Pore Pressure Analysis for Distinguishing Earthquakes Induced by CO2 Injection from Natural Earthquakes
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Change of Pore Pressure due to CO2 Injection
3.2. Seasonal Changes in Pore Pressure
3.3. Pore Pressure Change Due to Remote Earthquakes
4. Results
4.1. Pore Pressure Changes Due to CO2 Injection
4.2. Natural Variations in Pore Pressure
5. Discussions—Comparison of Pore Pressure Increase due to CO2 Injection with Natural Variations
6. Conclusions
- -
- Apart from an area within ~2 km of the injection site, the natural seasonal fluctuations of pore pressure in the broad area around the Nagaoka CO2 injection site are much greater than those induced by CO2 injection. Therefore, CO2 injection at Nagaoka during 2003 and 2004 could not trigger the 2004 Chuetsu earthquake;
- -
- Although seasonal increases in pore pressure are relatively small in the Nagaoka area, they can be large enough to trigger slip on seismogenic faults that are already in a critical stress state due to regional subduction tectonics, especially during periods of snowmelt and rainfall;
- -
- Further investigation is needed of other phenomena that may cause increases in pore pressure large enough to trigger earthquakes (e.g., changes in sea surface height, and large-magnitude remote earthquakes) in order to evaluate the influence of pore pressure change more precisely. The remote earthquake could largely influence upon pore pressure variation. In the result, it shows that the pore pressure increase of 100 kPa in Nagaoka area due to 2011 Mw 9.1 Tohoku-Oki earthquake is more significant than those from seasonal fluctuations;
- -
- The methodology presented here provides a means to distinguish natural earthquakes from those induced by CO2 injection and can be useful at other CO2 sequestration sites and at geothermal field developments.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Linde, A.T.; Sacks, I.S. Slow earthquakes triggered by typhoons. Nat. Cell Biol. 2009, 459, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Bonini, M. Seismic loading of fault-controlled fluid seepage systems by great subduction earthquakes. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Mishra, O.; Sanda, R. Influence of fluids and magma on earthquakes: Seismological evidence. Phys. Earth Planet. Inter. 2002, 132, 249–267. [Google Scholar] [CrossRef]
- Nimiya, H.; Ikeda, T.; Tsuji, T. Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. Sci. Adv. 2017, 3, e1700813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, L.; Hurwitz, S.; Saar, M.O.; Ingebritsen, S.; Hsieh, P. Seasonal seismicity at western United States volcanic centers. Earth Planet. Sci. Lett. 2005, 240, 307–321. [Google Scholar] [CrossRef]
- Hainzl, S.; Kraft, T.; Wassermann, J.; Igel, H.; Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, L.; Perrier, F.; Avouac, J.-P.; Sapkota, S.; Gautam, U.; Tiwari, D.R. Seasonal modulation of seismicity in the Himalaya of Nepal. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.A. Note on rain-triggered earthquakes and their dependence on karst geology. Geophys. J. Int. 2008, 173, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S. Tidal triggering of earthquakes prior to the 2011 Tohoku-Oki earthquake (Mw9.1). Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Petrosino, S.; Cusano, P.; Madonia, P. Tidal and hydrological periodicities of seismicity reveal new risk scenarios at Campi Flegrei caldera. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, T.; Kamei, R.; Pratt, R.G. Pore pressure distribution of a mega-splay fault system in the Nankai Trough subduction zone: Insight into up-dip extent of the seismogenic zone. Earth Planet. Sci. Lett. 2014, 396, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Scholz, C.H.; Tan, Y.J.; Albino, F. The mechanism of tidal triggering of earthquakes at mid-ocean ridges. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery-Brown, E.; Shelly, D.R.; Hsieh, P.A. Snowmelt-Triggered Earthquake Swarms at the Margin of Long Valley Caldera, California. Geophys. Res. Lett. 2019, 46, 3698–3705. [Google Scholar] [CrossRef]
