Impact of Climate Extremes on Suitability Dynamics for Japanese Scallop Aquaculture in Shandong, China and Funka Bay, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scallop Culture in Study Area
2.2. Data Used and Processing
2.2.1. MODIS and GOCI Data
2.2.2. Land and Bathymetry Images
2.2.3. In-Situ and Shipboard Data
2.2.4. Meteorological Data and Climate Indices
2.3. Suitable Aquaculture Site Selection Model (SASSM) Improvement
2.4. Correlation Analysis
3. Results
3.1. Verification of GOCI and MODIS Data by In-Situ Data
3.2. Comparison of GOCI, GOCI Filtered, and MODIS Monthly Composite Data
3.3. Development of a New Scoring System for GOCI Data in SASSMs
3.4. Improvement of SASSMs with GOCI
3.5. Spatial Variations in Suitable Areas Between Funka Bay and Shandong Coast
3.6. Seasonal Variability in Suitability Scores and Environmental, Meteorological, and Climate Factors
3.7. Correlations Among Climate Events, Environmental Factors, and Meteorological Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Bai, X.Z.; Wang, J.; Liu, Q.Z.; Wang, D.X.; Liu, Y. Severe Ice Conditions in the Bohai Sea, China, and Mild Ice Conditions in the Great Lakes during the 2009/10 Winter: Links to El Niño and a Strong Negative Arctic Oscillation. J. Appl. Meteor. Climatol. 2011, 50, 1922–1935. [Google Scholar] [CrossRef]
- Strong El Niño, NOAA. Available online: https://www.noaa.gov/media-release/strong-el-ni-o-sets-stage-for-2015-2016-winter-weather (accessed on 9 January 2020).
- Hegerl, G.C.; Hanlon, H.; Beierkuhnlein, C. Climate science: Elusive extremes. Nat. Geosci. 2011, 4, 142–143. [Google Scholar] [CrossRef]
- Liu, Y.; Saitoh, S.-I.; Radiarta, I.N.; Isada, T.; Hirawake, T.; Mizuta, H.; Yasui, H. Improvement of an aquaculture site-selection model for Japanese kelp (Saccharina japonica) in southern Hokkaido, Japan: An application for the impacts of climate events. ICES J. Mar. Sci. 2013, 70, 1460–1470. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Saitoh, S.-I.; Igarashi, H.; Hirawake, T. The regional impacts of climate change on coastal environments and the aquaculture of Japanese scallops in northeast Asia: Case studies from Dalian, China and Funka Bay, Japan. Int. J. Remote Sens. 2014, 35, 4422–4440. [Google Scholar] [CrossRef]
- Bailey, H.; Secor, D. Coastal evacuations by fish during extreme weather events. Sci. Rep. 2016, 6, 30280. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 220. [Google Scholar]
- Li, Q.; Xu, K.F.; Yu, R.H. Genetic variation in Chinese hatchery population of the Japanese scallop (Mizuhopecten yessoensis) inferred from microsatellite data. Aquaculture 2007, 269, 211–219. [Google Scholar] [CrossRef]
- Liu, Y.; Saitoh, S.-I.; Radiarta, I.N.; Hirawake, T. Spatiotemporal variations in suitable areas for Japanese scallop aquaculture in Dalian, China from 2003 to 2012. Aquaculture 2014, 422–423, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Kapetsky, J.M.; Anguilar–Manjarrez, J. Geographic Information Systems, Remote Sensing and Mapping for the Development and Management of Marine Aquaculture; FAO Fisheries Technical Paper No. 458; FAO: Rome, Italy, 2007; p. 125. [Google Scholar]
- Silva, C.; Ferreira, J.G.; Bricker, S.B.; Delvalls, T.A.; Martín-Díaz, M.L.; Yáñez, E. Site Selection for Shellfish Aquaculture by Means of GIS and Farm-Scale Models, with An Emphasis on Data-Poor Environments. Aquaculture 2011, 318, 444–457. [Google Scholar] [CrossRef]
- Radiarta, I.N.; Saitoh, S.-I.; Miyazono, A. GIS-Based Multi-Criteria Evaluation Models for Identifying Suitable Sites for Japanese Scallop (Mizuhopecten yessoensis) Aquaculture in Funka Bay, Southwestern Hokkaido, Japan. Aquaculture 2008, 284, 127–135. [Google Scholar] [CrossRef]
- Radiarta, I.N.; Saitoh, S.-I. Biophysical models for Japanese scallop, Mizuhopecten yessoensis, aquaculture site selection in Funka Bay, Hokkaido, Japan, using remotely sensed data and geographic information system. Aquac. Inter. 2009, 17, 403–419. [Google Scholar] [CrossRef]
- Saitoh, S.-I.; Mugo, R.; Radiarta, I.N.; Asaga, S.; Takahashi, F.; Hirawake, T.; Ishikawa, Y. Some operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture. ICES J. Mar. Sci. 2011, 68, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Han, H.J.; Cho, S.; Park, Y.J.; Ahn, Y.H. Overview of Geostationary Ocean Color Imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- The Ministry of Agriculture of China. China Fishery Statistical Yearbook 2014; China Agriculture Press: Beijing, China, 2014. (In Chinese)
- Ohtani, K. Studies on the Change of the Hydrographic Conditions in the Funka Bay. Characteristics of the Water Occupying the Funka Bay. Bull. Fac. Fish. Hokkaido Univ. 1971, 22, 58–66. [Google Scholar]
- Marinenet Hokkaido. 2015. Search and Aggregate Statistics of the Fishery Catch from 1991 to 2016. Available online: https://www.hro.or.jp/list/fisheries/marine/index.html (accessed on 20 December 2019).
