The Migration Intentions of Young Egyptians
Abstract
:1. Introduction
2. The Literature on Migration Intentions
3. Migration in Egypt
4. Data and Methodology
4.1. Data
4.2. Methodology
4.2.1. Dependent Variable
4.2.2. Independent Variables
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKenzie, D.J. A Profile of the World’s Young Developing Country International Migrants. Popul. Dev. Rev. 2008, 34, 115–135. [Google Scholar] [CrossRef]
- Yaqub, S. Child Migrants with and without Parents: Census-Based Estimates of Scale and Characteristics in Argentina, Chile and South Africa; Innocenti Research Centre, UNICEF: Florence, Italy, 2009. [Google Scholar]
- Abel, G.J.; Brottrager, M.; Crespo Cuaresma, J.; Muttarak, R. Climate, conflict and forced migration. Glob. Environ. Chang. 2019, 54, 239–249. [Google Scholar] [CrossRef]
- Puma, M.J.; Chon, S.Y.; Kakinuma, K.; Kummu, M.; Muttarak, R.; Seager, R.; Wada, Y. A developing food crisis and potential refugee movements. Nat. Sustain. 2018, 1, 380–382. [Google Scholar] [CrossRef]
- Efendic, A. Emigration intentions in a post-conflict environment: Evidence from Bosnia and Herzegovina. Post-Communist Econ. 2016, 28, 335–352. [Google Scholar] [CrossRef]
- De Haas, H. The Myth of Invasion: The Inconvenient Realities of African Migration to Europe. Third World Q. 2008, 29, 1305–1322. [Google Scholar] [CrossRef]
- Abel, G.J. Estimates of Global Bilateral Migration Flows by Gender between 1960 and 2015. Int. Migr. Rev. 2018, 52, 809–852. [Google Scholar] [CrossRef] [Green Version]
- Abel, G.J.; Sander, N. Quantifying global international migration flows. Science 2014, 343, 1520–1522. [Google Scholar] [CrossRef]
- Abel, G.J.; Cohen, J.E. Bilateral international migration flow estimates for 200 countries. Sci. Data 2019, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Carling, J. Migration in the age of involuntary immobility: Theoretical reflections and Cape Verdean experiences. J. Ethn. Migr. Stud. 2002, 28, 5–42. [Google Scholar] [CrossRef]
- Carling, J.; Schewel, K. Revisiting aspiration and ability in international migration. J. Ethn. Migr. Stud. 2018, 44, 945–963. [Google Scholar] [CrossRef]
- De Haas, H. The Determinants of International Migration: Conceptualising Policy, Origin and Destination Effects; IMI Working Paper Series; International Migration Institute, Oxford University: Oxford, UK, 2011. [Google Scholar]
- Czaika, M.; Vothknecht, M. Migration and aspirations–Are migrants trapped on a hedonic treadmill? Iza J. Migr. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Manchin, M.; Orazbayev, S. Social networks and the intention to migrate. World Dev. 2018, 109, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Carling, J. Measuring Migration Aspirations and Related Concepts; MIGNEX Background Paper; PRIO: Oslo, Norway, 2019. [Google Scholar]
- Howaida, R. Transit Migration in Egypt; CARIM Research Report 2006/01; European University Institute: Florence, Italy, 2006. [Google Scholar]
- World Bank United Nations World Population Prospects. Available online: https://data.worldbank.org/country/egypt-arab-rep (accessed on 24 July 2020).
- World Bank Personal Remittances, Received (% of GDP)|Data. Available online: https://data.worldbank.org/indicator/BX.TRF.PWKR.DT.GD.ZS (accessed on 1 June 2020).
- Al Zalak, Z.; Goujon, A. Exploring the fertility trend in Egypt. DemRes 2017, 37, 995–1030. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, G. Youth Unemployment in Egypt. In Global Encyclopedia of Public Administration, Public Policy, and Governance; Farazmand, A., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–4. ISBN 978-3-319-31816-5. [Google Scholar]
- World Bank Unemployment, Youth Total (% of Total Labor Force Ages 15–24). Available online: https://data.worldbank.org/indicator/SL.UEM.1524.ZS (accessed on 24 July 2020).
- ILO. World Employment and Social Outlook 2015: The Changing Nature of Jobs; International Labour Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Ramos, R. Migration Aspirations among NEETs in Selected MENA Countries; IZA Discussion Papers; Institute of Labor Economics (IZA): Bonn, Germany, 2017. [Google Scholar]
- Youth & Migration; United Nations: New York, NY, USA, 2014.
- Bonifazi, C.; Paparusso, A. Remain or return home: The migration intentions of first-generation migrants in Italy: The migration intentions of first-generation migrants in Italy. Popul. Space Place 2019, 25, e2174. [Google Scholar] [CrossRef]
- World Bank Migration and Remittances Data. Available online: https://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data (accessed on 11 October 2020).
- Zohry, A. Egyptian Youth and the European Eldorado: Journeys of Hope and Despair; Danish Institute for International Studies (DIIS): Copenhagen, Denmark, 2006. [Google Scholar]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980; ISBN 978-0-13-936435-8. [Google Scholar]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. ISBN 978-3-642-69748-7. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Sheeran, P.; Orbell, S. Self-schemas and the theory of planned behaviour. Eur. J. Soc. Psychol. 2000, 30, 533–550. [Google Scholar] [CrossRef]
- Mak, K.-K.; Ho, S.-Y.; Day, J.R. Smoking of parents and best friend—Independent and combined effects on adolescent smoking and intention to initiate and quit smoking. Nicotine Tob. Res. 2012, 14, 1057–1064. [Google Scholar] [CrossRef]
- Fallin, A.; Roditis, M.; Glantz, S.A. Association of campus tobacco policies with secondhand smoke exposure, intention to smoke on campus, and attitudes about outdoor smoking restrictions. Am. J. Public Health 2015, 105, 1098–1100. [Google Scholar] [CrossRef]
- Landolt, N.K.; Phanuphak, N.; Pinyakorn, S.; Lakhonphon, S.; Khongpetch, C.; Chaithongwongwatthana, S.; Ananworanich, J. Sexual life, options for contraception and intention for conception in HIV-positive people on successful antiretroviral therapy in Thailand. Aids Care 2012, 24, 897–904. [Google Scholar] [CrossRef]
- Perritt, J.B.; Burke, A.; Jamshidli, R.; Wang, J.; Fox, M. Contraception counseling, pregnancy intention and contraception use in women with medical problems: An analysis of data from the Maryland Pregnancy Risk Assessment Monitoring System (PRAMS). Contraception 2013, 88, 263–268. [Google Scholar] [CrossRef]
- Testa, M.R.; Bordone, V.; Osiewalska, B.; Skirbekk, V. Are daughters’ childbearing intentions related to their mothers’ socio-economic status? Demogr. Res. 2016, 35, 581–616. [Google Scholar] [CrossRef] [Green Version]
- Testa, M.R.; Rampazzo, F. From intentions to births: Paths of realisation in a multi-dimensional life course. Vienna Yearb. Popul. Res. 2018, 16, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Conner, M.; Sherlock, K.; Orbell, S. Psychosocial determinants of ecstasy use in young people in the UK. Br. J. Health Psychol. 1998, 3, 295–317. [Google Scholar] [CrossRef]
- Ross, L.; Kohler, C.L.; Grimley, D.M.; Bellis, J. Intention to use condoms among three low-income, urban African American subgroups: Cocaine users, noncocaine drug users, and non-drug users. J. Urban Health 2003, 80, 147–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, E.J.; Miles, J.N.; Tucker, J.S. Gateway to curiosity: Medical marijuana ads and intention and use during middle school. Psychol. Addict. Behav. 2015, 29, 613. [Google Scholar] [CrossRef] [Green Version]
