Impacts of Tourism Demand on Retail Property Prices in a Shopping Destination
Abstract
:1. Introduction
2. Literature Review
3. Development of Hypotheses
4. Data and Variables
4.1. Data
4.2. Variables
5. Methodology
6. Results
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biagi, B.; Brandano, M.G.; Lambiri, D. Does tourism affect house prices? Evidence from Italy. Growth Chang. 2015, 46, 501–528. [Google Scholar] [CrossRef]
- UNWTO. International Tourism Highlights, 2019 ed.; UNWTO: Madrid, Spain, 2019. [Google Scholar]
- Xu, Y.; McGehee, N.G. Shopping behavior of Chinese tourists visiting the United States: Letting the shoppers do the talking. Tour. Manag. 2012, 33, 427–430. [Google Scholar] [CrossRef]
- Choi, M.; Law, R.; Heo, C.Y. Shopping destinations and trust–tourist attitudes: Scale development and validation. Tour. Manag. 2016, 54, 490–501. [Google Scholar] [CrossRef]
- Pantano, E.; Dennis, C. Store buildings as tourist attractions: Mining retail meaning of store building pictures through a machine learning approach. J. Retail. Consum. Serv. 2019, 51, 304–310. [Google Scholar] [CrossRef]
- Murphy, L.; Moscardo, G.; Benckendorff, P.; Pearce, P. Evaluating tourist satisfaction with the retail experience in a typical tourist shopping village. J. Retail. Consum. Serv. 2011, 18, 302–310. [Google Scholar] [CrossRef]
- Meng, F.; Xu, Y. Tourism shopping behavior: Planned, impulsive, or experiential? Int. J. Cult. Tour. Hosp. Res. 2012, 6, 250–265. [Google Scholar] [CrossRef]
- Zaidan, E.A. Tourism shopping and new urban entertainment: A case study of Dubai. J. Vacat. Mark. 2016, 22, 29–41. [Google Scholar] [CrossRef]
- Bao, Z.; Lu, W.; Chi, B.; Yuan, H.; Hao, J. Procurement innovation for a circular economy of construction and demolition waste: Lessons learnt from Suzhou, China. Waste Manag. 2019, 99, 12–21. [Google Scholar] [CrossRef]
- Yeung, S.; Wong, J.; Ko, E. Preferred shopping destination: Hong Kong versus Singapore. Int. J. Tour. Res. 2004, 6, 85–96. [Google Scholar] [CrossRef]
- Hong Kong Tourism Board. A Statistical Review of Hong Kong Tourism; Hong Kong Tourism Board: Hong Kong, China, 2018.
- Li, L.-H.; Cheung, K.S.; Han, S.Y. The impacts of cross-border tourists on local retail property market: An empirical analysis of Hong Kong. J. Prop. Res. 2018, 35, 252–270. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.W.; Lu, Y.; Cui, X.; Meng, F.; Wang, X. Locale-varying relationships between tourism development and retail property prices in a shopping destination. Int. J. Strateg. Prop. Manag. 2020, in press. [Google Scholar]
- Jayantha, W.M.; Yung, E.H.K. Effect of Revitalisation of Historic Buildings on Retail Shop Values in Urban Renewal: An Empirical Analysis. Sustainability 2018, 10, 1418. [Google Scholar] [CrossRef] [Green Version]
- Litirell, M.A.; Baizerman, S.; Kean, R.; Gahring, S.; Niemeyer, S.; Reilly, R.; Stout, J. Souvenirs and tourism styles. J. Travel Res. 1994, 33, 3–11. [Google Scholar] [CrossRef]
- Oh, J.Y.-J.; Cheng, C.K.; Lehto, X.Y.; O’Leary, J.T. Predictors of tourists’ shopping behaviour: Examination of socio-demographic characteristics and trip typologies. J. Vacat. Mark. 2004, 10, 308–319. [Google Scholar] [CrossRef]
- Lloyd, A.E.; Yip, L.S.; Luk, S.T. An examination of the differences in retail service evaluation between domestic and tourist shoppers in Hong Kong. Tour. Manag. 2011, 32, 520–533. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Lindquist, J.D. Meaning of image: A survey of empirical and hypothetical evidence. J. Retail. 1974, 50, 29–38. [Google Scholar]
