The Spatial Spillover Effect in Hi-Tech Industries: Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Data and Spatial Correlation Analysis
3.1. Data Source
3.2. Variables
3.3. Global Spatial Correlation
3.4. Local Spatial Correlation Analysis
4. Research Models
4.1. Introduction of the Spatial Econometric Model
4.2. Spatial Model
5. Empirical Results
5.1. Estimation of Non-Spatial Panel Models
5.2. Estimation of the Spatial Lag Model
5.3. Estimation of the Spatial Error Model
5.4. Discussions
6. Conclusions, Policy Implications, and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Santamaría, L.; Nieto, M.J.; Barge-Gil, A. Beyond formal R&D: Taking advantage of other sources of innovation in low- and medium-technology industries. Res. Policy 2009, 38, 507–517. [Google Scholar]
- Kuizao, D. Productivity Effects of High-tech Industry Vertical Specialization in China. Stat. Res. 2012, 29, 55–61. [Google Scholar]
- Jin, C.; Wang, W. Study on China’s High-Tech Spatial Agglomeration and Its Determinants: Based on the Spatial Econometric Analysis of Provincial Panel Data. Sci. Sci. Manag. S T 2015, 49–56. [Google Scholar]
- Zou, W.; Huang, C.; Chui, Y. The dynamic DEA assessment of the intertemporal efficiency and optimal quantity of patent for China’s high-tech industry. Asia J. Technol. Innov. 2016, 24, 378–395. [Google Scholar] [CrossRef]
- Bahlmann, M. Geographic Network Diversity: How Does it Affect Exploratory Innovation? Ind. Innov. 2014, 21, 633–654. [Google Scholar] [CrossRef]
- Binz, C.; Truffer, B.; Coenen, L. Why space matters in technological innovation systems—Mapping global knowledge dynamics of membrane bioreactor technology. Res. Policy 2014, 43, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Nan, D.; Liu, F.-C.; Ma, R. Effect of proximity on recombination innovation in R&D collaboration: An empirical analysis. Technol. Anal. Strat. Manag. 2018, 30, 921–934. [Google Scholar]
- Dahlander, L.; McKelvey, M. The occurrence and spatial distribution of collaboration: Biotech firms in Gothenburg, Sweden. Technol. Anal. Strat. Manag. 2005, 17, 409–431. [Google Scholar] [CrossRef]
- Andersson, R.; John, M. Quigley agglomeration and the spatial distribution of creativity. Pap. Reg. Sci. 2005, 84, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Miguelez, E.; Moreno, R.; Surinach, J. Inventors on the move: Tracing inventor’s mobility and its spatial distribution. Pap. Reg. Sci. 2010, 89, 251–274. [Google Scholar] [CrossRef] [Green Version]
- Lopez, S.F.; Astray, B.P.; Rodeiro, P. Are firms interested in collaborating with universities? An open-innovation perspective in countries of the South West European Space. Service Business. Serv. Bus. 2015, 9, 637–662. [Google Scholar] [CrossRef]
- Hohberger, J.; Almeida, P.; Parada, P. The direction of firm innovation: The contrasting roles of strategic alliances and individual scientific collaborations. Res. Policy 2015, 44, 1473–1487. [Google Scholar] [CrossRef]
- Isabella, R.F. International technological dynamics in production sectors: An empirical analysis. CEPAL Rev. 2015, 115, 23–39. [Google Scholar] [CrossRef]
- Tabuchi, T.; Thisse, J.F.; Zhu, X.W. Does OES Technological Progress Magnify Regional Disparities? Int. Econ. Rev. 2018, 59, 647–663. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, B.S.; Shen, Y.H. Spatial analysis of change trend and influencing factors of total factor productivity in China’s regional construction industry. Appl. Econ. 2018, 50, 2824–2843. [Google Scholar] [CrossRef]
