How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation
Abstract
:1. Introduction
2. Framework
3. Dynamic of Fast-Start Finance
4. Method and Data
5. Data
6. Results and Discussion
6.1. Key Factors of the Funding Distribution for the Quantiles
6.2. Discussion
7. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
Appendix A
Iso3 | Country | World Bank Income Group | GHG Tot in 2012 |
AFG | Afghanistan | Low income | 18,168.86 |
AGO | Angola | Upper middle income | 41,657.17 |
ARG | Argentina | High incomeOECD | 380,295.32 |
ARM | Armenia | Lower middle income | 12,319.39 |
AZE | Azerbaijan | Upper middle income | 56,537.08 |
BEN | Benin | Low income | 33,533.10 |
BGD | Bangladesh | Lower middle income | 183,300.56 |
BIH | Bosnia and Herzegovina | Upper middle income | 27,108.40 |
BLR | Belarus | Upper middle income | 109,647.24 |
BOL | Bolivia | Lower middle income | 621,726.73 |
BRA | Brazil | Upper middle income | 2989.42 |
BWA | Botswana | Upper middle income | 82,110.28 |
CHL | Chile | High income | 120,687.89 |
CHN | China | Upper middle income | 12,454.71 |
CMR | Cameroon | Lower middle income | 100,922.14 |
COL | Colombia | Upper middle income | 173,411.77 |
CPV | Cape Verde | Lower middle income | 411.33 |
CRI | Costa Rica | Upper middle income | 12,274.13 |
CUB | Cuba | Upper middle income | 52,418.46 |
DOM | Dominican Republic | Upper middle income | 33,395.08 |
DZA | Algeria | Upper middle income | 176,471.23 |
ECU | Ecuador | Upper middle income | 52,746.57 |
EGY | Egypt | Lower middle income | 295,499.75 |
ERI | Eritrea | Low income | 4977.89 |
ETH | Ethiopia | Low income | 185,292.17 |
GHA | Ghana | Lower middle income | 107,784.29 |
GTM | Guatemala | Lower middle income | 31,515.45 |
HND | Honduras | Lower middle income | 20,467.16 |
HTI | Haiti | Low income | 8835.47 |
IDN | Indonesia | Lower middle income | 780,550.76 |
IND | India | Lower middle income | 3,002,894.90 |
IRN | Iran | Upper middle income | 551,144.13 |
JOR | Jordan | Upper middle income | 27,198.60 |
KAZ | Kazakhstan | Upper middle income | 366,502.20 |
KEN | Kenya | Lower middle income | 54,302.10 |
KGZ | Kyrgyzstan | Lower middle income | 13,794.74 |
KHM | Cambodia | Low income | 127,399.59 |
LAO | Laos | Lower middle income | 161,718.74 |
LBN | Lebanon | Upper middle income | 20,371.97 |
LKA | Sri Lanka | Lower middle income | 30,451.83 |
LSO | Lesotho | Lower middle income | 3472.71 |
MAR | Morocco | Lower middle income | 80,436.72 |
MDG | Madagascar | Low income | 117,932.60 |
MDV | Maldives | Upper middle income | 727.13 |
MEX | Mexico | Upper middle income | 663,424.95 |
MLI | Mali | Low income | 77,437.93 |
MNG | Mongolia | Upper middle income | 25,944.26 |
MOZ | Mozambique | Low income | 380,308.29 |
MWI | Malawi | Low income | 21,632.13 |
MYS | Malaysia | Upper middle income | 279,098.38 |
NAM | Namibia | Upper middle income | 38,049.27 |
NER | Niger | Low income | 11,460.92 |
NGA | Nigeria | Lower middle income | 301,010.13 |
NIC | Nicaragua | Lower middle income | 16,323.04 |
NPL | Nepal | Low income | 40,762.72 |
PAK | Pakistan | Lower middle income | 369,734.58 |
PAN | Panama | Upper middle income | 16,248.77 |
PER | Peru | Upper middle income | 74,806.96 |
PHL | Philippines | Lower middle income | 167,297.55 |
PNG | Papua New Guinea | Lower middle income | 11,087.46 |
PRY | Paraguay | Upper middle income | 50,843.95 |
RWA | Rwanda | Low income | 6689.95 |
SEN | Senegal | Lower middle income | 54,185.37 |
SLV | El Salvador | Lower middle income | 12,577.79 |
STP | Sao Tome and Principe | Lower middle income | 195.49 |
SYR | Syria | Lower middle income | 77,118.71 |
THA | Thailand | Upper middle income | 440,411.68 |
TJK | Tajikistan | Lower middle income | 15,364.58 |
TON | Tonga | Upper middle income | 158.36 |
TUN | Tunisia | Upper middle income | 39,721.01 |