- Vinokur-Kaplan, D. To Have–or Not to Have–Another Child: Family Planning Attitudes, Intentions, and Behavior 1. J. Appl. Soc. Psychol. 1978, 8, 29–46. [Google Scholar] [CrossRef]
- Bühler, C. On the structural value of children and its implication on intended fertility in Bulgaria. Demogr. Res. 2008, 18, 569–610. [Google Scholar] [CrossRef] [Green Version]
- Loutfy, M.R.; Hart, T.A.; Mohammed, S.S.; Su, D.; Ralph, E.D.; Walmsley, S.L.; Soje, L.C.; Muchenje, M.; Rachlis, A.R.; Smaill, F.M.; et al. Fertility Desires and Intentions of HIV-Positive Women of Reproductive Age in Ontario, Canada: A Cross-Sectional Study. PLoS ONE 2009, 4, e7925. [Google Scholar] [CrossRef]
- Carling, J. The Role of Aspirations in Migration; International Migration Institute, University of Oxford: Oxford, UK, 2014. [Google Scholar]
- Migali, S.; Scipioni, M. A Global Analysis of Intentions to Migrate; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Van Dalen, H.P.; Henkens, K. Explaining emigration intentions and behaviour in the Netherlands, 2005–2010. Popul. Stud. 2013, 67, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Docquier, F.; Peri, G.; Ruyssen, I. The Cross-country Determinants of Potential and Actual Migration. Int. Migr. Rev. 2014, 48, 37–99. [Google Scholar] [CrossRef] [Green Version]
- Tjaden, J.; Auer, D.; Laczko, F. Linking Migration Intentions with Flows: Evidence and Potential Use. Int. Migr. 2019, 57, 36–57. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Jarreau, J. Determinants of emigration: Evidence from Egypt. In Proceedings of the Economic Research Forum (ERF)–Egypt, Cairo, Egypt, 9 September 2016. [Google Scholar]
- Xenogiani, T.; Maldonado, A.; Skeldon, R.; Arslan, C.; Nestorowicz, J. Connecting with Emigrants. A Global Profile of Diaspora 2015; Editions OCDE: Paris, France, 2015; ISBN 978-92-64-23983-8. [Google Scholar]
- Dao, T.H.; Docquier, F.; Parsons, C.; Peri, G. Migration and development: Dissecting the anatomy of the mobility transition. J. Dev. Econ. 2018, 132, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Dustmann, C.; Okatenko, A. Out-migration, wealth constraints, and the quality of local amenities. J. Dev. Econ. 2014, 110, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Clemens, M.A. Does Development Reduce Migration. In International Handbook on Migration and Economic Development; Edward Elgar Publishing: Cheltenham, UK, 2014; p. 152. [Google Scholar]
- Ivlevs, A. Happiness and the emigration decision. IZA World Labor 2014. [Google Scholar] [CrossRef]
- Esipova, N.; Ray, J.; Srinivasan, R. The world’s potential migrants: Who they are, where they want to go, and why it matters. In Gallup White Paper; International Migration Institute, University of Oxford: Oxford, UK, 2011. [Google Scholar]
- Gubert, F.; Senne, J.-N. Is the European Union Attractive for Potential Migrants; Paris Dauphine University: Paris, France, 2016. [Google Scholar]
- Esipova, N. Gallup World Poll: The Many Faces of Global Migration; International Organization for Migration: Geneva, Switzerland, 2011; ISBN 1607-338X. [Google Scholar]
- Ruyssen, I.; Salomone, S. Female migration: A way out of discrimination? J. Dev. Econ. 2018, 130, 224–241. [Google Scholar] [CrossRef] [Green Version]
- Dibeh, G.; Fakih, A.; Marrouch, W. Decision to emigrate amongst the youth in Lebanon. Int. Migr. 2018, 56, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Grabska, K. Living on the Margins: The Analysis of the Livelihood Strategies of Sudanese Refugees with Closed Files in Egypt; American University in Cairo: Cairo, Egypt, 2005. [Google Scholar]
- CAPMAS. Egypt Statistical Yearbook; Central Agency for Public Mobilization and Statistics (CAPMAS): Cairo, Egypt, 2018.
- Nassar, H. Migration, Transfer and Development in Egypt; CARIM Research Report 2005/01; European University Institute: Florence, Italy, 2005. [Google Scholar]
- Farid, S.; El-Batrawy, R. Determinants of international migration in Egypt: Results of the 2013 Egypt-HIMS survey. In Proceedings of the Socio-Economic Characteristics of Migrants and People with Foreign Background, Geneva, Switzerland, 18–20 May 2016; Economic Commission for Europe: Geneva, Switzerland, 2016. [Google Scholar]
- Zohry, A. Attitudes of Egyptian Youth towards Migration to Europe; Ministry of Manpower and Emigration and International Organization for Migration: Cairo, Egypt, 2006.
- Pitea, R.; Hussain, R. Egypt after January 25: Survey of Youth Migration Intentions; International Organization for Migration: Geneva, Switzerland, 2011. [Google Scholar]
- Elbadawy, A. Migration Aspirations among Young People in Egypt: Who Desires to Migrate and Why; Economic Research Forum (ERF): Giza, Egypt, 2011. [Google Scholar]
- Van Mol, C. Migration aspirations of European youth in times of crisis. J. Youth Stud. 2016, 19, 1303–1320. [Google Scholar] [CrossRef] [Green Version]
- Asad, A.L.; Hwang, J. Indigenous Places and the Making of Undocumented Status in Mexico-US Migration. Int. Migr. Rev. 2019, 53, 1032–1077. [Google Scholar] [CrossRef]
- Takenaka, A.; Pren, K.A. Determinants of Emigration: Comparing Migrants’ Selectivity from Peru and Mexico. Ann. Am. Acad. Political Soc. Sci. 2010, 630, 178–193. [Google Scholar] [CrossRef]
- Bohra, P.; Massey, D.S. Processes of Internal and International Migration from Chitwan, Nepal. Int. Migr. Rev. 2009, 43, 621–651. [Google Scholar] [CrossRef] [Green Version]
- Mora, J.; Taylor, J.E. Determinants of migration, destination, and sector choice: Disentangling individual, household, and community effects. In International Migration, Remittances & the Brain Drain; The World Bank: Washington, DC, USA; Palgrave Macmillan: Hampshire, UK, 2006; pp. 21–52. [Google Scholar]
- Peña Piña, J.; Salvatierra Izaba, E.B.; Martínez Velasco, G.; Zúñiga López, R.E. Determinantes socioeconómicos de la migración laboral: El caso de los indígenas mames de la Sierra Madre de Chiapas, México. Papeles Población 2000, 6, 153–179. [Google Scholar]
- Quijada, J.A.; Sierra, J.D. Understanding Undocumented Migration from Honduras. Int. Migr. 2019, 57, 3–20. [Google Scholar] [CrossRef]
- Gibson, J.; McKenzie, D. The microeconomic determinants of emigration and return migration of the best and brightest: Evidence from the Pacific. J. Dev. Econ. 2011, 95, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Rérat, P. The selective migration of young graduates: Which of them return to their rural home region and which do not? J. Rural Stud. 2014, 35, 123–132. [Google Scholar] [CrossRef]
- Massey, D.S.; Alarcón, R.; Durand, J.; González, H. Return to Aztlan; University of California Press: Berkeley, California, 1987; ISBN 978-0-520-06970-1. [Google Scholar]
- Sandoval-Cervantes, I. Navigating the city: Internal migration of Oaxacan indigenous women. J. Ethn. Migr. Stud. 2017, 43, 849–865. [Google Scholar] [CrossRef]
- Cohen, J.H.; Sirkeci, I. Cultures of Migration: The Global Nature of Contemporary Mobility; University of Texas Press: Austin, TX, USA, 2011. [Google Scholar]
- DaVanzo, J. Microeconomic Approaches to Studying Migration Decisions; RAND Note N-1201-NICHD; National Institutes of Health (U.S.): Bethesda, MD, USA, 1980.
