Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Anaerobically Digested Swine Manure
2.2. Struvite Precipitation Experiments
2.3. Estimation of NH4-N and PO4-P Recovery as Struvite from AD Effluents
2.4. Analytical Procedures
3. Results and Discussion
3.1. Optimal Conditions for Struvite Precipitation of AD Effluents from Swine Manure
3.2. Removal of TOC, NH4-N, PO4-P, and Toxic Metals from AD Effluents of Swine Manure under Optimal Conditions
3.3. Application Model of Struvite Precipitation for the Recovery of N and P from Swine Manure
3.4. Economic Analysis of Struvite Recovery When Treating AD Effluents of Swine Manure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Environment. The Annual Report to the Nation on the Status of Pollution Sources, 2017; National Institute of Environmental Research: Incheon, Korea, 2019.
- Velthof, G.L.; Hou, Y.; Oenema, O. Nitrogen excretion factors of livestock in the European Union. J. Sci. Food Agric. 2015, 95, 3004–3014. [Google Scholar] [CrossRef]
- Gooddy, D.C.; Lapworth, D.J.; Bennett, S.A.; Heaton, T.H.E.; Williams, P.J.; Surridge, B.W.J. A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Water Res. 2016, 88, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jahng, D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: Effect of alkali types. J. Hazard. Mater. 2010, 182, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lee, Y.W.; Jahng, D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lang, Q.; Wu, S.; Li, W.; Bah, H.; Dong, R. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China. Bioresour. Technol. 2014, 156, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo-Salces, B.; Mahdy, A.; Ballesteros, M.; González-Fernández, C. From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion. Renew. Energy 2016, 96, 1103–1110. [Google Scholar] [CrossRef]
- Guo, H.G.; Chen, Q.L.; Hu, H.W.; He, J.Z. High-solid anaerobic co-digestion of pig manure with lignite promotes methane production. J. Clean. Prod. 2020, 258, 120695–120705. [Google Scholar] [CrossRef]
- Jin, H.; Chang, Z. Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry. Appl. Biochem. Biotechnol. 2011, 164, 268–282. [Google Scholar] [CrossRef]
- Franchino, M.; Tigini, V.; Varese, G.C.; Sartor, R.M.; Bona, F. Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Sci. Total Environ. 2016, 569–570, 40–45. [Google Scholar] [CrossRef]
- Liu, R.; Chen, L.; Wang, G.; Ye, Z. On the pollution with antibiotics, heavy metals and conventional indicators in digested wastewater from large-scale pig farms in Jiaxing city, China. Environ. Eng. Manag. J. 2016, 15, 2253–2260. [Google Scholar]
- Petersen, S.O.; Sommer, S.G.; Béline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of livestock manure in a whole-farm perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.W.; Jahng, D. Ammonia stripping for enhanced biomethanization of piggery wastewater. J. Hazard. Mater. 2012, 199–200, 36–42. [Google Scholar] [CrossRef] [PubMed]
- OECD Data for Nutrient Balance. Available online: https://data.oecd.org/agrland/nutrient-balance.htm#indicator-chart (accessed on 7 April 2020).
- Tchobanoglous, G.; Burton, F.L. Wastewater Engineering, 4th ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Deng, L.W.; Zheng, P.; Chen, Z.A. Anaerobic digestion and post-treatment of swine wastewater using IC–SBR process with bypass of raw wastewater. Process Biochem. 2006, 41, 965–969. [Google Scholar] [CrossRef]
- Rajagopal, R.; Rousseau, P.; Bernet, N.; Beline, F. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresour. Technol. 2011, 102, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Lotti, T.; Cordola, M.; Kleerebezem, R.; Caffaz, S.; Lubello, C.; van Loosdrecht, M.C. Inhibition effect of swine wastewater heavy metals and antibiotics on anammox activity. Water Sci. Technol. 2012, 66, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Zhang, Q.Q.; Xu, J.J.; Shi, Z.J.; Guo, Q.; Jiang, X.Y.; Wang, H.Z.; Chen, G.H.; Jin, R.C. Long-term effects of heavy metals and antibiotics on granule-based anammox process: Granule property and performance evolution. Appl. Microbiol. Biotechnol. 2016, 100, 2417–2427. [Google Scholar] [CrossRef]
- Buchanan, J.R.; Mote, C.R.; Robinson, R.B. Thermodynamics of struvite formation, Trans. ASAE 1994, 37, 617–621. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Struvite (accessed on 7 April 2020).
