Corn and Rice Cultivation Affect Soil Organic and Inorganic Carbon Storage through Altering Soil Properties in Alkali Sodic Soils, Northeast of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. Soil Chemical Analysis
2.4. Carbon Isotope Analyses
2.5. Soil Enzyme Assays
2.6. Statistical Analysis
3. Results
3.1. Soil Physical–Chemical Properties
3.2. Soil Enzyme Activities
3.3. Soil Carbon Distribution
3.4. Soil Carbon Stocks
3.5. The δ13C Values of SOC and SIC
3.6. Redundancy Analysis between Soil Properties, Enzyme Activities, and Soil Carbon Pools
4. Discussion
4.1. Effects of Crop Cultivation on Soil Properties and Enzyme Activities
4.2. Effects of Crop Cultivation on SOC
4.3. Effects of Crop Cultivation on SIC
4.4. The Effects of Crop Types on Soil C Stocks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Tang, J.; Liang, S.; Li, Z.; Yang, P.; Wang, J. The Emissions of Carbon Dioxide, Methane, and Nitrous Oxide during Winter without Cultivation in Local Saline-Alkali Rice and Maize Fields in Northeast China. Sustainability 2017, 9, 1916. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M.; Murase, J.; Lu, Y. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol. Biochem. 2004, 36, 1399–1416. [Google Scholar] [CrossRef]
- Hao, M.; Hu, H.; Liu, Z.; Dong, Q.; Sun, K.; Feng, Y.; Li, G. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Appl. Soil Ecol. 2019, 136, 43–54. [Google Scholar] [CrossRef]
- Poirier, V.; Roumet, C.; Munson, A.D. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 2018, 120, 246–259. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W.; Cao, Z.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kölbl, A.; Schloter, M. Biogeochemistry of paddy soils. Geoderma 2010, 157, 1–14. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Gao, J.; Song, M.; Liang, J.; Yue, Y. Effects of N Addition Frequency and Quantity on Hydrocotyle vulgaris Growth and Greenhouse Gas Emissions from Wetland Microcosms. Sustainability 2019, 11, 1520. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zhu, Z.; Wei, L.; Wu, J.; Ge, T. Rhizosphere Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes. Rhizosphere 2019, 10, 100145. [Google Scholar] [CrossRef]
- Wichern, F.; Mayer, J.; Joergensen, R.G.; Muller, T. Rhizodeposition of C and N in peas and oats after 13C-15N double labbling under field condition. Soil Biol. Biochem. 2007, 39, 2527–2537. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. Review. Soil Sci. Plant Nutr. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Müller, K.; Kramer, S.; Haslwimmer, H.; Marhan, S.; Scheunemann, N.; Butensch, O.; Stefan, S.; Kandeler, E. Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time. Soil Biol. Biochem. 2016, 93, 79–89. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, T.; Zhu, Z.; Liu, S.; Luo, Y.; Li, Y.; Wang, P.; Gavrichkova, O.; Xu, X.; Wang, J.; et al. Carbon input and allocation by rice into paddy soils: A review. Soil Biol. Biochem. 2019, 133, 97–107. [Google Scholar] [CrossRef]
- Xu, S.; Shi, X.; Zhao, Y.; Yu, D.; Li, C.; Wang, S.; Tan, M.; Sun, W. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050. Geoderma 2011, 166, 206–213. [Google Scholar] [CrossRef]
- Eswaran, H.; Van den Berg, E.; Reich, P.F.; Kimble, J.M. Global soil C resources. In Soils and Globle Change; Lal, R., Kimble, J.M., Levine, E., Stewart, B.A., Eds.; CRC/Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 27–44. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Groshans, G.R.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A. Accounting for soil inorganic carbon in the ecosystem services framework for United Nations sustainable development goals. Geoderma 2018, 324, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Bughio, M.A.; Wang, P.; Meng, F.; Qing, C.; Kuzyakov, Y.; Wang, X.; Junejo, S.A. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma 2016, 262, 12–19. [Google Scholar] [CrossRef]