- Simpson, N.B. Demographic and Economic Determinants of Migration; Institute of Labor Economics (IZA): Bonn, Germany, 2017. [Google Scholar]
- Martin, P. The Anatomy of a Migration Hump. In Development Strategy, Employment, and Migration: Insights from Models; Taylor, J., Ed.; OECD, Development Centre: Paris, France, 1996. [Google Scholar]
- Sanja, F.; Čeh, Č.A.; Antea, B. Determinants of Migration Following the EU Enlargement: A Panel Data Analysis. South East Eur. J. Econ. Bus. 2019, 14, 13–22. [Google Scholar]
- Kennedy, S.; Kidd, M.P.; McDonald, J.T.; Biddle, N. The healthy immigrant effect: Patterns and evidence from four countries. J. Int. Migr. Integr. 2015, 16, 317–332. [Google Scholar] [CrossRef]
- Rodriguez, E.R.; Tiongson, E.R. Temporary migration overseas and household labor supply: Evidence from urban Philippines. Int. Migr. Rev. 2001, 35, 709–725. [Google Scholar] [CrossRef]
- Stark, O.; Bloom, D.E. The new economics of labor migration. Am. Econ. Rev. 1985, 75, 173–178. [Google Scholar]
- Taylor, E.J. The New Economics of Labour Migration and the Role of Remittances in the Migration Process. Int. Migr. 1999, 37, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhong, H. A demographic factor as a determinant of migration: What is the effect of sibship size on migration decisions? J. Dem. Econ. 2019, 85, 321–345. [Google Scholar] [CrossRef] [Green Version]
- Massey, D.S.; Arango, J.; Hugo, G.; Kouaouci, A.; Pellegrino, A.; Taylor, J.E. Theories of International Migration: A Review and Appraisal. Popul. Dev. Rev. 1993, 19, 431–466. [Google Scholar] [CrossRef]
- Funkhouser, E. Migration from Nicaragua: Some recent evidence. World Dev. 1992, 20, 1209–1218. [Google Scholar] [CrossRef]
- Schmoll, C. Muslim women and the negotiation of autonomous migration: The case of female migrants from the Maghreb region in Italy. In Proceedings of the 8th Mediterranean Social and Political Research Meeting, Florence and Montecatini Terme, Italy, 24–28 March 2004; pp. 21–25. [Google Scholar]
- Agadjanian, V.; Nedoluzhko, L.; Kumskov, G. Eager to Leave? Intentions to Migrate Abroad among Young People in Kyrgyzstan. Int. Migr. Rev. 2008, 42, 620–651. [Google Scholar] [CrossRef]
- Adserà, A.; Boix, C.; Guzi, M.; Pytliková, M. Political factors as drivers of international migration. In Proceedings of the European Population Conference, Mainz, Germany, 31 August–3 September 2016. [Google Scholar]
- Fadel, M. Public corruption and the Egyptian revolution of January 25: Can emerging international anti-corruption norms assist Egypt recover misappropriated public funds? Harv. Int. Law J. 2011, 52, 292–300. [Google Scholar]
- Fayed, A.A. The current status of corruption in Egypt. CAA 2017, 10, 510–521. [Google Scholar] [CrossRef]
- Warner, K.; Hamza, M.; Oliver-Smith, A.; Renaud, F.; Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 2010, 55, 689–715. [Google Scholar] [CrossRef]
- Reuveny, R.; Moore, W.H. Does environmental degradation influence migration? Emigration to developed countries in the late 1980s and 1990s. Soc. Sci. Q. 2009, 90, 461–479. [Google Scholar] [CrossRef]
- Becker, J.-M.; Ringle, C.M.; Sarstedt, M.; Völckner, F. How collinearity affects mixture regression results. Mark. Lett. 2015, 26, 643–659. [Google Scholar] [CrossRef]
- Hair, J., Jr.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis a Global Perspective; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2010; p. 7458. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. [Google Scholar]
- Etling, A.; Backeberg, L.; Tholen, J. The political dimension of young people’s migration intentions: Evidence from the Arab Mediterranean region. J. Ethn. Migr. Stud. 2018, 46, 1–17. [Google Scholar] [CrossRef]
- Yang, X. Determinants of Migration Intentions in Hubei Province, China: Individual versus Family Migration. Environ. Plan. A 2000, 32, 769–787. [Google Scholar] [CrossRef]
- Papapanagos, H.; Sanfey, P. Intention to emigrate in transition countries: The case of Albania. J. Popul. Econ. 2001, 14, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Reisi, M.; Hashemianfar, S.A. An Analysis of the Effective Sociocultural Factors on Educated Women’s Intention to Migration (Isfahan as Case Study). Int. J. Acad. Res. In Bus. Soc. Sci. 2012, 2, 16. [Google Scholar]
- Assaad, R. Making sense of Arab labor markets: The enduring legacy of dualism. Iza J. Labor Dev. 2014, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Naufal, G.; Genc, I. Labor Migration in the GCC Countries: Past, Present and Future. Singap. Middle East Pap. 2014, 9, 3. [Google Scholar] [CrossRef]
- Leopold, A.; Ratcheva, V.; Zahidi, S. The Future of Jobs and Skills in the Middle East and North Africa; Preparing the Region for the Fourth Industrial Revolution; World Economic Forum: Geneva, Switzerland, 2017; p. 19. [Google Scholar]
- Rechel, B.; Mladovsky, P.; Ingleby, D.; Mackenbach, J.P.; McKee, M. Migration and health in an increasingly diverse Europe. Lancet 2013, 381, 1235–1245. [Google Scholar] [CrossRef]
- Arenas, E.; Goldman, N.; Pebley, A.R.; Teruel, G. Return Migration to Mexico: Does Health Matter? Demography 2015, 52, 1853–1868. [Google Scholar] [CrossRef] [Green Version]
- Carr, E.R. Placing the Environment in Migration: Environment, Economy, and Power in Ghana’s Central Region. Environ. Plan A. 2005, 37, 925–946. [Google Scholar] [CrossRef]
- Perch-Nielsen, S.L.; Bättig, M.B.; Imboden, D. Exploring the link between climate change and migration. Clim. Chang. 2008, 91, 375–393. [Google Scholar] [CrossRef]
- Butter, M.E. Are Women More Vulnerable to Environmental Pollution? J. Hum. Ecol. 2006, 20, 221–226. [Google Scholar] [CrossRef]
- El-Laithy, H. The ADCR 2011: Poverty in Egypt. 2009. Available online: https://www.undp.org/content/dam/undp/library/corporate/HDR/UNDP-ADCR_En-2012.pdf (accessed on 24 July 2020).
- Lall, S.V.; Selod, H.; Shalizi, Z. Rural-Urban Migration in Developing Countries: A Survey of Theoretical Predictions and Empirical Findings; The World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Levi, M.; Stoker, L. Political Trust and Trustworthiness. Annu. Rev. Political Sci. 2000, 3, 475–507. [Google Scholar] [CrossRef]
- Hirschman, A.O. Exit, Voice, and Loyalty: Responses to Decline in Firms, Organizations, and States; Harvard University Press: Cambridge, MA, USA, 1970; Volume 25. [Google Scholar]