TUR | Turkey | Upper middle income | 445,640.08 |
TZA | Tanzania | Low income | 235,353.12 |
UGA | Uganda | Low income | 80,725.09 |
UKR | Ukraine | Lower middle income | 404,900.30 |
URY | Uruguay | High incomenonOECD | 34,237.83 |
VEN | Venezuela | High incomenonOECD | 281,921.37 |
VNM | Vietnam | Lower middle income | 310,664.07 |
VUT | Vanuatu | Lower middle income | 446.22 |
YEM | Yemen | Lower middle income | 40,924.63 |
ZAF | South Africa | Upper middle income | 450,615.78 |
ZMB | Zambia | Lower middle income | 320,254.22 |
Appendix B
Recipient | n° Financed Projects | Total of Recipient | Recipient/GT | Recipient/GT of Recipient | Donor | Donor/GT of Donor | Donor/GT |
Turkey | 4 | $ 41.71 | 25.64% | 99.75% | France | 98.82% | 25.88% |
India | 17 | $ 31.25 | 19.21% | 75.26% | Germany | 58.29% | 24.80% |
China | 59 | $ 21.95 | 13.49% | 29.54% | United Kingdom | 40.28% | 9.89% |
Nepal | 10 | $ 11.61 | 7.13% | 62.03% | Japan | 38.80% | 11.41% |
Afghanistan | 7 | $ 6.42 | 3.95% | 50.04% | Germany | 7.97% | 24.80% |
Peru | 7 | $ 4.32 | 2.66% | 87.34% | Belgium | 60.96% | 3.80% |
Indonesia | 15 | $ 4.01 | 2.46% | 49.41% | United States | 13.87% | 8.77% |
Uganda | 7 | $ 2.65 | 1.63% | 80.69% | Norway | 28.66% | 4.59% |
Philippines | 14 | $ 2.21 | 1.36% | 38.18% | Belgium | 13.64% | 3.80% |
Mongolia | 6 | $ 2.18 | 1.34% | 47.06% | United States | 7.19% | 8.77% |
Brazil | 19 | $ 2.18 | 1.34% | 24.68% | Germany | 1.33% | 24.80% |
Zambia | 3 | $ 2.14 | 1.32% | 92.21% | Netherlandddds | 84.41% | 1.44% |
Viet Nam | 14 | $ 1.99 | 1.23% | 37.51% | Belgium | 12.09% | 3.80% |
Cambodia | 6 | $ 1.82 | 1.12% | 67.49% | Germany | 3.05% | 24.80% |
Bangladesh | 3 | $ 1.81 | 1.11% | 86.72% | Switzerland | 32.15% | 3.00% |
Cape Verde | 3 | $ 1.61 | 0.99% | 42.86% | Spain | 12.69% | 3.34% |
Ukraine | 6 | $ 1.48 | 0.91% | 80.12% | Austria | 43.92% | 1.66% |
Bolivia | 7 | $ 1.23 | 0.75% | 41.89% | Japan | 2.77% | 11.41% |
Thailand | 6 | $ 1.17 | 0.72% | 59.47% | United States | 4.86% | 8.77% |
Tanzania | 10 | $ 1.12 | 0.69% | 48.75% | Norway | 7.30% | 4.59% |
Egypt | 5 | $ 1.12 | 0.69% | 89.18% | Japan | 5.37% | 11.41% |
South Africa | 3 | $ 1.10 | 0.67% | 75.69% | Switzerland | 17.02% | 3.00% |
Mexico | 8 | $ 1.09 | 0.67% | 42.00% | Japan | 2.46% | 11.41% |
Armenia | 1 | $ 1.06 | 0.65% | 100.00% | Austria | 39.19% | 1.66% |
Kyrgyz Republic | 3 | $ 1.06 | 0.65% | 70.70% | Japan | 4.02% | 11.41% |
Argentina | 11 | $ 0.91 | 0.56% | 41.90% | Germany | 0.95% | 24.80% |
Tunisia | 2 | $ 0.89 | 0.55% | 90.11% | Germany | 1.99% | 24.80% |
Chile | 4 | $ 0.80 | 0.49% | 53.75% | Germany | 1.07% | 24.80% |
Kazakhstan | 1 | $ 0.71 | 0.43% | 100.00% | Japan | 3.81% | 11.41% |
Ghana | 5 | $ 0.65 | 0.40% | 96.37% | Japan | 3.35% | 11.41% |
Senegal | 5 | $ 0.62 | 0.38% | 45.90% | Canada | 43.14% | 0.41% |
Cuba | 6 | $ 0.57 | 0.35% | 61.10% | Germany | 0.86% | 24.80% |
Pakistan | 6 | $ 0.55 | 0.34% | 76.46% | Switzerland | 8.63% | 3.00% |
Nicaragua | 6 | $ 0.47 | 0.29% | 44.37% | Spain | 3.82% | 3.34% |
Maldives | 4 | $ 0.46 | 0.28% | 79.40% | Japan | 1.96% | 11.41% |
Papua New Guinea | 2 | $ 0.33 | 0.21% | 53.81% | Germany | 0.45% | 24.80% |
Panama | 3 | $ 0.31 | 0.19% | 49.71% | Spain | 2.83% | 3.34% |
Honduras | 3 | $ 0.31 | 0.19% | 90.38% | Spain | 5.10% | 3.34% |
Mozambique | 3 | $ 0.29 | 0.18% | 72.01% | Belgium | 3.43% | 3.80% |
Paraguay | 4 | $ 0.29 | 0.18% | 53.77% | Spain | 2.83% | 3.34% |
Lebanon | 3 | $ 0.27 | 0.17% | 81.92% | Italy | 100.00% | 0.14% |
Jordan | 8 | $ 0.25 | 0.15% | 36.19% | Germany | 0.22% | 24.80% |
Kenya | 5 | $ 0.24 | 0.15% | 61.22% | United States | 1.04% | 8.77% |
Yemen | 4 | $ 0.22 | 0.14% | 52.51% | Germany | 0.29% | 24.80% |
Tajikistan | 1 | $ 0.21 | 0.13% | 100.00% | Japan | 1.14% | 11.41% |
Azerbaijan | 2 | $ 0.21 | 0.13% | 52.77% | Finland | 21.59% | 0.32% |