- West, L.T.; Drees, L.R.; Wilding, L.P.; Rabenhorst, M.C. Differentiation of pedogenic and lithogenic carbonate forms in Texas. Geoderma 1988, 43, 271–287. [Google Scholar] [CrossRef]
- Smith, P. Global climate change and pedogenic carbonates: Edited by R. Lal, J.M. Kimble, H. Eswaran and B.A. Stewart. CRC Press, 2000. Hardbound, 305 pp. ISBN 566704588. GBP47. Geoderma 2001, 104, 180–182. [Google Scholar] [CrossRef]
- Ding, C.; Du, S.; Ma, Y.; Li, X.; Zhang, T.; Wang, X. Changes in the pH of paddy soils after flooding and drainage: Modeling and validation. Geoderma 2019, 337, 511–513. [Google Scholar] [CrossRef]
- Schoninger, E.L.; Gatiboni, L.C.; Ernani, P.R. Rhizosphere pH and phosphorus forms in an Oxisol cultivated with soybean, brachiaria grass, millet and sorghum. Sci. Agric. 2012, 69, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Jaiyeoba, I.A. Changes in soil properties due to continuous cultivation in Nigerian semiarid Savannah. Soil Tillage Res. 2003, 70, 91–98. [Google Scholar] [CrossRef]
- Reddy, M.M. Calcite growth-rate inhibition by fulvic acid and magnesium ion-Possible influence on biogenic calcite formation. J. Cryst. Growth 2012, 352, 151–154. [Google Scholar] [CrossRef]
- Fang, K.; Kou, D.; Wang, G.; Chen, L.; Ding, J.; Li, F.; Yang, G.; Qin, S.; Zhang, Q.; Yang, Y. Decreased soil cation exchange capacity across northern China’s Grasslands over the last three decades. J. Geophys. Res. Biogeosciences 2017, 122, 3088–3097. [Google Scholar] [CrossRef]
- Dong, X.; Hao, Q.; Li, G.; Lin, Q.; Zhao, X. Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. J. Soils Sediments 2017, 17, 1054–1063. [Google Scholar] [CrossRef]
- Wang, R.; Dungait, J.A.J.; Creamer, C.A.; Cai, J.; Bo, L.; Xu, Z.; Zhang, Y.; Ma, Y.; Yong, J. Carbon and Nitrogen Dynamics in Soil Aggregates under Long-Term Nitrogen and Water Addition in a Temperate Steppe. Soil Sci. Soc. Am. J. 2015, 79, 527. [Google Scholar] [CrossRef]
- Liu, W.; Qiao, C.; Yang, S.; Bai, W.; Liu, L. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma 2018, 332, 37–44. [Google Scholar] [CrossRef]
- Bai, E.; Boutton, T.W.; Liu, F.; Wu, X.B.; Hallmark, C.T.; Archer, S.R. Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biol. Biochem. 2012, 44, 102–112. [Google Scholar] [CrossRef]
- Bowling, D.R.; Pataki, D.E.; Randerson, J.T. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol. 2008, 178, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Arrouays, D.; Angers, D.A.; Martin, M.P.; Walter, C. Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil Tillage Res. 2019, 188, 53–58. [Google Scholar] [CrossRef]
- Chen, J.; Heiling, M.; Resch, C.; Mbaye, M.; Gruber, R.; Dercon, G. Does maize and legume crop residue mulch matter in soil organic carbon sequestration? Agric. Ecosyst. Environ. 2018, 265, 123–131. [Google Scholar] [CrossRef]
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Cation exchange retards shell carbonate recrystallization: Consequences for dating and paleoenvironmental reconstructions. Catena 2016, 142, 134–138. [Google Scholar] [CrossRef]
- Jin, Z.; Dong, Y.; Wang, Y.; Wei, X.; Wang, Y.; Cui, B.; Zhou, W. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China. Sci. Total Environ. 2014, 485–486, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, H.; Li, Q.L.; Yan, X.; Wu, X.Z.; Liu, R.T.; Fang, Y. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, northwest China. Ecol. Eng. 2019, 127, 348–355. [Google Scholar] [CrossRef]