- NOAA Ocean Color. Available online: http://oceancolor.gsfc.nasa.gov (accessed on 9 January 2020).
- Ahn, Y.H.; Moon, J.E.; Gallegos, S. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean J. Remote Sens. 2001, 17, 285–295. [Google Scholar]
- Korea Ocean Satellite Center (KOSC). Available online: http://kosc.kiost.ac.kr/eng/p30/kosc_p33.html (accessed on 9 January 2020).
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Ahn, Y.H.; Ishizaka, J.; Yoo, S.; Kim, S.W.; Kiyomoto, Y.; Yamada, K.; Chiang, C.; et al. Empirical ocean-color algorithms to retrieve chlorophylla, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F.; et al. Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: Version 4. In SeaWiFS Postlaunch Calibration and Validation Analyses; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2000; pp. 9–27. Available online: https://www.researchgate.net/publication/285869893_Ocean_chlorophyll_a_algorithms_for_Sea_WiFS_OC2_and_OC4_Version_4 (accessed on 20 December 2019).
- Yang, Q.; Du, L.B.; Liu, X.Y.; Hu, L.B.; Chen, S.G.; Liu, Y.; Wang, Z.Y.; Wang, Z.J.; Zhou, Y. Evaluation of ocean color products from Korean Geostationary Ocean Color Imager (GOCI) in Jiaozhou Bay and Qingdao coastal area. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Beijing, China, 18 December 2014. [Google Scholar] [CrossRef]
- ALOS User Interface Gateway (AUIG). Available online: https://auig2.jaxa.jp/ips/home (accessed on 9 January 2020).
- United States Geological Survey Earth Resources Observation Satellites (USGS EROS). Available online: https://earthexplorer.usgs.gov/ (accessed on 9 January 2020).
- National Meteorological Information Center of China Meteorological Administration. Available online: http://data.cma.cn/site/index.html (accessed on 9 January 2020).
- Japan Meteorological Agency (JMA). Available online: http://www.jma.go.jp/jma/indexe.html (accessed on 9 January 2020).
- Hanawa, K.; Watanabe, T.; Iwasaka, N.; Suga, T.; Toba, Y. Surface Thermal Conditions in the Western North Pacific during the ENSO Events. J. Meteor. Soc. Japan. 1988, 66, 445–456. [Google Scholar] [CrossRef] [Green Version]
- NCEP Reanalysis Database. Available online: http://www.esrl.noaa.gov/psd/ (accessed on 9 January 2020).
- National Weather Service, Center for Climate Prediction, NOAA. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml (accessed on 9 January 2020).
- Stachelski, C.; Czyzyk, S. El Niño and La Niña episodes and their impact on the weather in the Las Vegas Valley. Available online: https://www.weather.gov/media/wrh/online_publications/talite/talite0903.pdf (accessed on 9 January 2020).