- Christiansen, T.; Snepenger, D.J. Is it the mood or the mall that encourages tourists to shop? J. Shop. Center Res. 2002, 9, 7–26. [Google Scholar]
- Benjamin, J.D.; Boyle, G.W.; Sirmans, C. Retail leasing: The determinants of shopping center rents. Real Estate Econ. 1990, 18, 302–312. [Google Scholar] [CrossRef]
- Iii, W.G.H.; Wolverton, M.L. Neighborhood Center Image and Rents. J. Real Estate Financ. Econ. 2001, 23, 31–46. [Google Scholar]
- Brown, G.R.; Chau, K.W. Excess returns in the Hong Kong commercial real estate market. J. Real Estate Res. 1997, 14, 91–106. [Google Scholar]
- Sirmans, C.F.; Guidry, K.A. The determinants of shopping center rents. J. Real Estate Res. 1993, 8, 107–116. [Google Scholar]
- Chau, K.W.; Pretorius, F.; Yu, C.K. The determinants of street level retail shop prices in Hong Kong. In Proceedings of the Pacific Rim Real Estate Society Conference, Sydney, Australia, 23–27 January 2000. [Google Scholar]
- Li, Y.; Yang, L.; Shen, H.; Wu, Z. Modeling intra-destination travel behavior of tourists through spatio-temporal analysis. J. Dest. Mark. Manag. 2019, 11, 260–269. [Google Scholar] [CrossRef]
- Xu, W.A.; Zhou, J.; Yang, L.; Li, L. The implications of high-speed rail for Chinese cities: Connectivity and accessibility. Transp. Res. Part A Policy Pract. 2018, 116, 308–326. [Google Scholar]
- Xu, W.A.; Yang, L. Evaluating the urban land use plan with transit accessibility. Sustain. Cities Soc. 2019, 45, 474–485. [Google Scholar] [CrossRef]
- Seiders, K.; Berry, L.L.; Gresham, L.G. Attention, retailers! How convenient is your convenience strategy? MIT Sloan Manag. Rev. 2000, 41, 79–89. [Google Scholar]
- Kang, C.-D. Spatial access to pedestrians and retail sales in Seoul, Korea. Habitat Int. 2016, 57, 110–120. [Google Scholar] [CrossRef]
- Transport Department. Travel Characteristics Surveys 2011 Final Report; Hong Kong Transport Department: Hong Kong, China, 2014.
- Simon, D. Inherent complexity: Disability, accessible tourism and accommodation information preferences. Tour. Manag. 2010, 31, 816–826. [Google Scholar]
- Pierce, W.D.; Cheney, C.D. Behavior Analysis and Learning; Psychology Press: London, UK, 2013. [Google Scholar]
- Gollwitzer, P.M.; Heckhausen, H.; Ratajczak, H. From weighing to willing: Approaching a change decision through pre- or postdecisional mentation. Organ. Behav. Hum. Decis. Process. 1990, 45, 41–65. [Google Scholar] [CrossRef]
- Wimmer, G.E.; Shohamy, D. Preference by association: How memory mechanisms in the hippocampus bias decisions. Science 2012, 338, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chau, K.W.; Chu, X. Accessibility-based premiums and proximity-induced discounts stemming from bus rapid transit in China: Empirical evidence and policy implications. Sustain. Cities Soc. 2019, 48, 101561. [Google Scholar] [CrossRef]
- Wong, S.K.; Chau, K.W.; Yau, Y.; Cheung, A.K.C. Property price gradients: The vertical dimension. J. Hous. Built Environ. 2011, 26, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Eppli, M.; Benjamin, J. The evolution of shopping center research: A review and analysis. J. Real Estate Res. 1994, 9, 5–32. [Google Scholar]
- Chau, K.W.; Wong, S.K.; Yiu, C.Y.; Leung, H.F. Real estate price indices in Hong Kong. J. Real Estate Lit. 2005, 13, 337–356. [Google Scholar]
