Upcycling Phosphorus Recovered from Anaerobically Digested Dairy Manure to Support Production of Vegetables and Flowers
Abstract
:1. Introduction
- Capture, and ideally reuse, P, reducing the risk of pollution to waterways,
- Convert collected dairy manure or other organic wastes to energy, recycled fertilizers, or other products,
- Determine the amount of state support required for these projects to be viable.
- Determine if plant foods made from DAF-captured fine solids provide fertilization without inhibiting germination in horticultural applications,
- Determine which plant food recipes and application rates work best for tomato and marigold seedlings,
- Assess the pathogen suppression potential of DAF-captured fine solids.
2. Materials and Methods
2.1. Plant Food Design
2.2. Seedling Bioassay
2.3. Pathogen Suppression Assay
2.4. Materials Characterization
3. Results and Discussion
3.1. Physicochemical Characteristics
3.2. Nitrogen
3.3. Phosphorus
3.4. Other Nutrients
3.5. Germination
3.6. Biomass
3.7. Pathogen Suppression
3.8. Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Wironen, M.B.; Bennett, E.M.; Erickson, J.D. Phosphorus flows and legacy accumulation in an animal-dominated agricultural region from 1925 to 2012. Glob. Environ. Chang. 2018, 50, 88–99. [Google Scholar] [CrossRef]
- Childers, D.L.; Corman, J.; Edwards, M.; Elser, J.J. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Biosci. Oxf. 2011, 61, 117–124. [Google Scholar] [CrossRef]
- Riding, M.J.; Herbert, B.M.J.; Ricketts, L.; Dodd, I.; Ostle, N.; Semple, K.T. Harmonising conflicts between science, regulation, perception and environmental impact: The case of soil conditioners from bioenergy. Environ. Int. 2015, 75, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.D. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 2017, 98, 213–227. [Google Scholar] [CrossRef]
- Sarvajayakesavalu, S.; Lu, Y.; Withers, P.J.A.; Pavinato, P.S.; Pan, G.; Chareonsudjai, P. Phosphorus recovery: A need for an integrated approach. Ecosyst. Health Sustain. 2018, 4, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.M.; Chowdhury, R.B.; MacDonald, G.K.; Metson, G.S.; Beusen, A.H.W.; Bouwman, A.F.; Hampton, S.E.; Mayer, B.K.; McCrackin, M.L.; Vaccari, D.A. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 2019, 7, 370–383. [Google Scholar] [CrossRef] [Green Version]
- Vermont Office of the Governor. Vermont Phosphorus Innovation Challenge; Brief from the Vermont Office of the Governor: Montpelier, VT, USA, 2018.
- USEPA AgSTAR Data and Trends. Available online: https://www.epa.gov/agstar/agstar-data-and-trends (accessed on 3 June 2019).
- Lukehurst, C.T.; Frost, P.; Seadi, T.A. Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy 2010, 2010, 1–36. [Google Scholar]
- Campos, J.L.; Crutchik, D.; Franchi, Ó.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; Mosquera-Corral, A.; Val del Río, Á. Nitrogen and phosphorus recovery from anaerobically pretreated agro-food wastes: A review. Front. Sustain. Food Syst. 2019, 2, 91. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agric. Ecosyst. Environ. 2011, 141, 58–66. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Kleinman, P.; Jarvie, H.; Flaten, D. Distant views and local realities: The limits of global assessments to restore the fragmented phosphorus cycle. Agric. Environ. Lett. 2016, 1, 160024. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Guilayn, F.; Jimenez, J.; Rouez, M.; Crest, M.; Patureau, D. Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice. Bioresour. Technol. 2019, 274, 180–189. [Google Scholar] [CrossRef]
