Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas
Abstract
1. Introduction
2. Materials and Methods
2.1. Previous Models
2.2. Mathematical Modelling
Algorithm 1. Algorithm for the octahedric regression model. |
1: for i in Integers{1 .. P} |
2. Real estimation[i] = 0 |
3. for k in Integers{1 .. n} |
4. Real estim_plus = 0, estim_minus = 0 |
5. Real dist_plus = 0, dist_minus = 0 |
6. for j in Integers{1 .. P} |
7. dist_plus = dist_plus + |
8. dist_minus = dist_minplus + |
9. estim_plus = estim_plus + y[j] × |
10. estim_minus = estim_min + y[j] × |
11. estim_plus = estim_plus/dist_plus |
12. estim_minus = estim_minus/dist_minus |
13. estimation[i] = estimation[i] + (estim_plus + estim_minus)/(2 × n); |
3. Results
3.1. Experimental Data
3.2. Linear Models
3.3. Numerical Models
3.4. Non-Linear Model
3.5. Stability of the Models
3.6. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org (accessed on 1 April 2020).
- Rubiales, D.; Mikić, A. Introduction: Legumes in Sustainable Agriculture. Crit. Rev. Plant Sci. 2015, 34, 2–3. [Google Scholar] [CrossRef]
- Confalone, A.; Navarro, M.; Vilatte, C.; Barufaldi, M.; Aguas, L.; Ponce, G. Crecimiento, captura de luz y componentes del rendimiento del haba cv. Alameda creciendo en Azul, provincia de Buenos Aires. Rev. Fca Uncuyo 2013, 45, 105–116, ISSN 0370-4661. [Google Scholar]
- Redden, R.; Zong, X.; Norton, R.M.; Stoddard, F.L.; Maalouf, F.; Ahmed, S.; Ling, L. Efficient and sustainable production of faba bean. In Achieving Sustainable Cultivation of Grain Legumes: Vol. 2: Improving Cultivation of Particular Grain Legumes; Burleigh and Dodds Science Publishing: Cambridge, UK, 2018; pp. 269–296. [Google Scholar]
- Sau, F.; Mínguez, M.I. Adaptation of indeterminate faba beans to weather and management under a Mediterranean climate. Field Crop Res. 2000, 66, 81–99. [Google Scholar] [CrossRef]
- Aschi, A.; Aubert, M.; Riah-Anglet, W.; Nélieu, S.; Dubois, C.; Akpa-Vinceslas, M.; Trinsoutrot-Gattin, I. Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Appl. Soil Ecol. 2017, 120, 219–228. [Google Scholar] [CrossRef]
- Confalone, A.; Lizaso, J.; Ruíz-Nogueira, B.; López-Cedrón, F.; Sau, F. Growth, PAR use efficiency, and yield components of field grown Vicia faba L. under various temperature and photoperiod regimes. Field Crop Res. Elsevier 2010, 115, 140–148. [Google Scholar] [CrossRef]
- Summerfield, R.J.; Roberts, E.H.; Ellis, R.H.; Lawn, R.J. Towards the reliable prediction of time to flowering in six annual crops. I. The development of simple models for fluctuating field environments. Exp. Agric. Camb. 1991, 27, 11–31. [Google Scholar] [CrossRef]
- Marcelis, L.F.; Heuvelink, E.; Goudriaan, J. Modelling biomass production and yield of horticultural crops: A review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Ajam, N.H.; Soltani, A.; Majidi, H.E.; Homaei, M. Modelling Response of Emergence to Temperature in Faba Bean under Field Condition. 2007. Available online: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=103632 (accessed on 1 April 2020).
- Daur, I.; Sepetoğlu, H.; Sindel, B. Dynamics of faba bean growth and nutrient uptake and their correlation with grain yield. J. Plant Nutr. 2011, 34, 1360–1371. [Google Scholar] [CrossRef]
- Manschadi, A.M.; Sauerborn, J.; Stutzel, H.; Gobel, W.; Saxena, M.C. Simulation of faba bean (Vicia faba L.) growth and development under Mediterranean conditions: Model adaptation and evaluation. Eur. J. Agron. 1998, 9, 273–293. [Google Scholar] [CrossRef]
- Boote, K.; Mínguez, I.; Sau, F. Adapting the CROPGRO legume model to simulate growth of faba vean. Agron. J. 2002, 94, 743–756. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Shelia, V.; Boote, K.J.; Singh, U.; White, J.W.; Hunt, L.A.; Ogoshi, R.; Lizaso, J.I.; Koo, J.; et al. Decision Support System for Agrotechnology Transfer (DSSAT); Version 4.7.5; DSSAT Foundation: Gainesville, FL, USA, 2019. [Google Scholar]
- Ruiz-Ramos, M.; Mínguez, I. ALAMEDA, a structural–Functional model for Faba Bean Crops: Morphological parameterization and verification. Ann. Bot. 2006, 97, 377–388. [Google Scholar] [CrossRef]
- Monteith, J.L. Principles of resource capture by crop stands. In Resource Capture by Crops; Monteith, J.L., Scott, R.K., Unsworth, M.H., Eds.; Nottingham University Press: Nottingham, UK, 1994; pp. 1–15. [Google Scholar]
- Monsi, M.; Saeki, T. The light factor in plant communities and its significance for dry matter production. Jpn. J. Bot. 1953, 14, 22–52. [Google Scholar]
- Sinclair, R.T.; Muchow, R.C. Radiation Use Efficiency. Advances in Agronomic 65; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Confalone, A.; Boote, J.; Lizaso Sau, F. Temperature and Photoperiod Effects on Vicia faba Phenology Simulated by CROPGRO-Fababean. Agron. J. Elsevier 2011, 103, 1036–1050, ISSN 0002-1962. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied multivariate statistical analysis. Statistics 2015, 6215, 10. [Google Scholar]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear regression models and applications in agricultural research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef]