- Chau, K.W.; Chin, T. A critical review of literature on the hedonic price model. Int. J. Hous. Sci. Appl. 2003, 27, 145–165. [Google Scholar]
- Zhang, D.; Jiao, J. How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity. Sustainability 2019, 11, 534. [Google Scholar] [CrossRef] [Green Version]
- Perez-Sanchez, V.R.; Serrano-Estrada, L.; Marti, P.; Mora-Garcia, R.-T. The What, Where, and Why of Airbnb Price Determinants. Sustainability 2018, 10, 4596. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Xie, H.; Fang, J.; Jiang, H.; Wang, D. Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data. Sustainability 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Lu, Y.; Guo, Y.; Yuan, Y. Estimating the willingness to pay for green space services in Shanghai: Implications for social equity in urban China. Urban For. Urban Green. 2017, 26, 95–103. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Wong, S.K.; Yiu, C.Y.; Chau, K.W. Trading volume-induced spatial autocorrelation in real estate prices. J. Real Estate Financ. Econ. 2013, 46, 596–608. [Google Scholar] [CrossRef] [Green Version]
- Li, C.W.; Wong, S.K.; Chau, K.W. An analysis of spatial autocorrelation in Hong Kong’s housing market. Pac. Rim Prop. Res. J. 2011, 17, 443–462. [Google Scholar]
- Cao, X.J.; Hough, J.A. Hedonic value of transit accessibility: An empirical analysis in a small urban area. J. Transp. Res. Forum 2008, 47, 171–183. [Google Scholar] [CrossRef]
- Cao, X.J.; Lou, S. When and how much did the green line LRT increase single-family housing values in St. Paul, Minnesota? J. Plan. Educ. Res. 2018, 38, 427–436. [Google Scholar] [CrossRef]
- Xu, P.; Huang, H. Modeling crash spatial heterogeneity: Random parameter versus geographically weighting. Accid. Anal. Prev. 2015, 75, 16–25. [Google Scholar] [CrossRef]
- Xu, P.; Huang, H.; Dong, N.; Wong, S.C. Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach. Accid. Anal. Prev. 2017, 98, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, Y.; Zhong, L.; Zhang, X.; Ling, Z. Exploring spatial variation of bike sharing trip production and attraction: A study based on Chicago’s Divvy system. Appl. Geogr. 2020, 115, 102130. [Google Scholar] [CrossRef]
- Zhong, H.; Li, W. Rail transit investment and property values: An old tale retold. Transp. Policy 2016, 51, 33–48. [Google Scholar] [CrossRef]
- Lan, H.; Cheng, B.; Gou, Z.; Yu, R. An evaluation of feed-in tariffs for promoting household solar energy adoption in Southeast Queensland, Australia. Sustain. Cities Soc. 2020, 53, 101942. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Gao, Y.; Ling, Y.; Fan, C.; Hou, D.; Shen, T.; Zhou, W. How did industrial land supply respond to transitions in state strategy? An analysis of prefecture-level cities in China from 2007 to 2016. Land Use Policy 2019, 87, 104009. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Liang, C. Spatial spillover effect of urban landscape views on property price. Appl. Geogr. 2016, 72, 26–35. [Google Scholar] [CrossRef]
- Chen, Z.; Haynes, K.E. Impact of high speed rail on housing values: An observation from the Beijing–Shanghai line. J. Transp. Geogr. 2015, 43, 91–100. [Google Scholar] [CrossRef]