Ecuador | 3 | $ 0.19 | 0.12% | 77.10% | United States | 1.04% | 8.77% |
Algeria | 4 | $ 0.18 | 0.11% | 60.75% | Japan | 0.58% | 11.41% |
Benin | 1 | $ 0.16 | 0.10% | 100.00% | Canada | 24.11% | 0.41% |
Madagascar | 2 | $ 0.16 | 0.10% | 87.29% | Switzerland | 2.86% | 3.00% |
Ethiopia | 2 | $ 0.15 | 0.09% | 77.96% | United States | 0.83% | 8.77% |
Colombia | 2 | $ 0.15 | 0.09% | 91.79% | Japan | 0.73% | 11.41% |
Uruguay | 4 | $ 0.15 | 0.09% | 63.42% | Germany | 0.23% | 24.80% |
Costa Rica | 3 | $ 0.14 | 0.09% | 46.83% | Germany | 0.17% | 24.80% |
Cameroon | 1 | $ 0.14 | 0.09% | 100.00% | Germany | 0.35% | 24.80% |
Haiti | 1 | $ 0.14 | 0.09% | 100.00% | Spain | 2.55% | 3.34% |
El Salvador | 2 | $ 0.13 | 0.08% | 83.52% | Japan | 0.57% | 11.41% |
Sri Lanka | 6 | $ 0.12 | 0.07% | 49.19% | Greece | 100.00% | 0.04% |
Malawi | 3 | $ 0.11 | 0.07% | 40.38% | United Kingdom | 0.29% | 9.89% |
Tonga | 3 | $ 0.11 | 0.07% | 60.37% | Japan | 0.35% | 11.41% |
Morocco | 3 | $ 0.10 | 0.06% | 56.15% | Spain | 1.02% | 3.34% |
Dominican Republic | 2 | $ 0.09 | 0.06% | 96.54% | Germany | 0.22% | 24.80% |
Belarus | 1 | $ 0.09 | 0.05% | 100.00% | Germany | 0.22% | 24.80% |
Rwanda | 2 | $ 0.09 | 0.05% | 85.90% | United Kingdom | 0.47% | 9.89% |
Laos | 7 | $ 0.08 | 0.05% | 31.41% | Japan | 0.14% | 11.41% |
Sao Tome&P | 1 | $ 0.07 | 0.04% | 100.00% | Portugal | 100.00% | 0.04% |
Malaysia | 6 | $ 0.07 | 0.04% | 70.08% | Japan | 0.26% | 11.41% |
Namibia | 1 | $ 0.05 | 0.03% | 100.00% | Finland | 10.13% | 0.32% |
Venezuela | 1 | $ 0.04 | 0.03% | 100.00% | Japan | 0.22% | 11.41% |
Eritrea | 1 | $ 0.04 | 0.02% | 100.00% | Norway | 0.48% | 4.59% |
Syria | 2 | $ 0.03 | 0.02% | 71.90% | Japan | 0.11% | 11.41% |
Bosnia-Herzegovina | 1 | $ 0.02 | 0.01% | 100.00% | United States | 0.13% | 8.77% |
Angola | 1 | $ 0.02 | 0.01% | 100.00% | Japan | 0.08% | 11.41% |
Lesotho | 1 | $ 0.01 | 0.01% | 100.00% | Japan | 0.06% | 11.41% |
Guatemala | 1 | $ 0.01 | 0.01% | 100.00% | Japan | 0.06% | 11.41% |
Vanuatu | 1 | $ 0.01 | 0.01% | 100.00% | United States | 0.08% | 8.77% |
Iran | 2 | $ 0.01 | 0.01% | 96.48% | Japan | 0.05% | 11.41% |
Botswana | 1 | $ 0.01 | 0.01% | 100.00% | Japan | 0.05% | 11.41% |
Mali | 1 | $ 0.01 | 0.00% | 100.00% | Canada | 0.99% | 0.41% |
Nigeria | 1 | $ 0.01 | 0.00% | 100.00% | United States | 0.04% | 8.77% |
Niger | 1 | $ 0.00 | 0.00% | 100.00% | Germany | 0.01% | 24.80% |
Appendix C
References
- Randers, J.; Rockström, J.; Stoknes, P.-E.; Goluke, U.; Collste, D.; Cornell, S.E.; Donges, J. Achieving the 17 Sustainable Development Goals within 9 planetary boundaries. Glob. Sustain. 2019. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Turner, W.R.; Spawn, S.A.; Anderson-Teixeira, K.; Cook-Patton, S.C.; Fargione, J.E.; Gibbs, H.K.; Griscom, B.W.; Hewson, J.H.; Howard, J.F.; et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 2020, 10, 287–295. [Google Scholar] [CrossRef]
- Otto, I.M.; Donges, J.F.; Cremades, R.; Bhowmik, A.; Hewitt, R.J.; Lucht, W.; Rockström, J.; Allerberger, F.; McCaffrey, M.; Doe, S.S.; et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl. Acad. Sci. USA 2020, 117, 2354–2365. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.C. Financing energy access and off-grid electrification: A review of status, options and challenges. Renew. Sustain. Energy Rev. 2020, 20, 462–472. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.P. A Quantile approach to identify factors promoting renewable energy in European Countries. Environ. Resour. Econ. 2011, 49, 351–366. [Google Scholar] [CrossRef]
- Stern, N.; Rydge, J. The new energy-industrial revolution and international agreement on climate change. Econ. Energy Environ. Policy 2012, 1, 101–120. [Google Scholar] [CrossRef]