- Hirschman, A.O. Exit, Voice, and the State. World Pol. 1978, 31, 90–107. [Google Scholar] [CrossRef]
Variables | Chi-Square | |||
---|---|---|---|---|
Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | |
Individual characteristics | ||||
Sex | ||||
Male | 25.70% | 3709 | 685.491 (1) | 0.000 |
Female | 5.60% | 4779 | ||
Age group | ||||
18–21 | 17% | 2948 | 22.72 (2) | 0.000 |
22–25 | 14% | 3111 | ||
26–29 | 12% | 2429 | ||
Marital status | ||||
Never married | 20% | 4893 | 289.53 (3) | 0.000 |
Currently married | 7% | 3517 | ||
Divorced/separated/widowed | 5% | 78 | ||
Educational status | ||||
Never been in school | 4% | 965 | 146.955 (3) | 0.000 |
Currently in school | 20% | 1239 | ||
Some schooling | 8.60% | 534 | ||
Primary | 11.80% | 880 | ||
Preparatory | 11.30% | 480 | ||
Secondary | 15.50% | 3066 | ||
Post-secondary | 20% | 1324 | ||
Employment status | ||||
Employed | 23% | 3725 | 386.94 (1) | 0.000 |
Unemployed | 8% | 4763 | ||
Health status | ||||
Good | 14% | 7387 | 2.896 (1) | 0.089 |
Not good | 16% | 1101 | ||
Household characteristics | ||||
Sex of household head | ||||
Male | 14% | 7511 | 5.56 (1) | 0.018 |
Female | 17% | 977 | ||
Age of household head | ||||
Less than 30 | 10% | 1546 | 205.09 (4) | 0.000 |
30–39 | 5% | 1555 | ||
40–49 | 18% | 1365 | ||
50–59 | 19% | 2602 | ||
Over 60 | 18% | 1420 | ||
Wealth index | ||||
Lowest (poor) | 12% | 3164 | 29.85 (2) | 0.000 |
Middle | 15% | 1801 | ||
Highest (rich) | 17% | 3523 | ||
Community characteristics and civic participation | ||||
Voluntary participation/last year | ||||
Participated | 36% | 527 | 210.09 (1) | 0.000 |
Did not participate | 13% | 7961 | ||
Political participation | ||||
Participated in election | 24% | 1282 | 102.72 (1) | 0.000 |
Never participated | 13% | 7204 | ||
Environmental pollution | ||||
Polluted | 11% | 6209 | 186.78 (1) | 0.000 |
Not polluted | 23% | 2279 | ||
Region | ||||
Urban governorates | 14% | 2009 | 33.69 (5) | 0.000 |
Urban lower | 17% | 929 | ||
Rural lower | 15% | 2509 | ||
Urban upper | 18% | 597 | ||
Rural upper | 13% | 1816 | ||
Frontier governorates | 8% | 629 |
Variables | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
Chi-Square | Chi-Square | |||||||
Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | |
Individual characteristics | ||||||||
Age group | ||||||||
18–21 | 27% | 1396 | 4.73 (2) | 0.094 | 7% | 1552 | 8.889 (2) | 0.012 |
22–25 | 26% | 1344 | 5.3% | 1767 | ||||
26–29 | 23.3% | 969 | 4.5% | 1460 | ||||
Marital status | ||||||||
Never married | 28% | 2918 | 34.94 (1) | 0.000 | 8% | 2053 | 38.53 (1) | 0.000 |
Currently married | 17.6% | 791 | 3.8% | 2726 | ||||
Educational status | ||||||||
Never been in school | 18.4% | 185 | 23.62 (6) | 0.001 | 0.9% | 780 | 177.18 (6) | 0.000 |
Currently in school | 25% | 683 | 12.8% | 556 | ||||
Some schooling | 17.5% | 251 | 0.7% | 283 | ||||
Primary | 23.6% | 415 | 1.3% | 465 | ||||
Preparatory | 23.2% | 203 | 2.5% | 277 | ||||
Secondary | 28% | 1385 | 5.2% | 1681 | ||||
Post-secondary | 29.3% | 587 | 11.9% | 737 | ||||
Employment status | ||||||||
Employed | 26.2% | 2838 | 1.55 (1) | 0.214 | 12.2% | 887 | 88.7 (1) | 0.000 |
Unemployed | 24.1% | 871 | 4% | 3892 | ||||
Health status | ||||||||
Good | 25.6% | 3177 | 0.199 (1) | 0.655 | 5.5% | 4210 | 0.631 (1) | 0.427 |
Not good | 26.5% | 532 | 6.3% | 569 | ||||
Household characteristics | ||||||||
Sex of household head | ||||||||
Male | 25.4% | 3233 | 1.409 (1) | 0.235 | 5.5% | 4278 | 0.642 (1) | 0.423 |
Female | 28% | 476 | 6.4% | 501 | ||||
Age of household head | ||||||||
Less than 30 | 17% | 735 | 36.59 (4) | 0.000 | 3.7% | 811 | 26.47 (4) | 0.000 |
30–39 | 24% | 79 | 3.9% | 1476 | ||||
40–49 | 29% | 687 | 6.6% | 678 | ||||
50–59 | 27.7% | 1444 | 7.6% | 1158 | ||||
Over 60 | 27.4% | 764 | 7.2% | 65 | ||||
Family size | ||||||||
1–3 | 23.5% | 824 | 8.8 (2) | 0.012 | 5.7% | 1097 | 0.939 (2) | 0.625 |
4–5 | 24.5% | 1579 | 5.9% | 2201 | ||||
6+ | 28.6% | 1306 | 5.1% | 1481 | ||||
Wealth index | ||||||||
Lowest (poor) | 23.6% | 1303 | 5.52 (2) | 0.063 | 3.5% | 1861 | 47.7 (2) | 0.000 |
Middle | 28% | 816 | 4.2% | 985 | ||||
Highest (rich) | 26.2% | 1590 | 8.4% | 1933 | ||||
Community characteristics and civic participation | ||||||||
Voluntary participation/last year | ||||||||
Participated | 24.1% | 3353 | 48.2 (1) | 0.00 | 25.1% | 171 | 127.9 (1) | 0.000 |
Not participated | 41% | 356 | 5% | 4608 | ||||
Political participation | ||||||||
Participated in election | 32% | 756 | 19.6 (1) | 0.000 | 11.4% | 526 | 37.55 (1) | 0.000 |
Never participate | 24.1% | 2951 | 4.9% | 4253 | ||||
Environmental pollution | ||||||||
Polluted | 31% | 1341 | 29.2 (1) | 0.000 | 11.7% | 938 | 82.6 (1) | 0.000 |
Not polluted | 23% | 2368 | 41% | 3841 | ||||
Region | ||||||||
Urban governorates | 23% | 965 | 31.5 (5) | 0.000 | 5.8% | 1043 | 31.55 (5) | 0.000 |
Urban lower | 28.8% | 400 | 8.1% | 529 | ||||
Rural lower | 28.4% | 1100 | 4.9% | 1409 | ||||
Urban upper | 27.7% | 249 | 10.3% | 348 | ||||
Rural upper | 27.9% | 707 | 4.6% | 1109 | ||||
Frontier governorates | 14.6% | 288 | 2.3% | 341 |
Variables | Chi-Square | |||
---|---|---|---|---|
Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | |
Individual characteristics | ||||
Sex | ||||
Male | 13.5% | 2576 | 265.513 (1) | 0.000 |
Female | 2.4% | 3309 | ||
Age group | ||||
18–21 | 9.1% | 2062 | 18.65 (2) | 0.000 |
22–25 | 7.1% | 2156 | ||
26–29 | 5.4% | 1667 | ||
Marital status | ||||
Never married | 12% | 1924 | 78.23 (1) | 0.000 |
Currently married | 5.2% | 3961 | ||
Educational status | ||||
Never been in school | 2.2% | 953 | 73.7 (6) | 0.000 |
Currently in school | 8% | 127 | ||
Some schooling | 7% | 337 | ||
Primary | 7.3% | 440 | ||
Preparatory | 6% | 360 | ||
Secondary | 7.2% | 2401 | ||
Post-secondary | 11.7% | 1265 | ||
Employment status | ||||
Employed | 11.2% | 2555 | 101.83 (1) | 0.000 |
Unemployed | 4.3% | 3330 | ||
Health status | ||||
Good | 7.2% | 5419 | 1.254 (1) | 0.263 |
Not good | 8.6% | 466 | ||
Household characteristics | ||||
Sex of household head | ||||
Male | 7.2% | 5245 | 0.143 (1) | 0.706 |
Female | 7.7% | 640 | ||
Age of household head | ||||
Less than 30 | 5% | 1122 | 65.35 (4) | 0.000 |
30–39 | 3% | 1124 | ||
40–49 | 8.4% | 952 | ||
50–59 | 10% | 1766 | ||
Over 60 | 8.9% | 921 | ||
Family size | ||||