- Yetilmezsoy, K.; Ilhan, F.; Kocak, E.; Akbin, H.M. Feasibility of struvite recovery process for fertilizer industry: A study of financial and economic analysis. J. Clean. Prod. 2017, 152, 88–102. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, D.; Yang, J.; Huang, H.; Su, G. Nitrogen removal from digested piggery wastewater using fermented superphosphate within the pretreatment stage and an MAP fertilizer pot test. J. Clean. Prod. 2019, 152, 88–102. [Google Scholar] [CrossRef]
- Muhmood, A.; Lu, J.; Dong, R.; Wu, S. Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. J. Environ. Manag. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Ryu, H.D.; Lee, S.I. Application of struvite precipitation as a pretreatment in treating swine wastewater. Process Biochem. 2010, 45, 563–572. [Google Scholar] [CrossRef]
- Ryu, H.D.; Choo, Y.D.; Kang, M.G.; Lee, S.I. Integrated application of struvite precipitation and biological treatment in treating autothermal thermophilic aerobic digestion supernatant liquid. Environ. Eng. Sci. 2014, 31, 167–175. [Google Scholar] [CrossRef]
- Lee, E.Y.; Oh, M.H.; Yang, S.H.; Yoon, T.H. Struvite crystallization of anaerobic digestive fluid of swine manure containing highly concentrated nitrogen. Asian-Australas. J. Anim. Sci. 2015, 28, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Min, K.J.; Lee, K.; Yu, M.S.; Park, K.Y. Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environ. Eng. Res. 2017, 22, 12–18. [Google Scholar] [CrossRef]
- Kwon, G.; Kang, J.; Nam, J.H.; Kim, Y.O.; Jahng, D. Recovery of ammonia through struvite production using anaerobic digestate of piggery wastewater and leachate of sewage sludge ash. Environ. Technol. 2018, 39, 831–842. [Google Scholar] [CrossRef]
- Uludag-Demirer, S.; Demirer, G.N.; Chen, S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process Biochem. 2005, 40, 3667–3674. [Google Scholar] [CrossRef]
- Perera, P.W.A.; Han, Z.Y.; Chen, Y.X.; Wu, W.X. Recovery of nitrogen and phosphorus as struvite from swine waste biogas digester effluent. Biomed. Environ. Sci. 2007, 20, 343–350. [Google Scholar]
- Perera, P.W.A.; Wu, W.X.; Chen, Y.X.; Han, Z.Y. Struvite recovery from swine waste biogas digester effluent through a stainless steel device under constant pH conditions. Biomed. Environ. Sci. 2009, 22, 201–209. [Google Scholar] [CrossRef]
- Yilmazel, Y.D.; Demirer, G.N. Removal and recovery of nutrients as struvite from anaerobic digestion residues of poultry manure. Environ. Technol. 2011, 32, 783–794. [Google Scholar] [CrossRef]
- Siciliano, A.; De Rosa, S. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environ. Technol. 2014, 35, 841–850. [Google Scholar] [CrossRef]
- Vidlarova, P.; Heviankova, S.; Kyncl, M. Contribution to the study of ammonia removal from digestate by struvite precipitation. IOP Conf. Ser. Earth Environ. Sci. 2017, 92, 012072–012076. [Google Scholar] [CrossRef]
- Gong, W.; Li, Y.; Luo, L.; Luo, X.; Cheng, X.; Liang, H. Application of struvite-MAP crystallization reactor for treating cattle manure anaerobic digested slurry: Nitrogen and phosphorus recovery and crystal fertilizer efficiency in plant trials. Int. J. Environ. Res. Public Health 2018, 15, 1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrigley, T.J.; Webb, K.M.; Venkitachalm, H. A laboratory study of struvite precipitation after anaerobic digestion of piggery wastes. Bioresour. Technol. 1992, 41, 117–121. [Google Scholar] [CrossRef]
- Szymanska, M.; Szara, E.; Sosulski, T.; Was, A.; van Pruissen, G.W.P.; Cornelissen, R.L.; Borowik, M.; Konkol, M. A bio-refinery concept for N and P recovery—A chance for biogas plant development. Energies 2019, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.O.; Mikkelsen, R.L.; Hesterberg, D.L. Struvite precipitation in anaerobic swine lagoon liquid: Effect of pH and Mg:P ratio and determination of rate constant. Bioresour. Technol. 2003, 89, 229–236. [Google Scholar] [CrossRef]
- Iqbal, M.; Bhuiyan, H.; Mavinic, D.S. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer. Environ. Technol. 2008, 29, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, Q.; Zhong, H.; Zheng, X.; Wei, Y. Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment. J. Environ. Sci. 2016, 39, 29–36. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Wang, S.; Jiang, Y.; Xiao, D.; Ding, L.; Gao, F. Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component. Ecol. Eng. 2016, 92, 111–118. [Google Scholar] [CrossRef]
- Kim, D.; Ryu, H.D.; Kim, M.S.; Kim, J.; Lee, S.I. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 2007, 146, 81–85. [Google Scholar] [CrossRef]
- Cornwell, D.A.; Bishop, M.M. Determining velocity gradients in laboratory and full-scale systems. J. Am. Water Works Assoc. 1983, 75, 470–475. [Google Scholar] [CrossRef]
- Ministry of Environment. Korea Standard Methods for the Examination of Water and Wastewater; National Institute of Environmental Research: Incheon, Korea, 2017.