- Ladeiro, B. Saline Agriculture in the 21st Century: Using Salt Contaminated Resources to Cope Food Requirements. J. Bot. 2012, 2012, 310705. [Google Scholar] [CrossRef]
- Andronov, E.E.; Petrova, S.N.; Pinaev, A.G.; Pershina, E.V.; Akhmedenov, K.M.; Gorobets, A.V. Analysis of the Structure of Microbial Community in Soils with Different degrees of Salinization Using T RFLP and Real Time PCR Techniques. Soil Biol. 2012, 45, 147–148. [Google Scholar] [CrossRef]
- Pan, C.; Liu, C.; Zhao, H.; Wang, Y. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. Eur. J. Soil Biol. 2013, 55, 13–19. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Ananyeva, K.; Wang, W.; Smucker, A.J.M.; Rivers, M.L.; Kravchenko, A.N. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon? Soil Biol. Biochem. 2013, 57, 868–875. [Google Scholar] [CrossRef]
- Dianwei, L.; Zongming, W.; Kaishan, S.; Bai, Z.; Liangjun, H.; Ni, H.; Sumei, Z.; Ling, L.; Chunhua, Z.; Guangjia, J. Land use/cover changes and environmental consequences in Songnen Plain, Northeast China. Chin. Geogr. Sci. 2009, 19, 299–305. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006, 2nd ed.; FAO: Rome, Italy, 2006; p. 103. [Google Scholar]
- Tang, J.; Wang, J.; Li, Z.; Wang, S.; Qu, Y. Effects of Irrigation Regime and Nitrogen Fertilizer Management on CH4, N2O, and CO2 Emissions from Saline–Alkaline Paddy Fields in Northeast China. Sustainability 2018, 10, 475. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Cheng, J.; Li, W.; Liu, W. Comparing the effect of naturally restored forest and grassland on carbon sequestration and its vertical distribution in the Chinese Loess Plateau. PLoS ONE 2012, 7, e40123. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, Y.; Fang, X.; Meng, Q. An ecological response to the Eocene / Oligocene transition revealed by the δ13C TOC record, Lanzhou Basin, NE Tibetan Plateau. J. Asian Earth Sci. 2018, 159, 74–80. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Song, Z. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma 2011, 161, 115–125. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, J.; Sun, W.; Yu, Y.; Zhang, W. Differential effects of conservational management on SOC accumulation in the grasslands of China. PLoS ONE 2015, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, C.M.; Yadav, M.R.; Jat, S.L.; Singh, A.K.; Kumar, B.; Pradhan, S.; Chakraborty, D.; Jat, M.L.; Jat, R.K.; Saharawat, Y.S.; et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Tillage Res. 2016, 161, 116–128. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Luo, S.; Tian, L.; Chang, C.; Wang, S.; Zhang, J.; Zhou, X.; Li, X.; Tran, L.S.P.; Tian, C. Grass and maize vegetation systems restore saline-sodic soils in the Songnen Plain of northeast China. Land Degrad. Dev. 2018, 29, 1107–1119. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.L.; Feng, X.; Guo, C.; Chen, Q. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, Northern China. PLoS ONE 2014, 9, 1–7. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Fontanela, E. Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil Tillage Res. 2020, 196, 104447. [Google Scholar] [CrossRef]