1–3 | 6.2% | 1247 | 8.13 (2) | 0.017 |
4–5 | 8.4% | 2608 | ||
6+ | 6.6% | 2030 | ||
Wealth index | ||||
Lowest (poor) | 5.7% | 2191 | 23.14 (2) | 0.000 |
Middle | 6.2% | 1146 | ||
Highest (rich) | 9.1% | 2548 | ||
Community characteristics and civic participation | ||||
Voluntary participation/last year | ||||
Participated | 13.5% | 170 | 10.085 (1) | 0.001 |
Not participated | 7.1% | 5715 | ||
Political participation | ||||
Participated in election | 8.5% | 4235 | 30.26 (1) | 0.000 |
Never participate | 4.3% | 1650 | ||
Environmental pollution | ||||
Polluted | 9% | 3923 | 39.41 (1) | 0.000 |
Not polluted | 4.3% | 1962 | ||
Region | ||||
Urban governorates | 9.8% | 1130 | 38.42 (5) | 0.000 |
Urban lower | 6.3% | 682 | ||
Rural lower | 8.1% | 1927 | ||
Urban upper | 6.3% | 348 | ||
Rural upper | 6.8% | 1303 | ||
Frontier governorates | 1.6% | 495 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Chi-Square | Chi-Square | |||||||
Variables | Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | Percentage | Total | χ2 (d.f.) | p-Value < 0.05 |
Individual characteristics | ||||||||
Age group | ||||||||
18–21 | 16% | 987 | 10.79 (2) | 0.04 | 3% | 1075 | 0.958 (2) | 0.62 |
22–25 | 13.40% | 927 | 2.30% | 1229 | ||||
26–29 | 10.30% | 662 | 2.20% | 1005 | ||||
Marital status | ||||||||
Never married | 16% | 1261 | 10.52 (1) | 0.001 | 3.60% | 663 | 5.08 (1) | 0.024 |
Currently married | 11.40% | 1315 | 2% | 2646 | ||||
Educational status | ||||||||
Never been in school | 7.70% | 220 | 15.26 (6) | 0.018 | 0.50% | 733 | 81.48 (6) | 0.000 |
Currently in school | 6.20% | 81 | 11% | 46 | ||||
Some schooling | 14.30% | 161 | 0.60% | 176 | ||||
Primary | 14.30% | 203 | 1.30% | 237 | ||||
Preparatory | 13.80% | 138 | 1.40% | 222 | ||||
Secondary | 13.30% | 1131 | 1.70% | 1270 | ||||
Post-secondary | 16.50% | 641 | 6.70% | 624 | ||||
Employment status | ||||||||
Employed | 12.40% | 2108 | 13.48 (1) | 0.000 | 5.60% | 447 | 22.09 (1) | 0.000 |
Unemployed | 19% | 468 | 2% | 2862 | ||||
Health status | ||||||||
Good | 13% | 2398 | 6.104 (1) | 0.013 | 2.50% | 3021 | 0.621 (1) | 0.431 |
Not good | 20% | 178 | 1.70% | 288 | ||||
Household characteristics | ||||||||
Sex of household head | ||||||||
Male | 13.60% | 2256 | 0.056 (1) | 0.813 | 2.40% | 2989 | 0.08 (1) | 0.778 |
Female | 13% | 320 | 2.20% | 320 | ||||
Age of household head | ||||||||
Less than 30 | 9% | 520 | 18.86 (4) | 0.001 | 1.50% | 602 | 12.25 (4) | 0.016 |
30–39 | 25% | 61 | 1.80% | 1063 | ||||
40–49 | 14.70% | 484 | 2% | 468 | ||||
50–59 | 15% | 1001 | 3.50% | 765 | ||||
Over 60 | 13% | 510 | 4% | 411 | ||||
Family size | ||||||||
1–3 | 11.20% | 545 | 10.7 (2) | 0.005 | 2.30% | 702 | 3.644 (2) | 0.162 |
4–5 | 16% | 1072 | 3% | 1536 | ||||
6+ | 12% | 959 | 1.80% | 1071 | ||||
Wealth index | ||||||||
Lowest (poor) | 12.20% | 892 | 4.11 (2) | 0.11 | 1.20% | 1299 | 23.72 (2) | 0.000 |
Middle | 12.30% | 497 | 1.50% | 649 | ||||
Highest (rich) | 15% | 1187 | 4% | 1361 | ||||
Community characteristics and civic participation | ||||||||
Voluntary participation/last year | ||||||||
Participated | 13.40% | 2463 | 1.976 (1) | 0.3 | 7% | 57 | 5.2 (1) | 0.023 |
Not participated | 17% | 113 | 2.30% | 3252 | ||||
Political participation | ||||||||
Participated in election | 14.50% | 2013 | 6.48 (1) | 0.011 | 3% | 2222 | 10.24 (1) | 0.001 |
Never participate | 10.30% | 563 | 1.20% | 1087 | ||||
Environmental pollution | ||||||||
Polluted | 16% | 1713 | 28.7 (1) | 0.000 | 1% | 1099 | 14 (1) | 0.000 |
Not polluted | 8.50% | 863 | 3% | 2210 | ||||
Region | ||||||||
Urban governorates | 16% | 549 | 29.2 (5) | 0.000 | 4.30% | 581 | 19.68 (5) | 0.001 |
Urban lower | 13% | 299 | 1.30% | 383 | ||||
Rural lower | 16% | 855 | 2% | 1072 | ||||
Urban upper | 12.70% | 157 | 1% | 191 | ||||
Rural upper | 13% | 480 | 3.20% | 823 | ||||
Frontier governorates | 3% | 236 | 0.40% | 259 |
Variable Names | All Respondents | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | |
Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | |
Individual characteristics | |||||||||
Sex (ref: “Female”) | |||||||||
Male | 3.513 *** (0.367) | 3.655 *** (0.380) | 3.218 *** (0.345) | ||||||
Age (ref:”18–21”) | |||||||||
22–25 | 0.823 ** (0.079) | 0.837 * (0.080) | 0.780 ** (0.077) | 0.853 ** (0.093) | 0.869 (0.095) | 0.821 * (0.091) | 0.759 * (0.153) | 0.776 (0.159) | 0.697 * (0.15) |
26–29 | 0.824 * (0.0966) | 0.840 (0.100) | 0.750 ** (0.093) | 0.845 ** (0.115) | 0.860 (0.120) | 0.773 * (0.112) | 0.874 (0.202) | 0.882 (0.214) | 0.823 (0.205) |
Education (ref: “Never been”) | |||||||||
Currently in school | 2.599 *** (0.555) | 2.580 *** (0.574) | 2.047 ** (0.459) | 1.191 * (0.309) | 1.196 (0.320) | 0.976 (0.263) | 12.063 *** (5.65) | 11.667 *** (5.843) | 9.339 *** (4.891) |
Some schooling | 0.897 (0.227) | 0.881 (0.225) | 0.827 ** (0.208) | 0.748 (0.213) | 0.719 (0.208) | 0.669 * (0.191) | 0.556 (0.455) | 0.571 (0.467) | 0.624 (0.511) |
Primary | 1.262 (0.273) | 1.235 (0.270) | 1.177 ** (0.260) | 1.056 (0.265) | 1.017 (0.259) | 0.964 (0.247) | 0.814 (0.487) | 0.823 (0.498) | 0.918 (0.558) |
Preparatory | 1.394 (0.342) | 1.33 ** (0.344) | 1.280 ** (0.319) | 1.083 (0.307) | 1.078 (0.310) | 0.985 (0.285) | 2.397 (1.401) | 2.492 (1.498) | 2.376 (1.438) |
Secondary | 1.952 *** (0.369) | 1.916 *** (0.3711) | 1.632 ** (0.316) | 1.467 * (0.330) | 1.427 (0.329) | 1.227 (0.284) | 4.048 *** (1.711) | 4.104 *** (1.804) | 3.680 ** (1.670) |
Post-secondary | 2.325 *** (0.466) | 2.271 *** (0.482) | 1.871 *** (0.399) | 1.498 * (0.360) | 1.480 (0.373) | 1.252 (0.315) | 7.082 *** (3.035) | 6.793 *** (3.135) | 5.542 *** (2.664) |
Marital status (ref: “Currently married”) | |||||||||
Not married | 1.664 *** (0.166) | 1.444 ** (0.202) | 1.508 *** (0.219) | 1.777 *** (0.227) | 1.548 ** (0.289) | 1.639 *** (0.316) | 1.078 (0.187) | 0.978 (0.227) | 0.948 (0.238) |
Employment status (ref: “Unemployed”) | |||||||||
Employed | 2.015 *** (0.243) | 2.028 *** (0.246) | 1.928 *** (0.236) | 1.285 * (0.201) | 1.295 ** (0.203) | 1.252 * (0.197) | 3.125 *** (0.526) | 3.129 (0.531) | 2.958 *** (0.538) |
Health status (ref: “Not good”) | |||||||||
Good | 0.982 (0.103) | 0.968 (0.102) | 0.951 (0.100) | 1.073 (0.127) | 1.052 (0.126) | 1.044 (0.126) | 0.680 * (0.139) | 0.666 * (0.136) | 0.658 ** (0.132) |
Household characteristics | |||||||||
Sex (ref: “Female”) | |||||||||