- Pfeiffer, B.; Mulder, P. Explaining the diffusion of renewable energy technology in developing countries. Energy Econ. 2013, 40, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.A.; Scandurra, G.; Carfora, A.; Fodor, M. Renewable investments: The impact of green policies in developing and developed countries. Renew. Sustain. Energy Rev. 2017, 68, 738–747. [Google Scholar] [CrossRef]
- Gollier, C.; Tirole, J. Negotiating effective institutions against climate change. Econ. Energy Environ. Policy 2015, 4, 5–28. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Toman, M. Carbon pricing and cross-border electricity trading for climate change mitigation in South Asia. Econ. Energy Environ. Policy 2018, 7, 111–1244. [Google Scholar] [CrossRef]
- Corbera, E.; Jover, N. The undelivered promises of the Clean Development Mechanism: Insights from three projects in Mexico. Carbon Manag. 2012, 3, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Giersch, H. Urban Agglomeration and Economic, Egon-Sohmen-Foundation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Khennas, S. Understanding the political economy and key drivers of energy access in addressing national energy access priorities and policies: African perspective. Energy Policy 2012, 47, 21–26. [Google Scholar] [CrossRef]
- Bigsten, A.; Tengstam, S. International coordination and the effectiveness of aid. World Dev. 2015, 69, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Tol, R.S. The structure of the climate debate. Energy Policy 2017, 104, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, V.; Clarke, L.; Edmonds, J.; Calvin, K.; Kyle, P. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales. Energy Econ. 2014, 46, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M. Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries. Energy 2019, 179, 232–245. [Google Scholar]
- Dranka, G.G.; Ferreira, P.; Vaz, A.; Ismael, F. Cost-effectiveness of energy efficiency investments for high renewable electricity systems. Energy 2020, 198, 117198. [Google Scholar] [CrossRef]
- Nakhooda, S.; Norman, M.; Barnard, S.; Watson, C.; Greenhill, R.; Caravani, A.; Withley, S. Climate Finance: Is it Making a Difference? A Review of the Effectiveness of Multilateral Climate Funds; Overseas Development Institute: London, UK, 2014. [Google Scholar]
- Pickering, J.; Skovgaard, J.; Kim, S.; Roberts, J.T.; Rossati, D.; Stadelmann, M.; Reich, H. Acting on climate finance pledges: Inter-agency dynamics and relationships with aid in contributor states. World Dev. 2015, 68, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.; Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 2017, 140, 1276–1291. [Google Scholar] [CrossRef]
- Singer, A.M.; Branham, M.; Hutchins, M.G.; Welker, J.; Woodard, D.L.; Badurek, C.A.; Marland, G. The role of CO2 emissions from large point sources in emissions totals, responsibility, and policy. Environ. Sci. Policy 2014, 44, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Carfora, A.; Ronghi, M.; Scandurra, G. The effect of climate finance on greenhouse gas emission: A quantile regression approach. Int. J. Energy Econ. Policy 2017, 7, 185–199. [Google Scholar]
- United Nations Framework Convention on Climate Change. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015. Addendum. Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session; United Nations Office at Geneva: Geneva, Switzerland, 2016. [Google Scholar]
- United Nations Framework Convention on Climate Change. Biennial Assessment and Overview of Climate Finance Flows 2014; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Kahia, M.; Aïssa, M.S.B.; Charfeddine, L. Impact of renewable and nonrenewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (Noecs). Energy 2016, 116, 102–115. [Google Scholar] [CrossRef]
- Ramos, C.; Salomé García, A.; Moreno, B.; Díaz, G. Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain. Energy 2019, 167, 13–25. [Google Scholar] [CrossRef]