- Magnusson, T.; Berggren, C. Competing innovation systems and the need for redeployment in sustainability transitions. Technol. Forecast. Soc. Chang. 2018, 126, 217–230. [Google Scholar] [CrossRef]
- Isabella, R.F. Compact organizational space and technological catch-up: Comparison of China’s three leading automotive groups. Res. Policy 2015, 44, 258–272. [Google Scholar]
- Yao, Y.; Wang, Y.; Xing, L.; Xu, H. An optimization method of technological processes to complex products using knowledge-based genetic algorithm. J. Knowl. Manag. 2015, 19, 82–94. [Google Scholar] [CrossRef]
- Hooge, S.; Kokshagina, O.; Le Masson, P.; Levillain, K.; Weil, B.; Fabreguettes, V.; Popiolek, N. Gambling versus Designing: Organizing for the Design of the Probability Space in the Energy Sector. Creat. Innov. Manag. 2016, 25, 464–483. [Google Scholar] [CrossRef]
- McKelvey, M. Firms navigating through innovation spaces: A conceptualization of how firms search and perceive technological, market and productive opportunities globally. J. Evol. Econ. 2016, 26, 785–802. [Google Scholar] [CrossRef] [Green Version]
- Lo Turco, A.; Maggioni, D. On firms’ product space evolution: The role of firm and local product relatedness. J. Econ. Geogr. 2016, 16, 975–1006. [Google Scholar] [CrossRef] [Green Version]
- Caragliu, A.; Nijkamp, P. Space and knowledge spillovers in European regions: The impact of different forms of proximity on spatial knowledge diffusion. J. Econ. Geogr. 2016, 16, 749–774. [Google Scholar] [CrossRef]
- Li, X. An Empirical Analysis of China’s Regional Innovation Capability Change: Based on the Perspective of Innovation System. Manag. World. 2007, 18–30. [Google Scholar]
- Liu, X.; Buck, T. Innovation performance and channels for international technology spillovers: Evidence from Chinese high-tech industries. Res. Policy 2007, 36, 355–366. [Google Scholar] [CrossRef]
- Guan, J.C.; Gao, X. Exploring the h-index at patent level. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 35–40. [Google Scholar] [CrossRef]
- Zhong, W.; Yuan, W.; Li, S.X.; Huang, Z. The performance evaluation of regional R&D investments in China: An application of DEA based on the first official China economic census data. Omega 2011, 39, 447–455. [Google Scholar]
- Branstetter, L. Is foreign direct investment a channel of knowledge spillovers? Evidence from Japan’s FDI in the United States. J. Int. Econ. 2006, 68, 320–344. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Cázares, C.; Bayona-Sáez, C.; García-Marco, T. You can’t manage right what you can’t measure well: Technological innovation efficiency. Res. Policy 2013, 42, 1239–1250. [Google Scholar] [CrossRef]
- Su, Y.; Chen, F. Regional innovation systems based on stochastic frontier analysis: A study on thirty-one provinces in China. Sci. Technol. Soc. 2015, 20, 204–224. [Google Scholar]
- Cowan, R.; Zinovyeva, N. University effects on regional innovation. Res. Policy 2013, 42, 788–800. [Google Scholar] [CrossRef]
- Buzard, K.; Carlino, G.A.; Hunt, R.M.; Carr, J.K.; Smith, T.E. The agglomeration of American R&D labs. J. Urban Econ. 2017, 101, 14–26. [Google Scholar]
- Greemaway, D.; Kneller, R. Exporting and productivity in the United Kingdom. Oxford Rev. Econ. Policy 2004, 20, 358–371. [Google Scholar] [CrossRef]
- Duanton, G. Cumulative investment and spillovers in the formation of technological landscapes. J. Ind. Econ. 2010, 48, 205–213. [Google Scholar] [CrossRef]
- Acs, Z.J.; Anselin, L.; Varga, A. Patents and innovation counts as measures of regional production of new knowledge. Res. Policy 2002, 31, 1069–1085. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Investigating the role of high-tech industry reducing China’s CO2 emissions: A regional perspective. J. Clean. Prod. 2018, 177, 169–177. [Google Scholar] [CrossRef]