- Lin, X.; Han, Z.; Yu, H.; Ye, Z.; Zhu, S.; Zhu, J. Struvite precipitation from biogas digestion slurry using a two chamber electrolysis cell with a magnesium anode. J. Clean. Prod. 2018, 174, 1598–1607. [Google Scholar] [CrossRef]
- Taddeo, R.; Honkanen, M.; Kolppo, K.; Lepistö, R. Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: Process feasibility and struvite quality. J. Environ. Manag. 2018, 212, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Joko, I. Phosphorus removal from wastewater by the crystallization method. Water Sci. Technol. 1984, 17, 121–132. [Google Scholar] [CrossRef]
- Van Dijk, J.C.; Braakensiek, H. Phosphate removal by crystallization in a fluidized bed. Water Sci. Technol. 1985, 17, 133–142. [Google Scholar] [CrossRef]
- Lee, S.I.; Weon, S.Y.; Lee, C.W.; Koopman, B. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere 2003, 51, 265–271. [Google Scholar] [CrossRef]
- Stratful, I.; Scrimshaw, M.D.; Lester, J.N. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res. 2001, 35, 4191–4199. [Google Scholar] [CrossRef]
- Uysal, A.; Yilmazel, Y.D.; Demirer, G.N. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard. Mater. 2010, 181, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Rouff, A.A. Influence of pH and oxidation state on the interaction of arsenic with struvite during mineral formation. Environ. Sci. Technol. 2012, 46, 8791–8798. [Google Scholar] [CrossRef]
- Rouff, A.A.; Ma, N.; Kustka, A.B. Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions. Chemosphere 2016, 146, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Li, B.; Li, J.; Zhang, P.; Yu, W.; Zhao, N.; Guo, G.; Young, B. Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environ. Pollut. 2019, 245, 658–665. [Google Scholar] [CrossRef]
- Córdoba, V.; Fernández, M.; Santalla, E. The effect of different inoculums on anaerobic digestion of swine wastewater. J. Environ. Chem. Eng. 2016, 4, 115–122. [Google Scholar] [CrossRef]
- Korea Price Research Center, Corp. Available online: https://www.kprc.or.kr (accessed on 14 August 2020).
Livestock Manure | Initial Concentration (mg/L) | Sources of Mg & P | pH | Molar Ratio of Ions | Mixing Intensity (rpm) | Reaction Time (min) | Removal (%) | Reactor Types | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|---|
NH4-N | PO4-P | NH4-N | PO4-P | ||||||||
Swine manure | 589–607 | 21–22 | MgSO4 Fermented super-phosphate | 9.51 | n.a. 2 | 200 | 30 | 55 | 64 | Batch | [23] |
Swine manure | 2974–3907 | 1120–1468 | MgCl2·6H2O | 8.8 | Mg:PO43− = 1.5:1.0 | 100 | 60 | 40 | 89 | Batch | [27] |
Swine manure | 1725–1825 | 226–216 | MgCl2·6H2O KH2PO4 | 9.0 | Mg:NH4+:PO43− = 1.2:1.0:1.0 | n.a. | 10 | 95 | 97 | CSTR 3 | [28] |
Swine manure | 2511–3771 | 54–68 | MgCl2·6H2O Sewage sludge ash | 10.0 | Mg:NH4-N:PO4-P = 1.2:1.0:1.0 | 400 | 60 | 92 | 100 | Batch | [29] |
Dairy manure | 255–519 | n.a. | MgCl2·6H2O Na2HPO4 | n.a. | Mg:NH4+:PO43− = 2.2:1.0:4.8 | n.a. | n.a. | 95 | n.a. | Batch | [30] |
Swine manure | 234 | 42 | MgCl2·6H2O KH2PO4 | 9.0 | Mg:NH4+:PO43− = 1.0:1.0:1.0 | 500 | 60 | 71 | 97 | Batch | [31] |