- Manski, C.F. Identification of endogenous social effects: The reflection problem. Rev. Econ. Stud. 1993, 60, 531–542. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.P.; Dominguez, M. The importance of modeling spatial spillovers in public choice analysis. Public Choice 2012, 150, 525–545. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Nase, I.; Berry, J.; Adair, A. Hedonic modelling of high street retail properties: A quality design perspective. J. Prop. Invest. Financ. 2013, 31, 160–178. [Google Scholar] [CrossRef]
- Brasington, D.M. The supply of public school quality. Econ. Edu. Rev. 2003, 22, 367–377. [Google Scholar] [CrossRef]
Variable | Description | Expected Sign | Remark |
---|---|---|---|
LnP | Logarithm of transaction price (in natural logarithm form) (HK$) | NA | Dependent Variable |
AGE | (year) | ? | Control |
SIZE | Size or gross floor area (m2) | + | Control |
SIZE2 | Square term of SIZE | ? | Control |
FRON | Length of frontage facing the street (m) | + | Control |
LnMTR | Logarithm of distance to the nearest MTR station exit (m) (in natural logarithm form) | − | Control |
LnMALL | Logarithm of distance to the nearest shopping mall (m) (in natural logarithm form) | − | Control |
CORN | Dummy variable, 1 if the property is located in the street corner and 0 otherwise | + | Control |
ACM | Number of hotels and guesthouses within the 250m radius | + | Control |
ACM2 | Square term of ACM | − | Control |
UCU | Dummy variable, 1 if the property’s upper story is commercial use and 0 otherwise | + | Control |
UOU | Dummy variable, 1 if the property’s upper story is office use and 0 otherwise | + | Control |
URU | Dummy variable, 1 if the property’s upper story is residential use and 0 otherwise | + | Control |
LnINDEX | Private Retail Prices Index (1999=100) (in natural logarithm form) | + | Control |
OTHERS | Number of non-IVS visitors | + | Control |
IVS | Number of visitors under the IVS | + | Control |
IVS × LnMTR | Interaction between IVS and LnMTR | − | H1 |
IVS×ACM | Interaction between IVS and ACM | + | H2A and H2B |
IVS×AGE | Interaction between IVS and AGE | − | H3 |
Variable | ACM | AGE | FRON | INDEX | IVS | LnMTR | LnMALL | PRICE | OTHERS | SIZE |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 20.65 | 32.49 | 4.23 | 152.87 | 358.93 | 5.44 | 5.66 | 122.24 | 1300.73 | 59.41 |
Median | 16 | 34.21 | 3.7 | 138.5 | 627.98 | 5.35 | 5.67 | 73.34 | 1353.82 | 45.06 |
Max. | 54 | 53.5 | 22.76 | 344.6 | 1786.25 | 6.55 | 7 | 787.41 | 2175.31 | 656.08 |
Min. | 0 | 0.43 | 0 | 79.4 | 0 | 2.64 | 2.4 | 2.41 | 427.25 | 5.02 |
Std. Dev. | 14.83 | 11.45 | 3.05 | 60.29 | 463.99 | 0.67 | 0.68 | 128.89 | 390.36 | 58.5 |
Variable | Coefficient | t-Statistic | p-Value |
---|---|---|---|
AGE | −0.0002 | −0.041 | 0.968 |
SIZE | 0.0151 *** | 11.126 | 0.000 |
SIZE2 | −0.00002 *** | −7.008 | 0.000 |
FRON | −0.7949 ** | 2.175 | 0.030 |
LnMTR | −0.1115 *** | −6.379 | 0.000 |
LnMALL | 0.0511 | −0.893 | 0.372 |
CORN | −0.0008 ** | 2.282 | 0.023 |
ACM | 0.0352 *** | 5.102 | 0.000 |
ACM2 | 0.2395 *** | −4.215 | 0.000 |
UCU | −0.3118 * | −1.896 | 0.059 |
UOU | 0.3963 | 1.506 | 0.133 |
URU | −0.0819 | −0.941 | 0.347 |
LnINDEX | −0.0461 | −0.257 | 0.797 |
OTHERS | 0.2116 | 1.173 | 0.241 |
IVS | −1.1021 | −1.394 | 0.164 |
IVS×LnMTR | −0.0032 | −0.456 | 0.649 |
IVS×ACM | 0.2297 * | 1.864 | 0.063 |
IVS×AGE | 0.0057 | 0.904 | 0.366 |
Constant | 14.5565 *** | 13.023 | 0.000 |
R-squared | 0.569 | ||
Adjusted R-squared | 0.555 | ||
Number of observations | 580 |
Variable | Coefficient | t-Statistic | Variable | Coefficient | t-Statistic |
---|---|---|---|---|---|