- O’Brien, B.J.; Neher, D.A.; Roy, E.D. Nutrient and pathogen suppression properties of anaerobic digestates from dairy manure and food waste feedstocks. Waste Biomass Valor. 2019. [Google Scholar] [CrossRef]
- O’Brien, B.J.; Milligan, E.; Carver, J.; Roy, E.D. Integrating anaerobic co-digestion of dairy manure and food waste with cultivation of edible mushrooms for nutrient recovery. Bioresour. Technol. 2019, 285, 121312. [Google Scholar] [CrossRef]
- Frear, C. Case Study: DVO Phosphorus Recovery System Edaleen Dairy, Lynden, WA; Newtrient: Rosemont, IL, USA, 2017. [Google Scholar]
- Porterfield, K.K.; Faulkner, J.; Roy, E.D. Nutrient recovery from anaerobically digested dairy manure using dissolved air flotation (DAF). ACS Sustain. Chem. Eng. 2020. [Google Scholar] [CrossRef]
- Mayer, B.K.; Baker, L.A.; Boyer, T.H.; Drechsel, P.; Gifford, M.; Hanjra, M.A.; Parameswaran, P.; Stoltzfus, J.; Westerhoff, P.; Rittmann, B.E. Total value of phosphorus recovery. Environ. Sci. Technol. 2016, 50, 6606–6620. [Google Scholar] [CrossRef] [PubMed]
- Collins, H.P.; Kimura, E.; Frear, C.S.; Kruger, C.E. Phosphorus Uptake by Potato from Fertilizers Recovered from Anaerobic Digestion. Agron. J. 2016, 108, 2036. [Google Scholar] [CrossRef]
- Liu, Z.; Howe, J.; Wang, X.; Liang, X.; Runge, T. Use of Dry Dairy Manure Pellets as Nutrient Source for Tomato (Solanum lycopersicum var. cerasiforme) Growth in Soilless Media. Sustainability 2019, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Shang, B.; Dong, H.; Chen, Y.; Xin, H. Effects of Digestate from Swine Manure Digester on in Vitro Growth of Crop Fungal Pathogens: A Laboratory Study. Trans. ASABE 2014, 57, 1803–1810. [Google Scholar]
- Scaglia, B.; Pognani, M.; Adani, F. The anaerobic digestion process capability to produce biostimulant: The case study of the dissolved organic matter (DOM) vs. auxin-like property. Sci. Total Environ. 2017, 589, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Pizzeghello, D.; Baglieri, A.; Cadili, V.; Tambone, F.; Gennari, M.; Nardi, S. Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J. Geochem. Explor. 2013, 129, 103–111. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; Zilio, M.; Adani, F. Measuring the organic amendment properties of the liquid fraction of digestate. Waste Manag. 2019, 88, 21–27. [Google Scholar] [CrossRef]
- Neher, D.A.; Fang, L.; Weicht, T.R. Ecoenzymes as Indicators of Compost to Suppress Rhizoctonia Solani. Compost Sci. Util. 2017, 25, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef]
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil, Plant and Water Reference Methods for the Western Region, 4th ed.; Western Coordinating Committee on Nutrient Management: Corvallis, OR, USA, 2013; Available online: https://www.naptprogram.org/files/napt/publications/method-papers/western-states-methods-manual-2013.pdf (accessed on 21 December 2019).
- Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; Peters, J., Ed.; Cooperative Extension Publishing: Madison, WI, USA, 2003; Volume I-2. [Google Scholar]
- Brod, E.; Øgaard, A.F.; Haraldsen, T.K.; Krogstad, T. Waste products as alternative phosphorus fertilisers part II: Predicting P fertilisation effects by chemical extraction. Nutr. Cycl. Agroecosyst. 2015, 103, 187–199. [Google Scholar] [CrossRef]
- Lajtha, K.; Driscoll, C.T.; Jarrell, W.M.; Elliott, E.T. Soil phosphorus: Characterization and total element analysis. In Standard Soil Methods for Long-Term Ecological Research; Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., Eds.; Oxford University Press: New York, NY, USA, 1999; pp. 115–142. [Google Scholar]
- Pantelopoulos, A.; Magid, J.; Jensen, L.S.; Fangueiro, D. Nutrient uptake efficiency in ryegrass fertilized with dried digestate solids as affected by acidification and drying temperature. Plant Soil Dordr. 2017, 421, 401–416. [Google Scholar] [CrossRef]
- Green, B.W. Fertilizers in aquaculture. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Oxford, UK, 2015; pp. 27–52. ISBN 978-0-08-100506-4. [Google Scholar]
- Reddy, R.K.; DeLaune, R.D. Mineralization of Organic Nitrogen: C:N Ratio Concept. In Biogeochemistry of Wetlands: Science and Applications; CRC Press, Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2008; pp. 264–267. ISBN 978-1-56670-678-0. [Google Scholar]
- Toor, G.S.; Hunger, S.; Peak, J.D.; Sims, T.J.; Sparks, D.L. Advances in the characterization of phosphorus in organic wastes: Environmental and agronomic applications. Adv. Agron. 2006, 89, 1–72. [Google Scholar]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, C.; Müller, J. Drying characteristics of biogas digestate in a hybrid waste-heat/solar dryer. Energies 2019, 12, 1294. [Google Scholar] [CrossRef] [Green Version]
Plant Food | DAF-Captured Fine Solids (%) | Dried Distiller’s Grain & Dried Whey Permeate Formulation (%) | Biochar (%) | Plants Tested | Application Rates (% v/v) |
---|---|---|---|---|---|
Plant Food A | 95 | 5 | 0 | Marigold | 0, 2, 4, 6, 8 |
Plant Food A1 | 90 | 10 | 0 | Marigold | 6 |
Plant Food A2 | 85 | 15 | 0 | Marigold | 6 |
Plant Food B | 93 | 5 | 2 | Tomato | 0, 2, 4, 6, 8, 10, 12 |
As-is Fine Solids | Dried Fine Solids | Soilless Substrate | Dried Distiller’s Grain & Whey Permeate | Biochar | Plant Food A | Plant Food A1 | Plant Food A2 | Plant Food B | Market Alternative | |
---|---|---|---|---|---|---|---|---|---|---|
Total Solids (%) | 16.9 | 45.4 | 69.2 | 92.3 | 64.4 | 47.0 | 49.5 | 50.9 | 48.8 | 93.0 a |
Volatile Solids (%) | 12.8 | 34.2 | 45.5 | 88.6 | 44.8 | 36.4 | 38.4 | 40.3 | 37.8 | NA |
pH | 8.0 | 8.4 | 6.4 | 4.6 | 9.5 | 7.8 | 7.7 | 7.7 | 7.9 | NA |
Bulk density (kg m−3) | 1006 | 415 | 136 | 570 | 356 | 463 | 534 | 445 | 457 | NA |
Conductivity (mmhos cm−1) | 9.0 | 9.0 | 0.1 | 6.4 | 15.3 | 9.1 | 8.4 | 8.8 | 8.3 | NA |
C: N ratio | 8.1 | 19.6 | 57.7 | 11.8 | 30.9 | 9.3 | 9.9 | 10.5 | 9.7 | NA |
Total C (g kg−1) | 69 | 174 | 227 | 434 | 354 | 181 | 204 | 216 | 189 | NA |