Male | 1.027 (0.117) | 1.055 (0.123) | 1.002 (0.130) | 1.034 (0.137) | 1.124 (0.260) | 1.091 (0.251) | |||
Age (ref: “<30”) | |||||||||
30–39 | 1.119 (0.193) | 1.155 (0.200) | 1.019 (0.362) | 1.032 (0.365) | 0.954 (0.235) | 0.933 (0.239) | |||
40–49 | 1.271 (0.223) | 1.284 (0.230) | 1.197 (0.266) | 1.185 ** (0.266) | 1.310 (0.401) | 1.300 (0.415) | |||
50–59 | 1.201 (0.195) | 1.203 (0.200) | 1.152 (0.232) | 1.131 (0.232) | 1.102 (0.331) | 1.142 (0.3611) | |||
60+ | 1.270 (0.21) | 1.282 (0.217) | 1.230 (0.252) | 1.219 (0.254) | 1.170 (0.356) | 1.235 (0.392) | |||
Family size (ref: “1–3”) | |||||||||
4–5 | 0.926 (0.091) | 0.909 (0.091) | 0.932 (0.107) | 0.918 (0.107) | 0.955 (0.171) | 0.953 (0.178) | |||
6+ | 1.089 (0.117) | 1.041 (0.115) | 1.144 (0.143) | 1.111 (0.143) | 0.972 (0.211) | 0.935 (0.210) | |||
Wealth index (ref: “Lowest poor”) | |||||||||
Middle | 1.063 (0.108) | 1.075 (0.113) | 1.143 (0.002131) | 1.150 (0.136) | 0.716 (0.163) | 0.738 * (0.171) | |||
Highest/the rich | 1.063 (0.100) | 1.188 * (0.126) | 1.032 (0.111) | 1.137 (0.138) | 1.053 (0.199) | 1.234 (1.234) | |||
Civic participation and community characteristics | |||||||||
Voluntary activities (ref: “Not participate”) | |||||||||
Participate | 2.155 *** (0.264) | 1.909 *** (0.259) | 2.864 *** (0.638) | ||||||
Political participation (ref: “Not participate”) | |||||||||
Participated | 1.581 *** (0.153) | 1.493 *** (0. 162) | 1.807 *** (0.327) | ||||||
Region (ref: “Frontier gov”) | |||||||||
Urban gov. | 1.642 *** (0.297) | 1.760 *** (0.355) | 1.441 (0.573) | ||||||
Urban lower gov. | 2.288 *** (0.446) | 2.517 *** (0.559) | 1.888 * (0.757) | ||||||
Rural lower gov. | 2.244 *** (0.392) | 2.407 *** (0.468) | 1.829 * (0.712) | ||||||
Urban upper gov. | 2.521 *** (0.527) | 2.287 *** (0.551) | 3.054 *** (1.272) | ||||||
Rural upper gov. | 2.298 *** (0.423) | 2.347 *** (0.482) | 2.872 *** (1.154) | ||||||
Pollution (ref: “No”) | |||||||||
Exist | 1.629 *** (0.130) | 1.460 *** (0.132) | 2.604 *** (0.382) | ||||||
Number of obs. | 8488 | 3709 | 4779 | ||||||
Wald chi2 | 692.14 (12) | 834.97 (21) | 801.97 (29) | 54.62 (11) | 67.24 (20) | 144.08 (28) | 174.15 (11) | 201.54 (20) | 279.25 (28) |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pseudo R2 | 0.1237 | 0.1337 | 0.1494 | 0.0163 | 0.0182 | 0.0403 | 0.1112 | 0.1157 | 0.1664 |
Omnibus Tests Chi-square (df) sig. | 1,866,065 (12) 0.00 | 188,706,706 (21) 0.00 | 2,253,900 (29) 0.00 | 16,187 (11) 0.00 | 186,695 (20) 0.00 | 401,152(28) 0.00 | 408,675 (11) 0.00 | 419,943 (20) 0.00 | 11,380 (28) 0.00 |
Cox & Snell R Square | 0.107 | 0.108 | 0.127 | 0.019 | 0.022 | 0.046 | 0.049 | 0.051 | 0.073 |
Nagelkerke R Square | 0.178 | 0.180 | 0.213 | 0.027 | 0.032 | 0.067 | 0.135 | 0.139 | 0.199 |
AIC | 0.720 | 0.722 | 0.700 | 1.132 | 1.136 | 1.111 | 0.390 | 0.395 | 0.377 |
BIC | −70,543.738 | −70,435.890 | −70,511.610 | −26,177.565 | −26,083.935 | −26,084.308 | −38,514.505 | −38,407.538 | −38,411.839 |
Count R2 | 0.856 | 0.856 | 0.857 | 0.743 | 0.743 | 0.745 | 0.944 | 0.94 | 0.944 |
Area under ROC | 0.7573 | 0.7597 | 0.7866 | 0.5858 | 0.5961 | 0.6490 | 0.7650 | 0.7672 | 0.8019 |
Variable Names | All Respondents | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | |
Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds Ratio (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | Odds R. (Rob. S.E) | |
Individual characteristics | |||||||||
Sex (ref: “Female”) | |||||||||
Male | 5.933 *** (1.173) | 6.353 *** (1.391) | 6.444 *** (1.426) | ||||||
Age (ref: “18–21”) | |||||||||
22–25 | 0.843 (0.115) | 0.855 (0.119) | 0.856 (0.12) | 0.851 (0.130) | 0.903 (0.141) | 0.903 (0.141) | 0.929 (0.279) | 0.836 (0.255) | 0.810 (0.242) |
26–29 | 0.670 ** (0.114) | 0.694 ** (0.123) | 0.697 ** (0.122) | 0.625 ** (0.123) | 0.702 (0.146) | 0.668 * (0.141) | 0.938 (0.309) | 0.877 (0.327) | 0.895 (0.337) |
Education (ref: “Never been”) | |||||||||
Currently in school | 1.372 (0.624) | 1.126 (0.523) | 0.844 (0.40) | 0.474 (0.268) | 0.383 (0.218) | 0.289 ** (0.167) | 26.003 *** (19.21) | 23.141 *** (18.062) | 23.075 *** (18.612) |
Some schooling | 2.600 *** (0.871) | 2.563 *** (0.856) | 2.372 ** (0.791) | 2.493 ** (0.929) | 2.439 ** (0.904) | 2.280 ** (0.844) | 1.049 (1.18) | 1.030 (1.162) | 0.997 (1.123) |
Primary | 2.686 *** (0.868) | 2.565 *** (0.838) | 2.369 *** (0.782) | 2.439 ** (0.892) | 2.271 ** (0.849) | 2.091 ** (0.783) | 3.065 (1.379) | 2.922 * (2.287) | 3.167 * (2.503) |
Preparatory | 2.513 ** (0.907) | 2.332 ** (0.837) | 2.038 ** (0.721) | 2.376 ** (0.976) | 2.146 * (0.873) | 1.879 (0.751) | 3.223 (2.567) | 3.130 * (2.524) | 2.891 (2.339) |
Secondary | 2.454 *** (0.633) | 2.267 *** (0.587) | 2.038 *** (0.534) | 2.130 ** (0.632) | 1.986 ** (0.588) | 1.802 ** (0.534) | 4.114 *** (2.266) | 3.446 ** (1.978) | 3.945 ** (2.364) |
Post-secondary | 3.671 *** (0.979) | 3.065 *** (0.833) | 2.606 *** (0.730) | 2.431 ** (0.744) | 2.082 *** (0.645) | 1.781 * (0.560) | 17.891 *** (9.516) | 12.026 *** (7.128) | 15.724 *** (10.430) |
Marital status (ref: “Currently married “) | |||||||||
Not married | 1.102 (0.1451) | 1.096 (0.157) | 1.107 (0.162) | 1.031 (0.155) | 1.000 (0.160) | 1.107 (0.162) | 0.797 (0.233) | 0.698 * (0.233) | 0.711 (0.250) |
Employment status (ref: “Unemployed”) | |||||||||
Employed | 0.920 (0.155) | 0.939 (0.159) | 0.875 (0.148) | 0.689 ** (0.117) | 0.694 ** (0.119) | 0.647 ** (0.111) | 1.690 * (0.496) | 1.646 * (0.481) | 1.442 (0.419) |
Health status (ref: “Not good”) | |||||||||
Good | 1.528 ** (0.308) | 1.552 ** (0.309) | 1.543 ** (0.311) | 1.694 ** (0.386) | 1.703 ** (0.387) | 1.707 ** (0.398) | 0.715 (0.355) | 0.787 (0.397) | 0.754 (0.393) |
Household characteristics | |||||||||
Sex (ref: “Female”) | |||||||||
Male | 1.231 (0.234) | 1.233 (0.235) | 1.289 (0.274) | 1.287 (0.279) | 1.644 * (0.762) | 1.668 (0.810) | |||
Age (ref: “<30”) | |||||||||
30–39 | 1.557 (0.421) | 1.465 (0.396) | 3.588 *** (1.42) | 3.341 ** (1.347) | 0.935 (0.438) | 0.852 (0.412) | |||
40–49 | 1.347 (0.323) | 1.294 (0.318) | 1.536 * (0.414) | 1.427 (0.399) | 0.853 (0.539) | 0.818 (0.516) | |||
50–59 | 1.347 (0.289) | 1.294 (0.287) | 1.440 * (0.343) | 1.331 (0.332) | 1.403 (0.794) | 1.431 (0.815) | |||
60+ | 1.308 (0.300) | 1.324 (0.311) | 1.271 (0.323) | 1.287 (0.339) | 2.313 * (1.280) | 2.201 (1.219) | |||
Family size (ref: “1–3”) | |||||||||