- Griliches, Z. Productivity, R&D, and basic research at the firm level in the 1970s. Am. Econ. Rev. 1986, 76, 141–154. [Google Scholar]
- Jaffe, A.B. Real effects of academic research. Am. Econ. Rev. 1989, 79, 957–970. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross—Sectional Data to Spatial Panels; Springer: Berlin, Germany, 2014. [Google Scholar]
- Li, L.; Liu, X.; Ge, J.; Chu, X.; Wang, J. Regional differences in spatial spillover and hysteresis effects: A theoretical and empirical study of environmental regulations on haze pollution in China. J. Clean. Prod. 2019, 230, 1096–1110. [Google Scholar] [CrossRef]
- Furkova, A. Spatial spillovers and European Union regional innovation activities. Cent. Eur. J. Oper. Res. 2019, 27, 815–834. [Google Scholar] [CrossRef]
- Elhorst, J.P.; Sandy, F. Evidence of political yardstick competition in France using a two-regime spatial Durbin model with fixed effects. J. Reg. Sci. 2009, 49, 931–951. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, J. Spatial Correlation of Regional Prices and Influencing Factors of Transmission Differences in China: An Empirical Study Based on Dynamic Spatial Panel Model. J. Finance Econ. 2012, 38, 93–104. [Google Scholar]
- Kim, P.H.; Li, M. Injecting demand through spillovers: Foreign direct investment, domestic socio-political conditions, and host-country entrepreneurial activity. J. Bus. Ventur. 2014, 29, 210–231. [Google Scholar] [CrossRef]
- Venturini, F. The modern drivers of productivity. Res. Policy 2015, 44, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Ugur, M.; Trushin, E.; Solomon, E.; Guidi, F. R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis. Res. Policy 2016, 45, 2069–2086. [Google Scholar]
- Amoroso, S.; Müller, B. The short-run effects of knowledge intensive greenfield FDI on new domestic entry. J. Technol. Transf. 2017, 43, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Blome, C.; Papadopoulos, T. Big Data and Predictive Analytics and Manufacturing Performance: Integrating Institutional Theory, Resource-Based View and Big Data Culture. Br. J. Manag. 2019, 30, 341–361. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Wamba, S.F.; Roubaud, D. Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast. Soc. Chang. 2019, 144, 534–545. [Google Scholar] [CrossRef]
- Adães, J.; Pires, J. Analysis and Modelling of PM2.5 Temporal and Spatial Behaviors in European Cities. Sustainability 2019, 11, 6019. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wang, Z.; Li, Y.; Tang, Q.; Wang, K.; Zhao, Q. Environmental Regulation and China’s Regional Innovation Output—Empirical Research Based on Spatial Durbin Model. Sustainability 2019, 11, 5602. [Google Scholar] [CrossRef]
- Yiannakou, A.; Eppas, D.; Zeka, D. Spatial Interactions between the Settlement Network, Natural Landscape and Zones of Economic Activities: A Case Study in a Greek Region. Sustainability 2017, 9, 1715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hafezi, M.; Zhao, X.; Shi, V. The impact of development cost on product line design and its environmental performance. Int. J. Prod. Econ. 2017, 194, 126–134. [Google Scholar] [CrossRef]
- Jin, L.; Duan, K.; Shi, C.; Ju, X. The impact of technological progress in the energy sector on carbon emissions: An empirical analysis from China. Int. J. Environ. Res. Public Health 2017, 14, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Definition | Unit |
---|---|---|