- McVay, K.A.; Budde, J.A.; Fabrizzi, K.; Mikha, M.M.; Rice, C.W.; Schlegel, A.J.; Peterson, D.E.; Sweeney, D.W.; Thompson, C. Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Sci. Soc. Am. J. 2006, 70, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Chen, L.J.; Chen, X.H.; Tan, M.L.; Duan, Z.H.; Wu, Z.J.; Li, X.J.; Fan, X.H. Response of soil enzyme activity to long-term restoration of desertified land. Catena 2015, 133, 64–70. [Google Scholar] [CrossRef]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Katsalirou, E.; Deng, S.; Nofziger, D.L.; Gerakis, A. Long-term management effects on organic C and N pools and activities of C-transforming enzymes in prairie soils. Eur. J. Soil Biol. 2010, 46, 335–341. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Teng, M.; Zeng, L.; Xiao, W.; Huang, Z.; Zhou, Z.; Yan, Z.G.; Wang, P. Spatial variability of soil organic carbon in Three Gorges Reservoir area, China. Sci. Total Environ. 2017, 599–600, 1308–1316. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Chen, S.; Sun, H.; Shao, L. Subsoil compaction and irrigation regimes affect the root–shoot relation and grain yield of winter wheat. Agric. Water Manag. 2015, 154, 59–67. [Google Scholar] [CrossRef]
- Rostamza, M.; Richards, R.A.; Watt, M. Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann. Bot. 2013, 112, 439–446. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, X.H.; Luo, Y.; Fang, C.M.; Chen, J.K.; Li, B. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agric. Ecosyst. Environ. 2011, 140, 234–244. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, M.G.; Wang, J.P.; Zhang, W.J.; Yang, X.Y.; Huang, S.M.; Liu, H. Fertilization enhancing carbon sequestration as carbonate in arid cropland: Assessments of long-term experiments in northern China. Plant Soil 2014, 380, 89–100. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.; Sun, J.; Wang, X.; He, P.; Zhou, W. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol. Biochem. 2013, 57, 30–42. [Google Scholar] [CrossRef]
- Paungfoo-lonhienne, C.; Yeoh, Y.K.; Kasinadhuni, N.R.P.; Lonhienne, T.G.A.; Robinson, N.; Hugenholtz, P.; Ragan, M.A.; Schmidt, S. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 2015, 5, 8678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavan Fernandes, S.A.; Bettiol, W.; Cerri, C.C. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Appl. Soil Ecol. 2005, 30, 65–77. [Google Scholar] [CrossRef]
- Gerzabek, M.H.; Haberhauer, G.; Kirchmann, H. Soil Organic Matter Pools and Carbon-13 Natural Abundances in Particle-Size Fractions of a Long-Term Agricultural Field Experiment Receiving Organic Amendments. Soil Sci. Soc. Am. J. 2001, 352–358. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.S.; Fan, M.S.; Yang, H.; Lal, R.; Kuzyakov, Y. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain. Nutr. Cycl. Agroecosystems 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Solly, E.F.; Schöning, I.; Herold, N.; Trumbore, S.E.; Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 2015, 393, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Steinweg, J.M.; Kostka, J.E.; Hanson, P.J.; Schadt, C.W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem. 2018, 125, 244–250. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Johanson, J.B. Effect of pH on enzyme stability in soils. Soil Biol. Biochem. 1982, 14, 433–437. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J.; Vilgalys, R.; Bruland, G.L. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc. Natl. Acad. Sci. USA 2008, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.; Chapman, S.J.; Artz, R.R.E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013, 57, 979–994. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.; Niu, Z.; Li, Y.; Li, C.; Feng, W. Responses of soil organic and inorganic carbon vary at different soil depths after long-term agricultural cultivation in Northwest China. L. Degrad. Dev. 2019, 30, 1229–1242. [Google Scholar] [CrossRef]