4–5 | 1.223 (0.202) | 1.259 (0.210) | 1.218 (0.255) | 1.283 (0.242) | 1.250 (0.465) | 1.285 (0.492) | |||
6+ | 0.798 (0.149) | 0.834 (0.159) | 0.755 (0.160) | 0.821 (0.179) | 0.690 (0.321) | 0.634 (0.303) | |||
Wealth index (ref: “Lowest poor”) | |||||||||
Middle | 1.002 (0.178) | 0.945 (0.167) | 0.989 (0.194) | 0.898 (0.176) | 1.088 (0.469) | 1.195 (0.518) | |||
Highest/the rich | 1.230 (0.170) | 1.188 (0.162) | 1.143 (1.142) | 1.013 (0.164) | 1.614 (0.535) | 1.480 (0.531) | |||
Civic participation and community characteristics | |||||||||
Voluntary activities (ref: “Not participate”) | |||||||||
Participate | 1.241 (0.360) | 1.148 (0.343) | 2.810 * (1.670) | ||||||
Political participation (ref: “Not participate”) | |||||||||
Participated | 1.648 *** (0.258) | 1.642 ** (0.288) | 1.533 (0.560) | ||||||
Region (ref: “Frontier gov”) | |||||||||
Urban gov. | 2.646 ** (1.126) | 2.284 * (1.024) | 7.054 * (7.238) | ||||||
Urban lower gov. | 2.057 * (0.910) | 2.228 * (1.036) | 1.548 (1.714) | ||||||
Rural lower gov. | 2.739 ** (1.127) | 2.594 ** (1.129) | 5.179 * (5.211) | ||||||
Urban upper gov. | 2.115 * (0.987) | 1.974 (0.965) | 2.635 (3.195) | ||||||
Rural upper gov. | 2.636 ** (1.111) | 2.145 * (0.954) | 14.751 ** (14.930) | ||||||
Pollution (ref: “No”) | |||||||||
Exist | 1.930 *** (0.289) | 2.061 *** (0.335) | 1.649 (0.598) | ||||||
Number of obs. | 5883 | 2575 | 3309 | ||||||
Wald chi2(df) | 252.08 (12) | 290.56 (21) | 330.06 (29) | 39.44 (11) | 64.13 (20) | 109.24 (28) | 80.62 (11) | 96.70 (20) | 135.7 (28) |
Prob > chi2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Pseudo R2 | 0.1006 | 0.1079 | 0.1264 | 0.0222 | 0.0339 | 0.0568 | 0.1101 | 0.1326 | 0.1812 |
Omnibus Tests Chi-square (df) sig. | 1,024,770 (12) 0.00 | 109,884 (21) 0.00 | 1,287,401 (29) 0.00 | 162,255 (11) 0.00 | 24,800 (20) 0.00 | 416,138 (28) 0.00 | 222,831 (11) 0.00 | 268,292 (20) 0.00 | 366,682 (28) 0.00 |
Cox & Snell R Square | 0.058 | 0.062 | 0.073 | 0.018 | 0.028 | 0.046 | 0.027 | 0.032 | 0.044 |
Nagelkerke R Square | 0.130 | 0.139 | 0.162 | 0.032 | 0.049 | 0.082 | 0.123 | 0.147 | 0.200 |
AIC | 0.471 | 0.472 | 0.464 | 0.789 | 0.790 | 0.77 | 0.217 | 0.221 | 0.217 |
BIC | −48,163.200 | −48,071.116 | −48,038.405 | −18,092.122 | −18,013.175 | −17,973.843 | −25,987.806 | −25,893.511 | −25,833.483 |
Count R2 | 0.927 | 0.927 | 0.927 | 0.864 | 0.864 | 0.864 | 0.976 | 0.976 | 0.976 |
Area under ROC | 0.7523 | 0.7612 | 0.7842 | 0.6108 | 0.6299 | 0.6720 | 0.7479 | 0.7717 | 0.8172 |
VIF | All Respondents | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | |
Sex | 1.7 | 1.73 | 1.77 | ||||||
Age | 1.41 | 1.42 | 1.44 | 1.58 | 1.60 | 1.65 | 1.32 | 1.34 | 1.36 |
Education | 1.22 | 1.31 | 1.33 | 1.45 | 1.52 | 1.54 | 1.12 | 1.26 | 1.28 |
Marital status | 1.5 | 2.57 | 2.58 | 1.38 | 2.28 | 2.3 | 1.32 | 2.3 | 2.31 |
Employment status | 1.84 | 1.87 | 1.88 | 1.52 | 1.60 | 1.61 | 1.15 | 1.15 | 1.17 |
Health status | 1 | 1.01 | 1.01 | 1 | 1.00 | 1.02 | 1.01 | 1.01 | 1.01 |
HH gender | 1.09 | 1.09 | 1.08 | 1.08 | 1.11 | 1.11 | |||
HH age | 1.94 | 1.95 | 1.85 | 1.85 | 1.95 | 1.96 | |||
Family size | 1.22 | 1.24 | 1.17 | 1.20 | 1.29 | 1.31 | |||
Wealth index | 1.11 | 1.29 | 1.09 | 1.28 | 1.15 | 1.32 | |||
Voluntary | 1.03 | 1.02 | 1.03 | ||||||
Politics | 1.08 | 1.09 | 1.05 | ||||||
Region | 1.23 | 1.24 | 1.25 | ||||||
Pollution | 1.04 | 1.01 | 1.02 |
VIF | All Respondents | Male | Female | ||||||
---|---|---|---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | Model (1) | Model (2) | Model (3) | |
Sex | 2.07 | 2.08 | 2.08 | ||||||
Age | 1.16 | 1.2 | 1.2 | 1.29 | 1.36 | 1.36 | 1.08 | 1.11 | 1.11 |
Education | 1.04 | 1.17 | 1.23 | 1.01 | 1.09 | 1.11 | 1.03 | 1.20 | 1.30 |
Marital status | 1.28 | 1.43 | 1.44 | 1.37 | 1.47 | 1.48 | 1.08 | 1.26 | 1.27 |
Employment status | 1.94 | 1.4 | 1.97 | 1.13 | 1.14 | 1.14 | 1.03 | 1.04 | 1.05 |
Health status | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 | 1.03 | 1.01 | 1.01 | 1.02 |
HH gender | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | |||
HH age | 1.43 | 1.44 | 1.27 | 1.28 | 1.51 | 1.52 | |||
Family size | 1.20 | 1.24 | 1.16 | 1.21 | 1.27 | 1.30 | |||
Wealth index | 1.12 | 1.15 | 1.08 | 1.11 | 1.14 | 1.17 | |||
Voluntary | 1.01 | 1.01 | 1.01 | ||||||
Politics | 1.11 | 1.05 | 1.14 | ||||||
Region | 1.17 | 1.13 | 1.21 | ||||||
Pollution | 1.06 | 1.06 | 1.08 |
Sex | Age | Education | Marital Status | Employment Status | Health Status | HH Gender | HH Age | Family Size | Wealth Index | Voluntary | Politics | Region | Pollution | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | 1.00 | |||||||||||||
Age | 0.06 | 1.00 | ||||||||||||
Education | −0.06 | 0.22 | 1.00 | |||||||||||
Marital status | 0.36 | 0.46 | 0.04 | 1.00 | ||||||||||
Employment status | 0.58 | −0.16 | −0.35 | 0.19 | 1.00 | |||||||||
Health status | 0.04 | −0.03 | 0.03 | 0.00 | 0.03 | 1.00 | ||||||||
HH gender | −0.04 | −0.04 | −0.01 | −0.17 | −0.04 | −0.03 | 1.00 | |||||||
HH age | −0.19 | −0.27 | −0.01 | −0.67 | −0.10 | 0.02 | 0.14 | 1.00 | ||||||
Family size | −0.03 | −0.13 | −0.13 | −0.26 | 0.03 | 0.01 | −0.14 | 0.32 | 1.00 | |||||
Wealth index | −0.04 | −0.01 | 0.23 | −0.09 | −0.02 | 0.05 | −0.04 | 0.08 | −0.11 | 1.00 | ||||
voluntary | −0.12 | −0.01 | 0.05 | −0.08 | −0.09 | 0.03 | 0.02 | 0.06 | 0.00 | 0.06 | 1.00 | |||
Politics | 0.13 | −0.16 | −0.16 | −0.02 | 0.17 | −0.03 | 0.00 | −0.01 | 0.03 | −0.03 | −0.10 | 1.00 | ||
Region | 0.05 | −0.01 | −0.11 | 0.09 | 0.08 | 0.03 | −0.03 | −0.08 | 0.15 | −0.39 | −0.04 | −0.05 | 1.00 | |
Pollution | −0.18 | −0.01 | 0.05 | −0.08 | −0.14 | −0.04 | 0.01 | 0.04 | −0.01 | 0.06 | 0.06 | −0.03 | −0.03 | 1.00 |
Sex | Age | Education | Marital Status | Employment Status | Health Status | HH Gender | HH Age | Family Size | Wealth Index | Voluntary | Politics | Region | Pollution | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | 1.00 | |||||||||||||
Age | 0.07 | 1.00 | ||||||||||||
Education | −0.15 | −0.09 | 1.00 | |||||||||||
Marital status | 0.31 | 0.36 | −0.11 | 1.00 | ||||||||||
Employment status | 0.68 | −0.04 | −0.16 | 0.13 | 1.00 | |||||||||
Health status | 0.03 | 0.02 | −0.05 | −0.02 | 0.06 | 1.00 | ||||||||
HH gender | −0.04 | −0.04 | −0.01 | −0.12 | −0.05 | 0.03 | 1.00 | |||||||
HH age | −0.20 | −0.27 | 0.15 | −0.40 | −0.14 | −0.03 | 0.15 | 1.00 | ||||||