- Markovsky, I.; Van Huffel, S. Overview of total least-squares methods. Signal Process. 2007, 87, 2283–2302. [Google Scholar] [CrossRef]
- Lourakis, M.I. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Found. Res. Technol. 2005, 4, 1–6. [Google Scholar]
- Cornejo Zúñiga, O.; Rebolledo Vega, R. Estimación de parámetros en modelos no lineales: Algoritmos y aplicaciones. Rev. EIA 2016, 25, 81–98. [Google Scholar] [CrossRef]
- Ranganathan, A. The levenberg-marquardt algorithm. Tutoral Lm Algorithm 2004, 11, 101–110. [Google Scholar]
- Transtrum, M.K.; Sethna, J.P. Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. arXiv 2012, arXiv:1201.5885. [Google Scholar]
- Aragonés, L.; Pagán, J.I.; López, I.; Navarro-González, F.J.; Villacampa, Y. Galerkin’s formulation of the finite elements method to obtain the depth of closure. Sci. Total Environ. 2019, 660, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Palazón, A.; López, I.; Aragonés, L.; Villacampa, Y.; Navarro-González, F.J. Modelling of Escherichia coli concentrations in bathing water at microtidal coasts. Sci. Total Environ. 2017, 593, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Aragonés, L.; López, I.; Villacampa, Y.; Navarro-González, F.J. Using the presence of seagrass Posidonia oceanica to model the equilibrium profile parameter A of sandy beaches in Spain. J. Coast. Res. 2017, 33, 1074–1085. [Google Scholar] [CrossRef]
- Aragonés, L.; Villacampa, Y.; Navarro-González, F.J.; López, I. Numerical modelling of the equilibrium profile in Valencia (Spain). Ocean Eng. 2016, 123, 164–173. [Google Scholar] [CrossRef]
- Navarro-González, F.J.; Villacampa, Y. A finite element numerical algorithm for modelling and data fitting in complex systems. Int. J. Comput. Methods Exp. Meas. 2016, 4, 100–113. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, F.J.; Villacampa, Y. An Octahedric Regression Model of EnergyEfficiency on Residential Buildings. Appl. Sci. 2019, 9, 4978. [Google Scholar] [CrossRef]
- SSS-USDA 2014 Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- List, R.J. Smithsonian Meteorological Tables; Smithsonian Institution: Washington, DC, USA, 1971. [Google Scholar]
- Szeicz, G. Solar radiation for plant growth. J. Appl. Ecol. 1974, 2, 617–636. [Google Scholar] [CrossRef]
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression models. In Regression; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–72. [Google Scholar]
- Tranmer, M.; Elliot, M. Multiple linear regression. Cathie Marsh Cent. Census Surv. Res. CCSR 2008, 5, 30–35. [Google Scholar]
- Spss12.0. Guide to Statistics; Mathsoft, Inc.: Cambridge, MA, USA, 2003. [Google Scholar]
- Mixon, J. GRETL: An econometrics package for teaching and research. Manag. Financ. 2010, 36, 71–81. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
z | Dry matter |
x1 | Thermal sum |
x2 | PAR |
x3 | Photoperiod |
Dry Matter | Thermal Sum | PAR | Photoperiod | |
---|---|---|---|---|
Minimum | 79.0 | 129.35 | 60.45 | 10.849 |
Maximum | 13,624.0 | 2049.7 | 1275.3 | 14.498 |
Average | 4582.1 | 952.22 | 659.28 | 13.511 |
Median | 3543.0 | 908.20 | 633.92 | 13.796 |
α | β | γ | |
---|---|---|---|
Estimation | −11,600.1 | 18.2509 | 237.465 |
Std. Deviation | 1330.75 | 0.8808 | 24.7655 |
T Statistic | −8.717 | 20.72 | 9.589 |
p-Value | 2.41 × 10−13 (***) | 1.50 × 10−34 (***) | 4.25 × 10−15 (***) |
Model | R2 | MAE | MAPE (%) |
---|---|---|---|
Linear regression | 0.9389 | 782.74 | 141.34 |
Finite element (complexities 30) | 0.9858 | 369.08 | 13 |
Finite element (complexities 40) | 0.990 | 304.38 | 9.65 |
Non-linear regression | 0.9663 | 531.58 | 37.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villacampa, Y.; Navarro-González, F.J.; Hernández, G.; Laddaga, J.; Confalone, A. Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas. Sustainability 2020, 12, 9829. https://doi.org/10.3390/su12239829
Villacampa Y, Navarro-González FJ, Hernández G, Laddaga J, Confalone A. Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas. Sustainability. 2020; 12(23):9829. https://doi.org/10.3390/su12239829
Chicago/Turabian StyleVillacampa, Yolanda, Francisco José Navarro-González, Gabriela Hernández, Juan Laddaga, and Adriana Confalone. 2020. "Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas" Sustainability 12, no. 23: 9829. https://doi.org/10.3390/su12239829
APA StyleVillacampa, Y., Navarro-González, F. J., Hernández, G., Laddaga, J., & Confalone, A. (2020). Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas. Sustainability, 12(23), 9829. https://doi.org/10.3390/su12239829