- Muco, B. The seasonality of Albanian earthquakes and cross-correlation with rainfall. Phys. Earth Planet. Inter. 1995, 88, 285–291. [Google Scholar] [CrossRef]
- Rivet, D.; Brenguier, F.; Cappa, F. Improved detection of preeruptive seismic velocity drops at the Piton de La Fournaise volcano. Geophys. Res. Lett. 2015, 42, 6332–6339. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.W.; Fu, Y.; Bürgmann, R. Seasonal water storage, stress modulation, and California seismicity. Science 2017, 356, 1161–1164. [Google Scholar] [CrossRef] [Green Version]
- Swindles, G.T.; Savov, I.; Schmidt, A.; Hooper, A.; Connor, C.B.; Carrivick, J.L. Climatic control on Icelandic volcanic activity during the mid-Holocene: REPLY. Geology 2018, 46, e444. [Google Scholar] [CrossRef] [Green Version]
- Roeloffs, E. Poroelastic Techniques in the Study of Earthquake-Related Hydrologic Phenomena. In Advances in Geophysics; Elsevier BV: Amsterdam, The Netherlands, 1996; Volume 37, pp. 135–195. [Google Scholar]
- Lee, M.-K.; Wolf, L.W. Analysis of fluid pressure propagation in heterogeneous rocks: Implications for hydrologically-induced earthquakes. Geophys. Res. Lett. 1998, 25, 2329–2332. [Google Scholar] [CrossRef]
- Talwani, P.; Chen, L.; Gahalaut, K. Seismogenic permeability,ks. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Heki, K. Seasonal Modulation of Interseismic Strain Buildup in Northeastern Japan Driven by Snow Loads. Science 2001, 293, 89–92. [Google Scholar] [CrossRef]
- Talwani, P.; Acree, S. Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure Appl. Geophys. PAGEOPH 1985, 122, 947–965. [Google Scholar] [CrossRef]
- Zhai, G.; Shirzaei, M.; Manga, M.; Chen, X. Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma. Proc. Natl. Acad. Sci. USA 2019, 116, 16228–16233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, H.; Nobuoka, D.; Azuma, H.; Xue, Z.; Tanase, D. Time-Lapse Crosswell Seismic Tomography for Monitoring Injected CO2 in an Onshore Aquifer, Nagaoka, Japan. Explor. Geophys. 2006, 37, 30–36. [Google Scholar] [CrossRef]
- Spetzler, J.; Xue, Z.; Saito, H.; Nishizawa, O. Case story: Time-lapse seismic crosswell monitoring of CO2injected in an onshore sandstone aquifer. Geophys. J. Int. 2008, 172, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Chiyonobu, S.; Nakajima, T.; Zhang, Y.; Tsuji, T.; Xue, Z. Effect of Reservoir Heterogeneity of Haizume Formation, Nagaoka Pilot Site, Based on High-resolution Sedimentological Analysis. Energy Procedia 2013, 37, 3546–3553. [Google Scholar] [CrossRef] [Green Version]
- Mito, S.; Xue, Z.; Sato, T. Effect of formation water composition on predicting CO2 behavior: A case study at the Nagaoka post-injection monitoring site. Appl. Geochem. 2013, 30, 33–40. [Google Scholar] [CrossRef]
- Kawata, Y.; Xue, Z.; Mito, S.; Nakajima, T. A History Matching Study of Nagaoka Site for Geochemical Model Calibration in Reactive Transport Model: Using Concentration Changes of Chemical Species from Post-Injection Water Sampling Data. Energy Procedia 2014, 63, 3568–3575. [Google Scholar] [CrossRef] [Green Version]