- Du, H.; Wang, T.; Xue, X.; Li, S. Estimation of soil organic carbon, nitrogen, and phosphorus losses induced by wind erosion in Northern China. Land Degrad. Dev. 2019, 30, 1006–1022. [Google Scholar] [CrossRef]
- Abdalla, K.; Mutema, M.; Chivenge, P.; Everson, C.; Chaplot, V. Grassland degradation significantly enhances soil CO2 emission. Catena 2018, 167, 284–292. [Google Scholar] [CrossRef]
- Huang, L.; Hu, W.; Tao, J.; Liu, Y.; Kong, Z.; Wu, L. Soil bacterial community structure and extracellular enzyme activities under different land use types in a long-term reclaimed wetland. J. Soils Sediments 2019, 19, 2543–2557. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Rani, J.; Pal, B.; Cowie, A.L.; Fang, Y.; Collins, D.; Dougherty, W.J.; Singh, B.K. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues. Soil Biol. Biochem. 2018, 116, 22–38. [Google Scholar]
- Dong, X.; Singh, B.P.; Li, G.; Lin, Q.; Zhao, X. Biochar increased field soil inorganic carbon content five years after application. Soil Tillage Res. 2019, 186, 36–41. [Google Scholar] [CrossRef]
- Lettens, S.; Van Orshoven, J.; van Wesemael, B.; Muys, B. Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use Manag. 2004, 20, 40–47. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Khokhlova, O.S.; Arlashina, E.A.; Kovalevskaya, I.S. The effect of irrigation on the carbonate status of Chernozems of Central Precaucasus (Russia). Soil Technol. 1997, 11, 171–184. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Gao, Q.; Peng, C. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agric. Ecosyst. Environ. 2009, 129, 413–421. [Google Scholar] [CrossRef]
- Eshel, G.; Fine, P.; Singer, M.J. Total Soil Carbon and Water Quality: An Implication for Carbon Sequestration. Soil Sci. Soc. Am. J. Abstract 2007, 71, 397–405. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Stevenson, B.A.; Zheng, X.; Li, Y. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Sci. Rep. 2013, 3, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Li, Y.; Zhai, C.; Li, C.; Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 2009, 56, 953–961. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, C.; Wang, J.; Stahr, K.; Kuzyakov, Y. CaCO3 recrystallization in saline and alkaline soils. Geoderma 2016, 282, 1–8. [Google Scholar] [CrossRef]
- Bai, S.G.; Jiao, Y.; Yang, W.Z.; Gu, P.; Yang, J.; Liu, L.J. Review of progress in soil inorganic carbon research. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012129. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, T.; Ye, J.; Liu, S.; Shibistova, O.; Wang, P.; Wang, J.; Li, Y.; Guggenberger, G.; Kuzyakov, Y.; et al. Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects. Geoderma 2019, 338, 30–39. [Google Scholar] [CrossRef]
- Qiu, H.; Ge, T.; Liu, J.; Chen, X.; Hu, Y.; Wu, J.; Su, Y.; Kuzyakov, Y. Effects of biotic and abiotic factors on soil organic matter mineralization: Experiments and structural modeling analysis. Eur. J. Soil Biol. 2018, 84, 27–34. [Google Scholar] [CrossRef]
- An, H.; Wu, X.; Zhang, Y.; Tang, Z. Effects of land-use change on soil inorganic carbon: A meta-analysis. Geoderma 2019, 353, 273–282. [Google Scholar] [CrossRef]
- Sanderman, J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric. Ecosyst. Environ. 2012, 155, 70–77. [Google Scholar] [CrossRef]
pH | EC (ms cm−1) | ESP (%) | Sand (%) | Silt (%) | Clay (%) | BD (g cm−3) | ||
---|---|---|---|---|---|---|---|---|
C5 | 0–20 cm | 9.04 ± 0.26 Ab | 0.42 ± 0.03 Aa | 17.51 ± 1.14 Ab | 37.29 ± 2.58 Aa | 58.98 ± 1.18 Aa | 4.39 ± 0.41 Ba | 1.30 ± 0.33 Aa |