- Ndlovu, V.; Inglesi-Lotz, R. The causal relationship between energy and economic growth through research and development (R&D): The case of BRICS and lessons for South Africa. Energy 2020, 199, 117428. [Google Scholar] [CrossRef]
- Keeley, A.R. Renewable Energy in Pacific Small Island Developing States: The role of international aid and the enabling environment from donor’s perspectives. J. Clean. Prod. 2016, 30, 29–36. [Google Scholar] [CrossRef]
- Espagne, E. Climate Finance at COP21 and After: Lessons Learnt; Technical Report No. 9; CEPII Research Center: Paris, France, 2016. [Google Scholar]
- Marzi, S.; Farnia, L.; Dasgupta, S.; Mysiak, J.; Lorenzoni, A. Competence analysis for promoting energy efficiency projects in developing countries: The case of OPEC. Energy 2019, 115996. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, H.; Zhang, X. Decarbonising electricity systems in major cities through renewable cooperation—A case study of Beijing and Zhangjiakou. Energy 2020, 190, 116444. [Google Scholar] [CrossRef]
- Bazilian, M.; Nussbaumer, P.; Gualberti, G.; Haites, E.; Levi, M.; Siegel, J.; Fenhann, J. Informing the financing of universal energy access: An assessment of current financial flows. Electr. J. 2011, 24, 57–82. [Google Scholar] [CrossRef]
- Obradovich, N.; Zimmerman, B. African voters indicate lack of support for climate change policies. Environ. Sci. Policy 2016, 66, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.A.; Scandurra, G.; Carfora, A.; Ronghi, M. Climate Finance as an Instrument to Promote Green Growth in Developing Countries, Springer Brief Series in Climate Studies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Przychodzen, W.; Przychodzen, J. Determinants of renewable energy production in transition economies: A panel data approach. Energy 2020, 191. [Google Scholar] [CrossRef]
- Halimanjaya, A.; Papyrakis, E. Donor characteristics and the allocation of aid to climate mitigation finance. Clim. Chang. Econ. 2015, 6, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Betzold, C.; Weiler, F. Allocation of aid for adaptation to climate change: Do vulnerable countries receive more support? Int. Environ. Agreem. 2017, 17, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Bourguignon, F.; Platteau, J.P. The hard challenge of aid coordination. World Dev. 2015, 69, 86–97. [Google Scholar] [CrossRef]
- Marquardt, J.; Steinbacher, K.; Schreurs, M. Driving force or forced transition? The role of development cooperation in promoting energy transitions in the Philippines and Morocco. J. Clean. Prod. 2016, 128, 22–33. [Google Scholar] [CrossRef]
- Ellis, J.; Caruso, R.; Ockenden, S. Exploring climate finance effectiveness. In Climate Change Expert Group; Technical Report No. 2013/04; Organisation for Economic Co-Operation and Development: Paris, France, 2013. [Google Scholar]
- Tirpak, D.; Brown, L.; Ronquillo-Ballesteros, A. Monitoring Climate Finance in Developing Countries: Challenges and Next Steps; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Tierney, M.J.; Nielson, D.L.; Hawkins, D.G.; Roberts, J.T.; Findley, M.G.; Powers, R.M.; Parks, B.; Wilson, S.E.; Hicks, R.L. More dollars than sense: Refining our knowledge of development finance using aiddata. World Dev. 2011, 39, 1891–1906. [Google Scholar] [CrossRef]
- Onyeji, I.; Bazilian, M.; Nussbaumer, P. Contextualizing electricity access in sub-Saharan Africa. Energy Sustain. Dev. 2012, 16, 520–527. [Google Scholar] [CrossRef]
- Zhao, S.X.; Chan, R.C.; Chan, N.Y.M. Spatial polarization and dynamic pathways of foreign direct investment in China 1990–2009. Geoforum 2012, 43, 836–850. [Google Scholar] [CrossRef]
- Agence Française de Développement. AFD’s Strategy in Turkey. Available online: http://www.afd.fr/webdav/site/afd/shared/PUBLICATIONS/THEMATIQUES/AFD_Turquie_GB.pdf (accessed on 16 December 2016).