- Liu, Y.; Saitoh, S.-I.; Nakada, S.; Zhang, X.; Hirawake, T. Impact of Oceanographic Environmental Shifts and Atmospheric Events on the Sustainable Development of Coastal Aquaculture: A case Study of Kelp and Scallops in Southern Hokkaido, Japan. Sustainability 2015, 7, 1263–1279. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Ito, H. Patinopecten (Mizuhopecten) yessoensis. In Scallops: Biology, Ecology and Aquaculture; Shumway, S.E., Parsons, G.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 1024–1055. [Google Scholar]
- Zhang, R.H.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian monsoon: a diagnostic study of the 86/87 and 91/92 events. J. Meteorol. Soc. Jpn. 1996, 74, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Naimie, C.E.; Blain, C.A.; Lynch, D.R. Seasonal Mean Circulation in the Yellow Sea–A Model-Generated Climatology. Cont. Shelf Res. 2001, 21, 667–695. [Google Scholar] [CrossRef]
- Mckinnell, S.M.; Dagg, M.J. Marine Ecosystems of the North Pacific Ocean, 2003–2008. PICES Special Publication 2010, 4, 393. Available online: http://imecocal.cicese.mx/publicaciones/divulgacion/PICES_pub4_Chp3_California.pdf (accessed on 9 January 2020).
- Ma, J.; Qiao, F.L.; Xia, C.S.; Kim, C.S. Effects of the Yellow SeaWarm Current on the Winter Temperature Distribution in a Numerical Model. J. Geophys. Res. 2006, 111, C11S04. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.H.; Chen, J.L.; Huang, G. Characteristics and Variations of the East Asian Monsoon System and Its Impacts on Climate Disasters in China. Adv. Atmos. Sci. 2007, 24, 993–1023. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, J.; Zha, G.H.; Wang, Q.; Li, Y.M. Developing a two-step retrieval method for estimating total suspended solid concentration in Chinese turbid inland lakes using Geostationary Ocean Colour Imager (GOCI) imagery. Int. J. Remote Sens. 2015, 36, 1385–1405. [Google Scholar] [CrossRef]
- Liu, W.L.; Qian, L.; Zheng, X.S. Spatial-Temporal Variation of Chlorophyll-A Concentration in the Bohai Sea. In Proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010, and International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, Wuxi, China, 17–20 September 2010. [Google Scholar]
- Seager, B.R.; Harnik, N.; Robinson, W.A.; Kushnir, Y.; Ting, M.; Huang, H.P.; Velez, J. Mechanisms of Enso-Forcing of Hemi Spherically Symmetric Precipitation Variability. Q. J. Roy. Meteor. Soc. 2005, 131, 1501–1527. [Google Scholar] [CrossRef] [Green Version]
- Son, H.Y.; Park, J.Y.; Kug, J.S. Winter Precipitation Variability over East Asia Associated with ENSO. Geophys. Res. Abstr. 2012, 14, 6874. [Google Scholar]
- Acker, J.G.; Hardding, L.W.; Leptoukh, G.; Zhu, T.; Shen, S.H. Remotely-Sensed Chl-A at the Chesapeake Bay Mouth Is Correlated with Annual Freshwater Flow to Chesapeake Bay. Geophys. Res. Lett. 2005, 32, L05601. [Google Scholar] [CrossRef]
Year | Cruise | In-Situ | GOCI | MODIS | |||
---|---|---|---|---|---|---|---|
Date | n | Date | n | Date | n | ||
2011 | US228 | 14–16 May | 23 | 15 May | 21 | 18 May | 14 |
2011 | US232 | 27–28 Jul | 13 | 31 Jul | 8 | 22 Jul | 6 |
2011 | US237 | 27–29 Sep | 8 | 28 Sep | 8 | ||
2011 | US242 | 17–19 Nov | 10 | 18 Nov | 7 | 12 Nov | 10 |
2012 | US246 | 10 Jan | 5 | 8 Jan | 5 | 7 Jan | 5 |
Suitability Rating and Score | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Sea Surface temperature (°C) | <4 | 4–5 | 5–6 | 6–7 | 7–8 | 8–9 | 9–10 | 10–11 |