20–40 cm | 10.04 ± 0.05 Aa | 0.46 ± 0.05 Aa | 24.32 ± 2.49 Aa | 36.63 ± 1.54 Aa | 57.98 ± 2.48 Bb | 4.74 ± 0.12 Ca | 1.35 ± 0.11 Aa | |
C15 | 0–20 cm | 8.07 ± 0.07 Bb | 0.29 ± 0.03 Bb | 7.13 ± 0.16 Bb | 36.18 ± 1.87 Aa | 59.68 ± 1.69 Ab | 4.14 ± 0.21 Bb | 1.34 ± 0.09 Aa |
20–40 cm | 8.92 ± 0.32 ABa | 0.45 ± 0.01 Aa | 14.38 ± 1.02 Ba | 29.12 ± 0.45 Bb | 63.69 ± 0.48 Aa | 7.19 ± 0.31 Aa | 1.39 ± 0.13 Aa | |
C25 | 0–20 cm | 7.43 ± 0.02 Cb | 0.18 ± 0.01 Cb | 6.12 ± 0.34 Bb | 33.46 ± 1.47 Aa | 61.19 ± 1.36 Ab | 5.35 ± 0.12 Aa | 1.27 ± 0.22 Ab |
20–40 cm | 8.86 ± 0.10 Ba | 0.30 ± 0.04 Ba | 7.72 ± 0.72 Ca | 29.32 ± 0.97 Bb | 65.13 ± 0.87 Aa | 5.55 ± 0.12 Ba | 1.41 ± 0.32 Aa | |
P5 | 0–20 cm | 8.84 ± 0.01 Ab | 0.46 ± 0.01 Aa | 12.4 ± 1.08 Ab | 20.43 ± 1.20 Aa | 69.74 ± 1.37 Ab | 9.83 ± 0.51 Aa | 1.30 ± 0.11 Cb |
20–40 cm | 9.16 ± 0.07 Aa | 0.31 ± 0.03 Ab | 14.88 ± 0.32 Aa | 9.18 ± 1.98 ABb | 81.52 ± 2.34 Ba | 9.31 ± 0.36 Aa | 1.38 ± 0.46 Ca | |
P15 | 0–20 cm | 8.63 ± 0.09 Ab | 0.42 ± 0.01 Ba | 10.64 ± 0.55 Ab | 13.99 ± 4.92 Aa | 75.87 ± 4.43 Aa | 10.15 ± 0.49 Aa | 1.54 ± 0.12 Ab |
20–40 cm | 8.80 ± 0.04 Ba | 0.26 ± 0.01 Bb | 13.59 ± 0.41 Ba | 16.17 ± 3.46 Aa | 73.38 ± 2.96 Aa | 10.46 ± 0.50 Aa | 1.66 ± 0.15 Aa | |
P25 | 0–20 cm | 7.74 ± 0.15 Ba | 0.27 ± 0.01 Ca | 5.87 ± 0.41 Bb | 12.78 ± 3.48 Aa | 76.55 ± 2.93 Ab | 10.68 ± 0.71 Aa | 1.38 ± 0.31 Bb |
20–40 cm | 8.26 ± 0.06 Ca | 0.22 ± 0.02 Bb | 7.11 ± 0.30 Ca | 6.00 ± 0.47 Ba | 84.46 ± 2.46 Ba | 9.55 ± 1.99 Aa | 1.50 ± 0.25 Ba |
Amylase (μg glucose g−1 h−1) | Invertase (μg glucose g−1 h−1) | Catalase (mL KMnO4 g−1 h−1) | ||
---|---|---|---|---|
C5 | 0–20 cm | 39.97 ± 1.02 Ba1 | 158.62 ± 2.53 Ca | 4.84 ± 0.02 Ba |
20–40 cm | 19.01 ± 0.54 Ab | 18.27 ± 1.02 Cb | 3.58 ± 0.01 Cb | |
C15 | 0–20 cm | 40.00 ± 1.61 Ba | 227.47 ± 7.38 Ba | 4.96 ± 0.2 Ba |
20–40 cm | 31.87 ± 0.17 Ca | 61.91 ± 4.05 Bb | 4.23 ± 0.11 Bb | |
C25 | 0–20 cm | 58.05 ± 4.06 Aa | 279.44 ± 13.43 Aa | 5.61 ± 0.23 Aa |
20–40 cm | 39.42 ± 0.32 Bb | 83.29 ± 2.28 Ab | 4.59 ± 0.16 Ab | |
P5 | 0–20 cm | 58.90 ± 0.64 Ba | 134.04 ± 19.05 Ca | 6.31 ± 0.17 Ba |
20–40 cm | 41.85 ± 2.92 Ab | 73.35 ± 3.40 Cb | 2.31 ± 0.06 Cb | |
P15 | 0–20 cm | 75.74 ± 5.28 Aa | 235.28 ± 14.63 Ba | 6.46 ± 1.93 Ba |
20–40 cm | 43.47 ± 3.02 Ab | 114.75 ± 7.82 Bb | 4.24 ± 0.12 Bb | |
P25 | 0–20 cm | 80.87 ± 0.41 Aa | 462.14 ± 28.92 Aa | 7.58 ± 0.13 Aa |
20–40 cm | 45.76 ± 0.47 Ab | 276.29 ± 14.63 Ab | 6.98 ± 0.46 Aa |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tang, J.; Li, Z.; Yang, W.; Yang, P.; Qu, Y. Corn and Rice Cultivation Affect Soil Organic and Inorganic Carbon Storage through Altering Soil Properties in Alkali Sodic Soils, Northeast of China. Sustainability 2020, 12, 1627. https://doi.org/10.3390/su12041627
Wang J, Tang J, Li Z, Yang W, Yang P, Qu Y. Corn and Rice Cultivation Affect Soil Organic and Inorganic Carbon Storage through Altering Soil Properties in Alkali Sodic Soils, Northeast of China. Sustainability. 2020; 12(4):1627. https://doi.org/10.3390/su12041627
Chicago/Turabian StyleWang, Jingjing, Jie Tang, Zhaoyang Li, Wei Yang, Ping Yang, and Yunke Qu. 2020. "Corn and Rice Cultivation Affect Soil Organic and Inorganic Carbon Storage through Altering Soil Properties in Alkali Sodic Soils, Northeast of China" Sustainability 12, no. 4: 1627. https://doi.org/10.3390/su12041627
APA StyleWang, J., Tang, J., Li, Z., Yang, W., Yang, P., & Qu, Y. (2020). Corn and Rice Cultivation Affect Soil Organic and Inorganic Carbon Storage through Altering Soil Properties in Alkali Sodic Soils, Northeast of China. Sustainability, 12(4), 1627. https://doi.org/10.3390/su12041627