Family size | −0.03 | −0.13 | −0.06 | −0.18 | 0.00 | −0.04 | −0.12 | 0.34 | 1.00 | |||||
Wealth index | −0.05 | −0.05 | 0.31 | 0.01 | −0.04 | −0.02 | −0.02 | 0.10 | 0.00 | 1.00 | ||||
voluntary | −0.08 | −0.01 | 0.06 | −0.05 | −0.06 | 0.07 | 0.00 | 0.01 | −0.01 | 0.05 | 1.00 | |||
Politics | 0.12 | 0.00 | −0.24 | 0.01 | 0.15 | 0.07 | −0.01 | −0.04 | 0.06 | −0.16 | −0.06 | 1.00 | ||
Region | 0.05 | −0.01 | −0.19 | 0.07 | 0.02 | −0.07 | −0.03 | −0.07 | 0.16 | −0.18 | 0.00 | 0.14 | 1.00 | |
Pollution | 0.00 | 0.00 | 0.07 | 0.00 | −0.01 | 0.04 | 0.02 | 0.01 | −0.05 | −0.05 | 0.02 | −0.09 | −0.23 | 1.00 |
Variables | Chi-Square | |||
---|---|---|---|---|
Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | |
Migration intention in 2009 | ||||
Had an intention | 34.1% | 1222 | 8.026 (1) | 0.003 |
Had no intention | 30% | 7266 | ||
Individual characteristics | ||||
Sex | ||||
Male | 30.5% | 3709 | 0.044 (1) | 0.833 |
Female | 30.8% | 4779 | ||
Age group | ||||
18–21 | 30.1% | 2948 | 1.088 (2) | 0.580 |
22–25 | 30.7% | 3111 | ||
26–29 | 31.4% | 2429 | ||
Marital status | ||||
Never married | 33% | 4893 | 33.53184 (1) | 0.000 |
Currently married | 27.2% | 3517 | ||
Educational status | ||||
Never been in school | 29.4% | 965 | 92.010 (6) | 0.000 |
Currently in school | 34.4% | 1239 | ||
Some schooling | 26.6% | 534 | ||
Primary | 28.2% | 880 | ||
Preparatory | 25.4% | 480 | ||
Secondary | 27.7% | 3066 | ||
Post-secondary | 40.3% | 1324 | ||
Employment status | ||||
Employed | 30.5% | 4763 | 0.132 (1) | 0.716 |
Unemployed | 30.9% | 3725 | ||
Health status | ||||
Good | 30.5% | 1101 | 0.013 (1) | 0.908 |
Not good | 30.7% | 7387 | ||
Household characteristics | ||||
Sex of household head | ||||
Male | 30.2% | 7511 | 7.603 (1) | 0.003 |
Female | 34.5% | 977 | ||
Age of household head | ||||
Less than 30 | 27.4% | 1546 | 30.095 (4) | 0.000 |
30–39 | 27.7% | 1555 | ||
40–49 | 30.3% | 1365 | ||
50–59 | 32.1% | 2602 | ||
Over 60 | 35.1% | 1420 | ||
Wealth index | ||||
Lowest (poor) | 27% | 3164 | 113.294 (2) | 0.000 |
Middle | 25% | 1801 | ||
Highest (rich) | 37% | 3523 | ||
Community characteristics and civic participation | ||||
Voluntary participation/last year | ||||
Participated | 34% | 527 | 2.252 (1) | 0.133 |
Not participated | 31% | 7961 | ||
Political participation | ||||
Participated in election | 29% | 1282 | 3.206 (1) | 0.073 |
Never participate | 31% | 7204 | ||
Environmental pollution | ||||
Polluted | 33% | 2279 | 7.368 (1) | 0.004 |
Not polluted | 30% | 6209 | ||
Region | ||||
Urban governorates | 44% | 2008 | 299.32 (5) | 0.000 |
Urban lower | 27% | 929 | ||
Rural lower | 23% | 2509 | ||
Urban upper | 42% | 597 | ||
Rural upper | 28% | 1816 | ||
Frontier governorates | 21% | 629 |
Variables | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
Chi-Square | Chi-Square | |||||||
Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | Percentage | Total | χ2 (d.f.) | p-Value < 0.05 | |
Migration intention in 2009 | ||||||||
Had an intention | 31% | 954 | 0.288 (1) | 0.592 | 44% | 268 | 24.8 (1) | 0.000 |
Had no intention | 30% | 2755 | 30% | 4511 | ||||
Individual characteristics | ||||||||
Age group | ||||||||
18–21 | 29% | 1396 | 1.76 (2) | 0.415 | 31% | 3709 | 0.194 (2) | 0.908 |
22–25 | 31% | 1344 | 30% | 1552 | ||||
26–29 | 32% | 969 | 31% | 1767 | ||||
Marital status | ||||||||
Never married | 32% | 2918 | 5.782 (1) | 0.009 | 35% | 2053 | 35.81 (1) | 0.000 |
Currently married | 27% | 791 | 27% | 2726 | ||||
Educational status | ||||||||
Never been in school | 31% | 185 | 17.22 (6) | 0.009 | 29% | 780 | 97.05 (6) | 0.000 |
Currently in school | 32% | 683 | 38% | 556 | ||||
Some schooling | 28% | 251 | 25% | 283 | ||||
Primary | 29% | 415 | 28% | 465 | ||||
Preparatory | 33% | 203 | 20% | 277 | ||||
Secondary | 28% | 1385 | 27% | 1681 | ||||
Post-secondary | 37% | 587 | 43% | 737 | ||||
Employment status | ||||||||
Employed | 30% | 2838 | 2.535 (1) | 0.111 | 34% | 887 | 5.53 (1) | 0.019 |
Unemployed | 33% | 871 | 30% | 3892 | ||||
Health status | ||||||||
Good | 30% | 3177 | 0.21 (1) | 0.648 | 31% | 4210 | 0.34 (1) | 0.560 |
Not good | 31% | 532 | 30% | 569 | ||||
Household characteristics | ||||||||
Sex of household head | ||||||||
Male | 30% | 3233 | 1.28 (1) | 0.259 | 30% | 4278 | 7.57 (1) | 0.005 |
Female | 33% | 476 | 36% | 501 | ||||
Age of household head | ||||||||
Less than 30 | 29% | 735 | 5.78 (4) | 0.216 | 26% | 811 | 33.7 (4) | 0.000 |
30–39 | 23% | 79 | 28% | 1476 | ||||
40–49 | 30% | 687 | 31% | 678 | ||||
50–59 | 31% | 1444 | 34% | 1158 | ||||
Over 60 | 33% | 764 | 37% | 656 | ||||
Wealth index | ||||||||
Lowest (poor) | 27% | 1303 | 42.11 (2) | 0.000 | 27% | 1861 | 72.3 (2) | 0.000 |
Middle | 25% | 816 | 25% | 985 | ||||
Highest (rich) | 36% | 1590 | 38% | 1933 | ||||
Community characteristics and civic participation | ||||||||
Voluntary participation/last year | ||||||||
Participated | 28% | 356 | 1.69 (1) | 0.193 | 46% | 171 | 19.85 (1) | 0.000 |
Not participated | 31% | 3353 | 30% | 4608 | ||||
Political participation | ||||||||
Participated in election | 29% | 756 | 1.34 (1) | 0.248 | 28% | 526 | 1.91 (1) | 0.167 |
Never participate | 31% | 2951 | 31% | 4253 | ||||
Environmental pollution | ||||||||
Polluted | 33% | 1341 | 6.88 (1) | 0.009 | 33% | 938 | 1.69 (1) | 0.194 |
Not polluted | 29% | 2368 | 30% | 3841 | ||||
Region | ||||||||
Urban governorates | 43% | 965 | 139.4 (5) | 0.000 | 44% | 1043 | 176.9 (5) | 0.000 |
Urban lower | 25% | 400 | 28% | 529 | ||||
Rural lower | 22% | 1100 | 24% | 1409 | ||||
Urban upper | 37% | 249 | 45% | 348 | ||||
Rural upper | 32% | 707 | 26% | 1109 | ||||
Frontier governorates | 18% | 288 | 24% | 341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahed, A.; Goujon, A.; Jiang, L. The Migration Intentions of Young Egyptians. Sustainability 2020, 12, 9803. https://doi.org/10.3390/su12239803
Abdelwahed A, Goujon A, Jiang L. The Migration Intentions of Young Egyptians. Sustainability. 2020; 12(23):9803. https://doi.org/10.3390/su12239803
Chicago/Turabian StyleAbdelwahed, Amr, Anne Goujon, and Leiwen Jiang. 2020. "The Migration Intentions of Young Egyptians" Sustainability 12, no. 23: 9803. https://doi.org/10.3390/su12239803
APA StyleAbdelwahed, A., Goujon, A., & Jiang, L. (2020). The Migration Intentions of Young Egyptians. Sustainability, 12(23), 9803. https://doi.org/10.3390/su12239803