Swine manure | 296 | 64 | MgCl2·6H2O KH2PO4 | 9.0 | Mg:NH4+:PO43− = 1.2:1.0:1.2 | 500 | 900 | 71 | 97 | Batch | [32] |
Poultry manure | 4495–4729 | 163 | MgCl2·6H2O 75% H3PO4 | 8.5 | Mg:NH4-N:PO4-P = 1.5:1.0:1.0 | 250 | 30 | 97 | 32 | Batch | [33] |
Cattle manure & food waste | 1060 | 450 | Bittern Bone meal | 9.0 | Mg:NH4-N:PO4-P = 1.3:1.0:1.3 | 300 | 15 | 91 | 99 | Batch | [34] |
Swine manure | 1660 | 209 | MgSO4 Na2HPO4·12H2O | 9.0 | Mg:NH4+:PO43− = 1.3:1.0:0.8 | 250 | n.a. | 78 | 6 | Batch | [35] |
Cattle manure | 100–700 | 10–60 | MgCl2 Na2HPO4 | 10.0 | Mg:NH4-N:PO4-P = 1.6:1.2:1.0 | n.a. | n.a. | 90 | 100 | CSTR | [36] |
Swine manure | 800 | 10–30 | MgSO4 | 9.0 | n.a. | n.a. | 1440 | n.a. | 75 | Batch | [37] |
Cattle manure | 3000 | 183 | MgCl2 | 9.0 | n.a. | n.a. | n.a. | n.a. | 44 | CSTR | [38] |
Facility | Influent Source | Mixing Ratio of Swine Manure to Food Waste | Influent Flow Rate (m3/d) | Post-Treatment of AD Effluent |
---|---|---|---|---|
A1 | Swine manure and food waste | 8:2 | 140 | None |
A2 | Swine manure and food waste | 6:4 | 60 | Biological treatment |
A3 | Swine manure and food waste | 5:5 | 130 | Biological treatment |
A4 | Swine manure and food waste | 8:2 | 100 | Biological treatment |
Parameter | Facility | Mean Value | |||
---|---|---|---|---|---|
A1 | A2 | A3 | A4 | ||
pH | 9.65 | 8.24 | 8.20 | 9.65 | 8.94 ± 0.83 1 |
TOC 2 (mg/L) | 1961 | 709 | 1085 | 1256 | 1253 ± 524 |
NH4-N (mg/L) | 1742 | 2110 | 2010 | 1990 | 1963 ± 156 |
T-N (mg/L) | 2505 | 2697 | 2314 | 2306 | 2455 ± 186 |
PO4-P (mg/L) | 36.0 | 20.9 | 1.9 | 15.8 | 18.7 ± 14.1 |
T-P (mg/L) | 402.5 | 74.0 | 14.8 | 62 | 138.3 ± 178.0 |
As (mg/L) | 0.162 | 0.171 | 0.132 | 0.236 | 0.175 ± 0.044 |
Cd (mg/L) | 0.021 | 0.020 | n.d. | n.d. | 0.021 ± 0.001 |
Pb (mg/L) | n.d. | 0.132 | 0.072 | 0.078 | 0.094 ± 0.033 |
Cu (mg/L) | 9.714 | 1.389 | 0.146 | 0.815 | 3.016 ± 4.494 |
Zn (mg/L) | 43.858 | 4.772 | 0.416 | 1.679 | 12.681 ± 20.865 |
Cr (mg/L) | 0.251 | 0.082 | 0.024 | 0.300 | 0.164 ± 0.132 |
Ni (mg/L) | 0.429 | 0.078 | 0.135 | 0.403 | 0.261 ± 0.181 |
Parameter | Sample Numbers (n) | Removal (%) | |
---|---|---|---|
Value Range | Mean Value | ||
TOC 1 (mg/L) | 9 | 32.1–89.7 | 57.6 ± 22.0 2 |
NH4-N | 9 | 62.2–89.6 | 73.7 ± 9.6 |
PO4-P | 9 | 68.7–89.0 | 83.0 ± 7.4 |
As | 4 | 23.7–49.0 | 34.8 ± 12.4 |
Cd | 4 | 0–89.6 | 22.4 ± 44.8 |
Pb | 4 | 0–75.9 | 28.9 ± 36.0 |
Cu | 4 | 44.1–97.2 | 74.3 ± 22.1 |
Zn | 4 | 58.1–97.4 | 79.2 ± 16.9 |
Cr | 4 | 13.3–100 | 65.7 ± 42.0 |
Ni | 4 | 12.1–48.7 | 32.1 ± 17.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, H.-D.; Lim, D.Y.; Kim, S.-J.; Baek, U.-I.; Chung, E.G.; Kim, K.; Lee, J.K. Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure. Sustainability 2020, 12, 8574. https://doi.org/10.3390/su12208574
Ryu H-D, Lim DY, Kim S-J, Baek U-I, Chung EG, Kim K, Lee JK. Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure. Sustainability. 2020; 12(20):8574. https://doi.org/10.3390/su12208574
Chicago/Turabian StyleRyu, Hong-Duck, Do Young Lim, Sun-Jung Kim, Un-Il Baek, Eu Gene Chung, Kyunghyun Kim, and Jae Kwan Lee. 2020. "Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure" Sustainability 12, no. 20: 8574. https://doi.org/10.3390/su12208574