H.; Damon, S.; Hewitt, J.D.; Zamir, D.; Rabinowitch, H.D.; Lincoln, S.E.; Lander, E.S.; Tanksley, S.D. Mendelian factors underlyiing quantitative traits in tomato: Comparison across species, generation and environments. Genetics 1991, 127, 181–197. [Google Scholar]
- Young, N.D. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 1996, 34, 479–501. [Google Scholar] [CrossRef]
- Faris, J.D.; Li, W.L.; Liu, D.J.; Chen, P.D.; Gill, B.S. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 1999, 98, 219–225. [Google Scholar] [CrossRef]
- Siangliw, M.; Toojinda, T.; Tragoonrung, S.; Vanavichit, A. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann. Bot. 2003, 91, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Gonzaga, Z.J.C.; Carandang, J.; Sanchez, D.L.; Mackill, D.J.; Septiningsih, E.M. Mapping additional QTLs from FR13A to increase submergence tolerance beyond SUB1. Euphytica 2016, 209, 627–636. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, S.; Hou, M.; Tang, J.; Chen, L.; Zhai, H.; Wan, J. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res. 2006, 98, 68–75. [Google Scholar] [CrossRef]
- Tang, D.Q.; Kasai, Y.; Miyamoto, N.; Ukai, Y.; Nemoto, K. Comparison of QTLs for early elongation ability between two floating rice cultivars with a different phylogenetic origin. Breed. Sci. 2005, 55, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gill, M.B.; Zeng, F.; Shabala, L.; Zhang, G.; Fan, Y.; Shabala, S.; Zhou, M. Cell-based phenotyping reveals QTL for membrane potential maintenance associated with hypoxia and salinity stress tolerance in barley. Front. Plant Sci. 2017, 8, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Septiningsih, E.M.; Ignacio, J.C.; Sendon, P.M.; Sanchez, D.L.; Ismail, A.M.; Mackill, D.J. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theor. Appl. Genet. 2013, 126, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Subudhi, P.K.; Senadhira, D.; Manigbas, N.L.; Sen-Mandi, S.; Huang, N. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol. Gen. Genet. 1997, 255, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.K.; Tung, C.W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. Rice 2015, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Manangkil, O.E.; Vu, H.T.T.; Mori, N.; Yoshida, S.; Nakamura, C. Mapping of quantitative trait loci controlling seedling vigor in rice (Oryza sativa L.) under submergence. Euphytica 2013, 192, 63–75. [Google Scholar] [CrossRef]
- Mohanty, H.K.; Chaudhary, R.C. Progress in Rainfed Lowland Rice; International Rice Research Institute, Breeding for Submergence Tolerance in Rice in India: Los Baños, CA, USA, 1986; pp. 192–200. [Google Scholar]
- Mishra, S.B.; Senadhira, D.; Manigbas, N.L. Genetics of submergence tolerance in rice (Oryza sativa L.). Field Crops Res. 1996, 46, 177–181. [Google Scholar] [CrossRef]
- Mackill, D.J.; Amante, M.M.; Vergara, B.S.; Sarkarung, S. Improved semidwarf rice lines with tolerance to submergence of seedlings. Crop Sci. 1993, 33, 749–753. [Google Scholar] [CrossRef]
- Mackill, D.J. Breeding for resistance to abiotic stresses in rice: The value of quantitative trait loci. In Plant Breeding: The Arnel R. Hallauer International Symposium; Lamkey, K.R., Lee, M., Eds.; Blackwell Publication: Ames, IA, USA, 2006; pp. 201–212. [Google Scholar]
- Xu, K.N.; Deb, R.; Mackill, D.J. A microsatellite marker and a codominant PCR–based marker for marker-assisted selection of submergence tolerance in rice. Crop Sci. 2004, 44, 248–253. [Google Scholar]
- Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of submergence tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 2009, 103, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.K.; Panda, D. Distinction and characterisation of submergence tolerant and sensitive rice cultivars, probed by the fluorescence OJIP rise kinetics. Funct. Plant Biol. 2009, 36, 222–233. [Google Scholar] [CrossRef]