- Koenker, R.; Bassett, G.S.J. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Buchinsky, M. Recent advances in quantile regression models: A practical guideline for empirical research. J. Hum. Resour. 1998, 33, 88–126. [Google Scholar] [CrossRef]
- Ranganai, E.; Van Vuuren, J.O.; De Wet, T. Multiple case high leverage diagnosis in regression quantiles. Commun. Stat. Theory Methods 2014, 43, 3343–3370. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Jia, Y.; Ye, L.; Dai, R.; Li, N. Does electricity consumption improve residential living status in less developed regions? An empirical analysis using the quantile regression approach. Energy 2016, 95, 550–560. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A. Are public policies towards renewables successful? Evidence from European countries. Renew. Energy 2012, 44, 109–118. [Google Scholar] [CrossRef]
- Parente, P.M.; Santos Silva, J. Quantile regression with clustered data. J. Econom. Methods 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Kim, T.H.; White, H. Estimation, inference, and specification testing for possibly misspecified quantile regression. Adv. Econom. 2003, 17, 107–132. [Google Scholar] [CrossRef]
- Powell, J.L. Least absolute deviations estimation for the censored regression model. J. Econom. 1984, 25, 303–325. [Google Scholar] [CrossRef]
- Chamberlain, G. Quantile regression, censoring, and the structure of wages. In Advances in Econometrics: Sixth World Congress; Sims, C.A., Ed.; Cambridge University Press: Cambrigde, UK, 1994; Volume 2, Chapter 5. [Google Scholar]
- Lin, B.; Xu, B. Factors affecting CO2 emissions in China’s agriculture sector: A quantile regression. Renew. Sustain. Energy Rev. 2018, 94, 15–27. [Google Scholar] [CrossRef]
- Carfora, A.; Scandurra, G. The impact of climate funds on economic growth and their role in substituting fossil energy sources. Energy Policy 2019, 129, 182–192. [Google Scholar] [CrossRef]
- Karabee, D.; Pradhan, G.; Nonhebel, S. Human energy and time spent by women using cooking energy systems: A case study of Nepal. Energy 2019, 1821, 493–501. [Google Scholar]
- Jakučionytė-Skodienė, M.; Dagiliūtė, R.; Liobikienė, G. Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector? Energy 2020, 193, 116784. [Google Scholar] [CrossRef]
- Toklu, E.; Güney, M.S.; IsIk, M.; Comakli, O.; Kaygusuz, K. Energy production, consumption, policies and recent developments in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 1172–1186. [Google Scholar] [CrossRef]
- Romano, A.A.; Scandurra, G.; Carfora, A. Probabilities to adopt feed in tariff conditioned to economic transition: A scenario analysis. Renew. Energy 2015, 83, 988–997. [Google Scholar] [CrossRef]
- Neumayer, E.; Plümper, T.; Barthel, F. The political economy of natural disaster damage. Glob. Environ. Chang. 2014, 24, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.; Santos Silva, J.M.C. Quantile Regression and Heteroskedasticity, Discussion Paper; Department of Economics, University of Essex: Colchester, UK, 2013; Available online: https://jmcss.som.surrey.ac.uk/JM_JSS.pdf (accessed on 21 September 2020).