- Mito, S.; Xue, Z. Availability of a Simplified Coarse Grid Model for History Matching at the Nagaoka Post-injection CO2 Monitoring Site. Energy Procedia 2017, 114, 5007–5014. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nakajima, T.; Xue, Z. Quantitative Interpretation of Trapping Mechanisms of CO2 at Nagaoka Pilot Project a History Matching Study for 10-Year post-injection. Energy Procedia 2017, 114, 5058–5069. [Google Scholar] [CrossRef]
- Kato, A.; Kurashimo, E.; Hirata, N.; Sakai, S.; Iwasaki, T.; Kanazawa, T. Imaging the source region of the 2004 mid-Niigata prefecture earthquake and the evolution of a seismogenic thrust-related fold. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Hirata, N.; Sato, H.; Sakai, S.; Kato, A.; Kurashimo, E. Fault system of the 2004 Mid Niigata Prefecture Earthquake and its aftershocks. Landslides 2005, 2, 153–157. [Google Scholar] [CrossRef]
- Okamura, Y.; Ishiyama, T.; Yanagisawa, Y. Fault-related folds above the source fault of the 2004 mid-Niigata Prefecture earthquake, in a fold-and-thrust belt caused by basin inversion along the eastern margin of the Japan Sea. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Oguchi, T.; Zhang, P.; Uchiyama, S. Topographic changes due to the 2004 Chuetsu thrusting earthquake in low mountain region. Solid Earth Discuss. 2019, 2019, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Tsuji, T. Advanced surface-wave analysis for 3D ocean bottom cable data to detect localized heterogeneity in shallow geological formation of a CO2 storage site. Int. J. Greenh. Gas Control. 2015, 39, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Yano, T.E.; Takeda, T.; Matsubara, M.; Shiomi, K. Japan Unified High-Resolution Relocated Catalog for Earthquakes (JUICE): Crustal Seismicity beneath the Japanese Islands. Tectonophysics 2017, 702, 19–28. [Google Scholar] [CrossRef]
- Matsubara, M.; Sato, H.; Uehira, K.; Mochizuki, M.; Kanazawa, T.; Takahashi, N.; Suzuki, K.; Kamiya, S. Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data. Seism. Waves-Probing Earth Syst. 2019. [Google Scholar] [CrossRef] [Green Version]
- Niu, B. Smectite Diagenesis in Neogene Marine Sandstone and Mudstone of the Niigata Basin, Japan. Clays Clay Miner. 2000, 48, 26–42. [Google Scholar] [CrossRef]
- Chakhmakhchev, A.; Suzuki, N.; Suzuki, M.; Takayama, K. Biomarker distributions in oils from the Akita and Niigata Basins, Japan. Chem. Geol. 1996, 133, 1–14. [Google Scholar] [CrossRef]
- Nakajima, T.; Ito, T.; Xue, Z. Numerical Simulation of the CO2 Behavior to Obtain a Detailed Site Characterization: A Case Study at Nagaoka Pilot-scale Injection Site. Energy Procedia 2017, 114, 2819–2826. [Google Scholar] [CrossRef]
- Chester, F.M.; Evans, J.P.; Biegel, R.L. Internal structure and weakening mechanisms of the San Andreas Fault. J. Geophys. Res. Space Phys. 1993, 98, 771–786. [Google Scholar] [CrossRef]
- Sato, K.; Mito, S.; Horie, T.; Ohkuma, H.; Saito, H.; Watanabe, J.; Yoshimura, T. A monitoring framework for assessing underground migration and containment of carbon dioxide sequestered in an onshore aquifer. Energy Procedia 2009, 1, 2261–2268. [Google Scholar] [CrossRef] [Green Version]
- Asaoka, Y.; Kominami, Y. Incorporation of satellite-derived snow-cover area in spatial snowmelt modeling for a large area: Determination of a gridded degree-day factor. Ann. Glaciol. 2013, 54, 205–213. [Google Scholar] [CrossRef]
- Saito, H.; Uchiyama, S.; Hayakawa, Y.S.; Obanawa, H. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Prog. Earth Planet. Sci. 2018, 5, 15. [Google Scholar] [CrossRef]