As-is Fine Solids | Dried Fine Solids | Soilless Substrate | Dried Distiller’s Grain & Whey Permeate | Biochar | Plant Food A | Plant Food A1 | Plant Food A2 | Plant Food B | Market Alternative | |
---|---|---|---|---|---|---|---|---|---|---|
Total N (g kg−1) | 8.5 a | 8.9 a | 3.9 b | 36.8 b | 11.5 b | 19.6 a | 20.6 a | 20.6 a | 19.6 a | 41.7 b |
Organic N (g kg−1) | 6.6 c | 8.0 c | 3.9 d | 36.6 d | 11.3 d | 18.8 c | 20.1 c | 20.2 c | 18.9 c | NA |
NH4-N (g kg−1) | 1.92 | 0.82 | 0.03 | 0.09 | 0.21 | 0.72 | 0.54 | 0.37 | 0.64 | NA |
NO3-N (g kg−1) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | NA |
Total P (g kg−1) | 3.1 | 7.8 | 0.4 | 4.9 | 5.3 | 7.6 | 8.5 | 8.9 | 7.8 | 17.9 |
Neutral NH4 Citrate P (g kg−1) | 3.3 | 8.9 | 0.3 | 4.9 | 4.4 | 8.1 | 8.2 | 8.1 | 8.2 | 14.6 |
2% Citric Acid P (g kg−1) | 2.5 | 5.7 | NA | NA | NA | 6.0 | 5.8 | 5.4 | 6.2 | 9.2 |
Olsen P (g kg−1) | 0.1 | 0.9 | NA | NA | NA | 1.0 | 1.0 | 1.2 | 0.8 | 0.7 |
Water Extractable P (g kg−1) | 0.3 | 1.4 | NA | NA | NA | 1.6 | 1.8 | 1.9 | 1.9 | 2.1 |
Total K (g kg−1) | 2.5 | 5.9 | 0.8 | 7.0 | 20.0 | 6.3 | 7.2 | 7.6 | 6.8 | 18.1 |
Neutral NH4 Citrate K (g kg−1) | 3.1 | 7.7 | 1.0 | 7.8 | 20.9 | 7.9 | 8.0 | 8.0 | 7.9 | 19.9 |
As-is Fine Solids | Dried Fine Solids | Soilless Substrate | Dried Distiller’s Grain & Whey Permeate | Biochar | Plant Food A | Plant Food A1 | Plant Food A2 | Plant Food B | Market Alternative | |
---|---|---|---|---|---|---|---|---|---|---|
Total B (g kg−1) | 0.00 | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
Total Ca (g kg−1) | 5.5 | 15 | 17 | 2 | 22 | 10 | 11 | 11 | 11 | 52 |
Total Cu (g kg−1) | 0.11 | 0.30 | 0.03 | 0.00 | 0.02 | 0.31 | 0.35 | 0.35 | 0.33 | 0.03 |
Total Fe (g kg−1) | 0.14 | 0.38 | 1.28 | 0.20 | 1.61 | 0.38 | 0.39 | 0.40 | 0.39 | 0.24 |
Total Mg (g kg−1) | 2.0 | 5.6 | 3.5 | 1.4 | 9.6 | 5.6 | 6.3 | 6.0 | 5.9 | 3.2 |
Total Mn (g kg−1) | 0.04 | 0.10 | 0.07 | 0.01 | 0.18 | 0.11 | 0.12 | 0.12 | 0.12 | 0.07 |
Total Na (g kg−1) | 1.0 | 2.5 | 0.2 | 1.6 | 4.6 | 2.4 | 2.8 | 2.6 | 2.6 | 1.6 |
Total Zn (g kg−1) | 0.06 | 0.16 | 0.06 | 0.05 | 0.09 | 0.14 | 0.16 | 0.16 | 0.15 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porterfield, K.K.; Joblin, R.; Neher, D.A.; Curtis, M.; Dvorak, S.; Rizzo, D.M.; Faulkner, J.W.; Roy, E.D. Upcycling Phosphorus Recovered from Anaerobically Digested Dairy Manure to Support Production of Vegetables and Flowers. Sustainability 2020, 12, 1139. https://doi.org/10.3390/su12031139
Porterfield KK, Joblin R, Neher DA, Curtis M, Dvorak S, Rizzo DM, Faulkner JW, Roy ED. Upcycling Phosphorus Recovered from Anaerobically Digested Dairy Manure to Support Production of Vegetables and Flowers. Sustainability. 2020; 12(3):1139. https://doi.org/10.3390/su12031139
Chicago/Turabian StylePorterfield, Katherine K., Robert Joblin, Deborah A. Neher, Michael Curtis, Steve Dvorak, Donna M. Rizzo, Joshua W. Faulkner, and Eric D. Roy. 2020. "Upcycling Phosphorus Recovered from Anaerobically Digested Dairy Manure to Support Production of Vegetables and Flowers" Sustainability 12, no. 3: 1139. https://doi.org/10.3390/su12031139