- Neeraja, C.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.; Septiningsih, E. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 2007, 115, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Rafi, M.Y.; Ismail, M.R.; Mahmood, M.; Rahimd, H.A.; Alam, M.A. Marker-assisted backcrossing: A useful method for rice improvement. Biotechnol. Biotechnol. Equip. 2015, 29, 237–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collard, B.C.Y.; Mackill, D.J. Marker–assisted selection: An approach for precision plant breeding in the 21st century. Philos. Trans. R. Soc. B Rev. 2008, 363, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Young, N.D.; Tanksley, S.D. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor. Appl. Genet. 1989, 77, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Das, K.K.; Panda, D.; Sarkar, R.K.; Reddy, J.N.; Ismail, A.M. Submergence tolerance in relation to variable floodwater conditions in rice. Environ. Exp. Bot. 2009, 66, 425–434. [Google Scholar] [CrossRef]
- Voesenek, L.A.; Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 2015, 206, 57–73. [Google Scholar] [CrossRef]
Cross | Trait | Population | Chromosome | Reference |
---|---|---|---|---|
Nanhi × IR64 | anaerobic germination | F2, F3 | 2, 7, 11 | [52] |
Bhaduaf × Taichung 65 | lowest elongated internode, rate of internode elongation | F2 | 1, 3,12 | [47] |
FR13A × KDML105 | vegetative stage submergence | Backcross line | 1, 7, 9 | [65] |
IR42 × FR13A | Survival rate | recombinant inbred line | 1, 4, 8, 9, 10, | [66] |
USSR5 (japonica) x N22 (indica) | Germination under low temperature and anoxia | F2 | 5,11 | [67] |
1R40931-26 × PI543851 | vegetative stage submergence | F2 | 9 | [45] |
Jalmagna × IR74 | vegetative stage submergence | recombinant inbred line | 9 | [46] |
Habiganj Aman × Patnai23 | lowest elongated internode | F2 | 1, 12 | [68] |
1R49830-7-1-2 × CT6241-17-1-5-1 | vegetative stage submergence | Doubled Haploid Line, recombinant inbred line, F2 | 9 | [44] |
T 65 × Bhadua | total internode length | recombinant inbred line | 2, 4 | [51] |
TX9425 x Naso Nijo | Membrane potential and hypoxia | Doubled Haploid Line | 2 | [69] |
Madabaru × IR72 | vegetative stage submergence | F2, F3 | 1, 2, 9, 12 | [52] |
Goai × Patnai 23 | lowest elongated internode | F2 | 3,12 | [48] |
Ma-Zhan (Red) × IR42 | anaerobic germination | Backcross line | 2, 5, 6, 7 | [70] |
FR13A × IR74 | vegetative stage submergence | recombinant inbred line | 6, 7, 9, 11, 12 | [71] |
Khao Hlan On × IR64 | anaerobic germination | Backcross line | 1, 3,7, 9 | [17] |
Nipponbare × IR64 | coleoptile elongation | recombinant inbred line | 1 | [72] |
Nipponbare/Kasalath//Nipponbare | Submergence tolerance | Backcross line | 1, 3, 4, 6, 7 | [73] |
DX18-121 X M-202 | Submergence tolerance | F2 | 9 | [51] |
C9285 × T65 | lowest elongated internode, total internode length, number of elongated internode | Backcross line | 1,3,12 | [49] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Muhammad, I.; Kareem, I.; Salisu, M.A.; Arolu, I.W. Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects. Sustainability 2020, 12, 1632. https://doi.org/10.3390/su12041632
Oladosu Y, Rafii MY, Arolu F, Chukwu SC, Muhammad I, Kareem I, Salisu MA, Arolu IW. Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects. Sustainability. 2020; 12(4):1632. https://doi.org/10.3390/su12041632
Chicago/Turabian StyleOladosu, Yusuff, Mohd Y. Rafii, Fatai Arolu, Samuel Chibuike Chukwu, Ismaila Muhammad, Isiaka Kareem, Monsuru Adekunle Salisu, and Ibrahim Wasiu Arolu. 2020. "Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects" Sustainability 12, no. 4: 1632. https://doi.org/10.3390/su12041632
APA StyleOladosu, Y., Rafii, M. Y., Arolu, F., Chukwu, S. C., Muhammad, I., Kareem, I., Salisu, M. A., & Arolu, I. W. (2020). Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects. Sustainability, 12(4), 1632. https://doi.org/10.3390/su12041632