17–35 | 16–17 | 15–16 | 14–15 | 13–14 | 12–13 | 11–12 | ||
Bathymetry (m) | 0–3 | 3–5 | 5–7 | 7–9 | 9–11 | 11–13 | 13–15 | 15–60 |
Total suspended sediment (g m−3) | 4.1 < | 3.6–4.1 | 3.1–3.6 | 2.6–3.1 | 2.1–2.6 | 1.6–2.1 | 1.1–1.6 | 0–1.1 |
Chl-a (mg m−3) | 0–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.2 | 1.2–1.6 | 1.6–2.0 | 2.0–2.2 | 2.2 < |
Parameter | Scoring System | Suitability Scores (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Chl-a | SST | TSS | 3 | 4 | 5 | 6 | 7 | 8 | |
MODIS | MODIS | MODIS | Previous | 0.0 | 0.4 | 0.8 | 12.7 | 68.6 | 17.5 |
GOCI | MODIS | MODIS | Previous | 0.0 | 0.1 | 0.6 | 2.9 | 35.7 | 60.7 |
GOCI | MODIS | MODIS | New developed | 0.1 | 0.5 | 2.9 | 23.9 | 58.3 | 14.3 |
GOCI | MODIS | GOCI | New developed | 0.0 | 1.1 | 3.7 | 17.5 | 58.7 | 19.1 |
Year | Suitability Scores (%) | MOI in winter | ENSO Event in winter | Total Annual Production (104 tonnes) [17] | ||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | ||||
May 2011 | 6.8 | 16.9 | 35.5 | 20.0 | 20.8 | Strong positive | Moderate La Niña | 16.8 |
May 2012 | 4.7 | 23.8 | 21.9 | 29.0 | 20.5 | Positive | Weak La Niña | 16.0 |
May 2013 | 6.2 | 11.3 | 35.4 | 31.0 | 16.0 | Negative | Normal | 16.1 |
May 2014 | 12.9 | 12.1 | 35.9 | 20.2 | 18.9 | Negative | Normal | 15.5 |
May 2015 | 6.6 | 12.3 | 39.7 | 21.9 | 19.5 | Positive | Weak El Niño | 17.4 |
May 2016 | 0.4 | 3.5 | 24.8 | 11.7 | 59.6 | Positive | Strong El Niño | 18.1 |
May 2017 | 5.1 | 15.7 | 32.4 | 43.5 | 3.3 | Negative | Weak La Niña | |
May 2018 | 7.0 | 12.5 | 36.2 | 29.6 | 14.6 | Positive | Weak La Niña |
Year | Suitability Scores (%) | MOI in winter | ENSO Event in winter | Total Annual Production (104 tonnes) [19] | |||
---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | ||||
May 2011 | 0.7 | 17.4 | 70.0 | 11.8 | Strong positive | Moderate La Niña | 5.8 |
May 2012 | 0.1 | 4.4 | 66.2 | 29.2 | Positive | Weak La Niña | 7.5 |
May 2013 | 0.3 | 9.5 | 72.5 | 17.7 | Negative | Normal | 8.2 |
May 2014 | 0.5 | 19.6 | 72.1 | 7.8 | Negative | Normal | 8.1 |
May 2015 | 0.1 | 3.7 | 74.6 | 21.6 | Positive | Weak El Niño | 10.4 |
May 2016 | 0.0 | 6.8 | 81.3 | 11.9 | Positive | Strong El Niño | 5.6 |
May 2017 | 12.0 | 49.4 | 38.4 | 0.1 | Negative | Weak La Niña | 2.6 |
May 2018 | 1.1 | 20.8 | 75.1 | 3.0 | Positive | Weak La Niña |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Tian, Y.; Saitoh, S.-I.; Alabia, I.D.; Mochizuki, K.-I. Impact of Climate Extremes on Suitability Dynamics for Japanese Scallop Aquaculture in Shandong, China and Funka Bay, Japan. Sustainability 2020, 12, 833. https://doi.org/10.3390/su12030833
Liu Y, Tian Y, Saitoh S-I, Alabia ID, Mochizuki K-I. Impact of Climate Extremes on Suitability Dynamics for Japanese Scallop Aquaculture in Shandong, China and Funka Bay, Japan. Sustainability. 2020; 12(3):833. https://doi.org/10.3390/su12030833
Chicago/Turabian StyleLiu, Yang, Yongjun Tian, Sei-Ichi Saitoh, Irene D. Alabia, and Kan-Ichiro Mochizuki. 2020. "Impact of Climate Extremes on Suitability Dynamics for Japanese Scallop Aquaculture in Shandong, China and Funka Bay, Japan" Sustainability 12, no. 3: 833. https://doi.org/10.3390/su12030833
APA StyleLiu, Y., Tian, Y., Saitoh, S.-I., Alabia, I. D., & Mochizuki, K.-I. (2020). Impact of Climate Extremes on Suitability Dynamics for Japanese Scallop Aquaculture in Shandong, China and Funka Bay, Japan. Sustainability, 12(3), 833. https://doi.org/10.3390/su12030833