- Martinot, E.; Chaurey, A.; Lew, D.; Moreira, J.R.; Wamukonya, N. Renewable energy markets in developing countries. Annu. Rev. Energy Environ. 2002, 27, 309–348. [Google Scholar] [CrossRef]
- Karekezi, S.; Kithyoma, W. Renewable energy strategies for rural Africa: Is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa? Energy Policy 2002, 30, 1071–1086. [Google Scholar] [CrossRef]
- Kanagawa, M.; Nakata, T. Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries. Energy Policy 2008, 36, 2016–2029. [Google Scholar] [CrossRef]
- Rao, M.N.; Reddy, B.S. Variations in energy use by Indian households: An analysis of micro level data. Energy 2007, 32, 143–153. [Google Scholar]
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Chaurey, A.; Krithika, P.R.; Palit, D.; Rakesh, S.; Sovacool, B.K. New partnerships and business models for facilitating energy access. Energy Policy 2012, 47, 48–55. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. Climate Finance in 2013–14 and the USD 100 Billion Goal; Organisation for Economic Co-Operation and Development: Paris, France, 2015. [Google Scholar]
- Duguma, L.A.; Wambugu, S.W.; Minang, P.A.; Van Noordwijk, M. A systematic analysis of enabling conditions for synergy between climate change mitigation and adaptation measures in developing countries. Environ. Sci. Policy 2014, 42, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Scandurra, G.; Thomas, A.; Passaro, R.; Bencini, J.; Carfora, A. Does climate finance reduce vulnerability in Small Island Developing States? An empirical investigation. J. Clean. Prod. 2020, 256, 120330. [Google Scholar] [CrossRef]
Quantiles | Recipients | Average n° Financed Projects | Total of Recipient * | Recipient/GT (%) | Recipient/GT of Recipient | Donor/GT of Donor | Donor/GT |
---|---|---|---|---|---|---|---|
25th | Niger, Nigeria, Mali, Botswana, Iran, Vanuatu, Guatemala, Lesotho, Angola, Bosnia and Herzegovina, Syria, Eritrea, Venezuela, Namibia, Malaysia, Sao Tome and Principe, Laos, Rwanda, Belarus, Dominican Republic, Morocco | 1.81 | 0.04 | 0.02 | 90.88 | 5.47 | 10.57 |
50th | Tonga, Malawi, Sri Lanka, El Salvador, Haiti, Cameroon, Costa Rica, Uruguay, Colombia, Ethiopia, Madagascar, Benin, Algeria, Ecuador, Azerbaijan, Tajikistan, Yemen, Kenya, Jordan | 3.00 | 0.17 | 0.10 | 70.59 | 8.36 | 11.81 |
75th | Lebanon, Paraguay, Mozambique, Honduras, Panama, Papua New Guinea, Maldives, Nicaragua, Pakistan, Cuba, Senegal, Ghana, Kazakhstan, Chile, Tunisia, Argentina, Kyrgyzstan, Armenia, Mexico, South Africa, Egypt | 4.19 | 0.66 | 0.41 | 69.93 | 12.01 | 10.37 |
90th | Tanzania, Thailand, Bolivia, Ukraine, Cape Verde, Bangladesh, Cambodia, Vietnam, Zambia, Brazil, Mongolia, Philippines | 8.08 | 1.74 | 1.07 | 55.58 | 18.78 | 8.35 |
95th | Uganda, Indonesia, Peru | 9.67 | 3.66 | 2.25 | 72.48 | 34.50 | 5.72 |
Over 95th | Afghanistan, Nepal, China, India, Turkey | 19.40 | 22.59 | 13.88 | 63.32 | 48.83 | 19.35 |
Variable | Definition | Unit | Year | Mean | Std. Dev. | Min | Max | Source |
---|---|---|---|---|---|---|---|---|
Dependent Variable | ||||||||
QTot_rec | Sum of funds allocated to “Energy generation and supply” and to “General environmental protection” | M $ | 2010 | 2008.56 | 6264.07 | 3.06 | 41,710.38 | AidData.org |
Covariates | ||||||||
Environmental | ||||||||
Ghg_tot | Total greenhouse gas emissions are composed of CO2 totals excluding shortcycle biomass burning (such as agricultural waste burning and Savannah burning) but including other biomass burning (such as forest fires, post-burn decay, peat fires and decay of drained peatlands), all anthropogenic CH4 sources, N2O sources and F-gases (HFCs, PFCs and SF6). | kt of CO2 equivalent | 2010 | 332,428.20 | 1,301,755 | 151.93 | 11,200,000 | World Bank (World Development Indicators) |
Energy | ||||||||
ei | Energy intensity level of primary energy is the ratio between energy supply and gross domestic product measured at purchasing power parity. Energy intensity measures how much energy is used to produce one unit of economic output. Lower ratio indicates that a smaller amount of energy is used to produce one unit of output. | MJ/$2011 PPP GDP | 2010 | 6.03 | 3.42 | 2.34 | 19.55 | World Bank (World Development Indicators) |