MBI | The main business income of the high-tech industries | 10,000 Yuan |
RDP | The number of full-time R&D personnel | Person/Year |
RDF | R&D expenditure | 10,000 Yuan |
EDV | Export delivery value | 10,000 Yuan |
NPD | New product development expenditure | 10,000 Yuan |
TRF | Technology upgrading expenditure | 10,000 Yuan |
Year | Moran’s I | p-Value |
---|---|---|
2006 | 0.11 * | 0.10 |
2007 | 0.28 * | 0.08 |
2008 | 0.21 * | 0.09 |
2009 | 0.25 * | 0.06 |
2010 | 0.31 * | 0.09 |
2011 | 0.32 ** | 0.03 |
2012 | 0.36 *** | 0.00 |
2013 | 0.39 ** | 0.03 |
2014 | 0.41 *** | 0.00 |
2015 | 0.41 *** | 0.01 |
2016 | 0.41 *** | 0.00 |
Variable | Coefficient | Std. Error | t-Statistic | Prob |
---|---|---|---|---|
−1.26 * | 0.68 | −1.86 | 0.06 | |
−0.20 | 0.13 | −1.48 | 0.14 | |
0.22 | 0.17 | 1.27 | 0.20 | |
0.24 *** | 0.06 | 3.84 | 0.00 | |
0.59 *** | 0.14 | 4.11 | 0.00 | |
−0.11 ** | 0.06 | −1.90 | 0.06 | |
Adj- | 0.50 | |||
S.E. Regression | 0.96 | |||
Durbin-Waston | 0.33 |
Variable | Spatial Fixed Effect | Time Fixed Effect | Spatial-Time-Double-Mixed Effect |
---|---|---|---|
Ln(RDP) | −0.13 (−0.99) [0.32] | −0.13 (−0.71) [0.48] | 0.13 ** (1.12) [0.06] |
Ln(RDF) | 0.12 (0.79) [0.43] | −0.30 (−1.26) [0.21] | 0.20 ** (−1.29) [0.07] |
Ln(EDV) | 0.21 *** (3.49) [0.00] | 0.26 *** (4.44) [0.00] | 0.11 ** (2.04) [0.04] |
Ln(NPD) | 0.44 *** (3.28) [0.00] | 0.50 ** (2.36) [0.02] | −0.00 (−1.24) [0.22] |
Ln(TRF) | −0.10 * (−1.96) [0.05] | 0.04 (0.51) [0.61] | −0.00 (−0.02) [0.98] |
R2 | 0.91 | 0.79 | 0.95 |
0.79 | 2.11 | 0.64 | |
Log-likelihood | −584.53 | −808.06 | −536.35 |
Variable | Spatial Fixed Effect | Time Fixed Effect | Spatial-Time-Double Fixed Effect |
---|---|---|---|
Ln(RDP) | −0.11 (−0.84) [0.40] | −0.16 (−0.88) [0.38] | 0.13 (1.10) [0.27] |
Ln(RDF) | 0.17 (1.01) [0.31] | −0.17 (−0.70) [0.48] | −0.19 (−1.23) [0.22] |
Ln(EDV) | 0.23 *** (3.95) [0.00] | 0.22 *** (3.54) [0.00] | 0.12 *** (2.13) [0.03] |
Ln(NPD) | 0.56 *** (4.16) [0.00] | 0.56 *** (2.59) [0.01] | −0.22 (−1.41) [0.16] |
Ln(TRF) | −0.08 (−1.34) [0.18] | −0.06 (−0.77) [0.44] | −0.03 (−0.61) [0.54] |
0.05 (0.59) [0.56] | −0.28 *** (−2.94) [0.00] | −0.13 * (−1.65) [0.10] | |
R2 | 0.40 | 0.41 | 0.79 |
Log-likelihood | −590.94 | −814.27 | −535.56 |
r2 | 0.40 | 0.411 | 0.29 |
Li | −590.94 | −814.27 | −535.56 |
AkaikeInformationCriterion(AIC) | 1195.88 | 1642.54 | 1085.13 |
Bayes Information Criteria(BIC) | 1224.62 | 1671.28 | 1113.86 |
Spatial Fixed Effect | Time Fixed Effect | Spatial-Time Double Fixed Effect | |
---|---|---|---|
LM (lag) | 42.18 *** [0.00] | 12.31 *** [0.00] | 1.16 ** [0.08] |
Robust LM (lag) | 70.20 *** [0.00] | 119.96 *** [0.00] | 13.08 *** [0.00] |
LM (error) | 8.36 ** [0.04] | 10.73 [0.39] | 2.06 [0.15] |
Robust LM (error) | 36.37 *** [0.00] | 108.38 * [0.09] | 13.99 *** [0.00] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, H.; Ma, J.; Shi, V. The Spatial Spillover Effect in Hi-Tech Industries: Empirical Evidence from China. Sustainability 2020, 12, 1551. https://doi.org/10.3390/su12041551
Chen Y, Shi H, Ma J, Shi V. The Spatial Spillover Effect in Hi-Tech Industries: Empirical Evidence from China. Sustainability. 2020; 12(4):1551. https://doi.org/10.3390/su12041551
Chicago/Turabian StyleChen, Yu, Haoming Shi, Jun Ma, and Victor Shi. 2020. "The Spatial Spillover Effect in Hi-Tech Industries: Empirical Evidence from China" Sustainability 12, no. 4: 1551. https://doi.org/10.3390/su12041551
APA StyleChen, Y., Shi, H., Ma, J., & Shi, V. (2020). The Spatial Spillover Effect in Hi-Tech Industries: Empirical Evidence from China. Sustainability, 12(4), 1551. https://doi.org/10.3390/su12041551