- Durá-Gómez, I.; Talwani, P. Reservoir-induced seismicity associated with the Itoiz Reservoir, Spain: A case study. Geophys. J. Int. 2010, 181, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.-Y.; Brenguier, F.; Campillo, M.; Lecointre, A.; Takeda, T.; Aoki, Y. Seasonal Crustal Seismic Velocity Changes Throughout Japan. J. Geophys. Res. Solid Earth 2017, 122, 7987–8002. [Google Scholar] [CrossRef]
- Andajani, R.D.; Tsuji, T.; Snieder, R.; Ikeda, T. Spatial and Temporal Influence of Rainfall on Crustal Pore Pressure Changes Based on Seismic Velocity Monitoring. Earth, Planets Space 2020. (accepted). [Google Scholar]
- Kawashima, K.; Waizumi, K. Validation of the Accuracy of Daily Amount of Snowmelt Estimated by Using Advanced Degree-Day Method; Annual Report of Research Center for Natural Hazards and Disaster Recovery; Niigata University: Niigata, Japan, 2008; No.2. [Google Scholar]
- Noguchi, S.; Sammori, T.; Tada, Y.; Yasuda, Y. Antecedent Soil Moisture around the Epicenter during the Periods Preceding and Following the Iwate-Miyagi Nairiku Earthquake in 2008. J. Jpn. Soc. Eros. Control Eng. 2010, 63, 1. [Google Scholar]
- Moussav, M.; Wyseure, G.; Feyen, J. Estimation of melt rate in seasonally snow-covered mountainous areas. Hydrol. Sci. J. 1989, 34, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Brenguier, F.; Campillo, M.; Hadziioannou, C.; Shapiro, N.; Nadeau, R.M.; LaRose, E. Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science 2008, 321, 1478–1481. [Google Scholar] [CrossRef] [Green Version]
- Hutapea, F.L.; Tsuji, T.; Ikeda, T. Real-time crustal monitoring system of Japanese Islands based on spatio-temporal seismic velocity variation. Earth Planets Space 2020, 72, 1–16. [Google Scholar] [CrossRef]
- Tsuji, T.; Tokuyama, H.; Pisani, P.C.; Moore, G. Effective stress and pore pressure in the Nankai accretionary prism off the Muroto Peninsula, southwestern Japan. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Sawazaki, K.; Kimura, H.; Shiomi, K.; Uchida, N.; Takagi, R.; Snieder, R. Depth-dependence of seismic velocity change associated with the 2011 Tohoku earthquake, Japan, revealed from repeating earthquake analysis and finite-difference wave propagation simulation. Geophys. J. Int. 2015, 201, 741–763. [Google Scholar] [CrossRef] [Green Version]
Parameter | Model |
---|---|
Injection depth | 1095–1105 m |
Injection rate | From 20 to 40 t per day |
Simulation duration | 10 years |
Boundary condition | Closed boundaries (top and bottom) |
Fluid phase | supercritical CO2 and brine |
Initial reservoir condition | Pressure: 11.1 MPa, Temperature: 48 °C, Salinity: 10000 ppm |
Grid size | 250 × 250 m (horizontal), 1 m (vertical) |
Porosity | 0.22 |
Permeability | Kh = 5.00 × 10−15 m2; Kz/Kh = 0.1 |
Relative permeability (gas residual) | 0.18 (Sand), 0.1 (Mud) |
Relative permeability (water residual) | 0.20 (Sand); 0.7 (Mud) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhun, C.; Tsuji, T. Pore Pressure Analysis for Distinguishing Earthquakes Induced by CO2 Injection from Natural Earthquakes. Sustainability 2020, 12, 9723. https://doi.org/10.3390/su12229723
Chhun C, Tsuji T. Pore Pressure Analysis for Distinguishing Earthquakes Induced by CO2 Injection from Natural Earthquakes. Sustainability. 2020; 12(22):9723. https://doi.org/10.3390/su12229723
Chicago/Turabian StyleChhun, Chanmaly, and Takeshi Tsuji. 2020. "Pore Pressure Analysis for Distinguishing Earthquakes Induced by CO2 Injection from Natural Earthquakes" Sustainability 12, no. 22: 9723. https://doi.org/10.3390/su12229723
APA StyleChhun, C., & Tsuji, T. (2020). Pore Pressure Analysis for Distinguishing Earthquakes Induced by CO2 Injection from Natural Earthquakes. Sustainability, 12(22), 9723. https://doi.org/10.3390/su12229723