oil_sup | Total Oil Supply includes the production of crude oil (including lease condensate), natural gas plant liquids, and other liquids, and refinery processing gain *. | Thousand Barrels Per Day | 2010 | 416.88 | 923.75 | −0.545 | 4377.13 | The U.S. Energy Information Administration (EIA) |
sh_foss | Fossil Fuels electricity generation consists of electricity generated from coal, petroleum, and natural gas. | Billion Kilowatthours | 2010 | 0.60 | 0.34 | 0 | 1 | |
sh_nonhydro | Non-Hydroelectric renewable generation includes the electricity generated by wind, solar, tide, wave and geothermal plants. It excludes generation from hydroelectric plants and pumped storage | Billion Kilowatthours | 2010 | 0.03 | 0.06 | 0 | 0.30 | |
Demographic | ||||||||
pop_fem | Female population is the percentage of the population that is female. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the asylum country, who are generally considered part of the population of the country of origin. | % of total | 2010 | 50.24 | 1.03 | 48.14 | 53.79 | World Bank (World Development Indicators) |
Socio-Economic and Living Standards | ||||||||
acc_el | Access to electricity is the percentage of population with access to electricity. Electrification data are collected from industry, national surveys and international sources. | % of population | 2010 | 70.56 | 32.56 | 8.70 | 100 | World Bank (World Development Indicators) |
lgdp | GDP per capita based on purchasing power parity (PPP). PPP GDP is gross domestic product converted to international dollars using purchasing power parity rates. An international dollar has the same purchasing power over GDP as the US dollar in the United States | constant 2011 international $ | 2010 | 8.61 | 0.89 | 6.71 | 9.96 | The U.S. Energy Information Administration (EIA) |
ln_elcons | The electric consumption is the electric power consumption equal to the sum of total net electricity generation and electricity imports net of the electricity exports and electricity transmission and distribution. losses | Billion Kilowatthours | 2010 | 2.21 | 2.21 | −3.09 | 8.24 | The U.S. Energy Information Administration (EIA) |
Quantile | |||||
---|---|---|---|---|---|
Variable | 25th | 50th | 75th | 90th | 95th |
Coef./(se) | Coef./(se) | Coef./(se) | Coef./(se) | Coef./(se) | |
ghg_tot | 0.00206 *** | 0.00203 *** | 0.00199 *** | 0.00977 *** | 0.0104 *** |
(0.0000319) | (0.0000228) | (0.0000505) | (0.00203) | (0.00117) | |
pop_fem | −23.36 | −22.05 | −94.90 | −346.8 *** | 1048.9 ** |
(29.78) | (57.34) | (91.58) | (109.5) | (459.6) | |
ei | −10.66 | 17.06 | −60.07 | −415.3** | −53.27 |
(9.677) | (31.02) | (44.94) | (179.2) | (96.40) | |
oil_sup | −0.288 *** | −0.413 *** | −0.605 *** | −1.757 *** | −1.673 *** |
(0.0395) | (0.124) | (0.190) | (0.332) | (0.437) | |
sh_foss | 96.46 * | 344.5 ** | 143.1 | −429.8 | −3206.5 ** |
(57.16) | (158.3) | (392.7) | (2189.9) | (1456.5) | |
sh_nonhydro | 308.2 | −316.3 | −2152.7 *** | −7075.9 * | −23748.6 *** |
(436.0) | (587.3) | (700.0) | (3899.8) | (4913.9) | |
lgdp | −2.826 | −37.63 | −280.1 | −1217.3 | −2996.0 ** |
(40.62) | (81.83) | (408.2) | (2736.4) | (1145.7) | |
lnel_cons | 7.219 | 75.51 | 235.9 *** | 511.2 | 478.2 |
(24.16) | (48.18) | (59.35) | (583.5) | (470.7) | |
acc_el | 1.579 | 2.443 *** | 1.234 | −0.782 | 38.09 |
(1.116) | (0.803) | (7.936) | (52.92) | (28.77) | |
Constant | 1115.7 | 1149.7 | 7915.2 ** | 32246.1 | −23721.8 |
(1690.5) | (2569.4) | (3243.1) | (24516.0) | (14572.1) | |
R-squared | 0.243 | 0.253 | 0.282 | 0.260 | 0.240 |
N. of cases | 81 | 81 | 81 | 81 | 81 |
Parente-Santos Silva test p-value | 0.706 | 0.821 | 0.925 | 0.317 | 0.000482 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passaro, R.; Quinto, I.; Scandurra, G.; Thomas, A. How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation. Sustainability 2020, 12, 9676. https://doi.org/10.3390/su12229676
Passaro R, Quinto I, Scandurra G, Thomas A. How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation. Sustainability. 2020; 12(22):9676. https://doi.org/10.3390/su12229676
Chicago/Turabian StylePassaro, Renato, Ivana Quinto, Giuseppe Scandurra, and Antonio Thomas. 2020. "How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation" Sustainability 12, no. 22: 9676. https://doi.org/10.3390/su12229676
APA StylePassaro, R., Quinto, I., Scandurra, G., & Thomas, A. (2020). How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation. Sustainability, 12(22), 9676. https://doi.org/10.3390/su12229676