AGE | −0.0041 | −1.300 | W-AGE | 0.0302 *** | 8.698 |
SIZE | 0.0147 *** | 2.703 | W-SIZE | 0.0055 *** | 2.801 |
SIZE2 | 0.0000 | −0.012 | W-SIZE2 | −0.0001 | −0.032 |
FRON | 0.0281 *** | 414.103 | W-FRON | 0.0358 *** | 141.582 |
LnMTR | −0.5319 *** | −13.996 | W-LnMTR | 1.2102 *** | 13.298 |
LnMALL | 0.1117 *** | 2.708 | W-LnMALL | −0.9153 *** | −9.717 |
CORN | 0.2259 *** | 13.658 | W-CORN | 0.5342 *** | 12.462 |
ACM | 0.0212 *** | 4.598 | W-ACM | 0.0370 *** | 3.207 |
ACM2 | −0.0003 | −0.165 | W-ACM2 | −0.0004 | −0.148 |
UCU | 0.0413 *** | 3.944 | W-UCU | −0.7653 *** | −8.900 |
UOU | 0.7428 *** | 3.592 | W-UOU | −1.9626 *** | −3.782 |
URU | −0.1577 | −1.500 | W-URU | 0.6691 *** | 8.676 |
LnINDEX | −0.0397 *** | −6.641 | W-LnINDEX | 0.4750 *** | 3.542 |
OTHERS | 0.1896 *** | 5.697 | W-OTHERS | −0.0695 *** | −4.316 |
IVS | −1.2468 *** | −10.602 | W-IVS | 14.1643 *** | 26.942 |
IVS×LnMTR | 0.2043 *** | 90.737 | W-IVS×LnMTR | −1.9169 *** | −181.821 |
IVS×ACM | 0.0103 *** | 10.276 | W-IVS×ACM | −0.0490 *** | −4.043 |
IVS×AGE | 0.0035 | 1.202 | W-IVS×AGE | −0.0960 *** | −14.666 |
Rho | 0.2780 *** | 16.383 | Constant | 3.915 *** | 85.369 |
R-squared | 0.662 | ||||
Adjusted R-squared | 0.639 | ||||
Number of observations | 580 |
Variable | Direct Effect (t-Statistic) | Indirect Effect (t-Statistic) | Total Effect (t-Statistic) |
---|---|---|---|
AGE | −0.0039 (−0.885) | 0.0411 * (1.821) | 0.0372 * (1.668) |
SIZE | 0.0146 *** (11.863) | 0.0129 (1.143) | 0.0276 ** (2.461) |
SIZE2 | 0.0000 *** (−7.558) | −0.0001 ** (−2.443) | −0.0001 *** (−2.908) |
FRON | 0.0279 * (1.833) | 0.0670 (0.741) | 0.0949 (1.063) |
LnMTR | −0.5238 *** (−3.516) | 1.5536 * (1.836) | 1.0298 (1.262) |
LnMALL | 0.1113 (0.674) | −1.2839 * (−1.805) | −1.1726 * (−1.823) |
CORN | 0.2320 ** (2.503) | 0.8208 (1.438) | 1.0528 * (1.789) |
ACM | 0.0214 (1.475) | 0.0611 (1.240) | 0.0825 * (1.787) |
ACM2 | −0.0003 (−0.986) | −0.0008 (−0.937) | −0.0010 (−1.430) |
UCU | 0.0456 (0.250) | −1.0706 ** (−1.968) | −1.0251 * (−1.801) |
UOU | 0.7442 *** (2.899) | −2.7011 * (−1.657) | −1.9569 (−1.184) |
URU | −0.1609 (−1.538) | 0.8949 ** (2.084) | 0.7340 * (1.793) |
LnINDEX | −0.0417 (−0.261) | 0.6126 (0.555) | 0.5710 (0.504) |
OTHERS | 0.1914 (1.195) | −0.1213 (−0.086) | 0.0701 (0.049) |
IVS | −1.1895 * (−1.705) | 19.8424 ** (2.498) | 18.6529 ** (2.298) |
IVS×LnMTR | 0.1960 * (1.775) | −2.6588 ** (−2.237) | −2.4628 ** (−2.011) |
IVS×ACM | 0.0102 * (1.792) | −0.0649 (−1.203) | −0.0547 (−0.991) |
IVS×AGE | 0.0032 (0.474) | −0.1362 *** (−3.480) | −0.1330 *** (−3.399) |
Theoretical Background | Economic Concern | Psychological Implication | |
---|---|---|---|
Hypothesis | H1 | H2A and H2B | H3 |
Hedonic variable | IVS×LnMTR | IVS×ACM | IVS×AGE |
Expected sign | - | +/insignificant | - |
Test result | Confirm | Reject H2A and confirm H2B | Confirm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, L.; Chau, K.W. Impacts of Tourism Demand on Retail Property Prices in a Shopping Destination. Sustainability 2020, 12, 1361. https://doi.org/10.3390/su12041361
Liu Y, Yang L, Chau KW. Impacts of Tourism Demand on Retail Property Prices in a Shopping Destination. Sustainability. 2020; 12(4):1361. https://doi.org/10.3390/su12041361
Chicago/Turabian StyleLiu, Yan, Linchuan Yang, and Kwong Wing Chau. 2020. "Impacts of Tourism Demand on Retail Property Prices in a Shopping Destination" Sustainability 12, no. 4: 1361. https://doi.org/10.3390/su12041361