Trade Imports Increasingly Contribute to Plant Nutrient Inputs: Case of the Finnish Food System 1996–2014
Abstract
:- Trade is a significant material flow that transports nutrients between countries within the food and feed products.
- The net flow of nitrogen, phosphorus, and potassium has grown to Finland from 35%, 30%, and 30% over 1996–2014.
- In the period, the cumulative net balance of nutrients contained in trade (419 Gg nitrogen) is of the same magnitude as the reductions in nitrogen fertilizer use (449 Gg nitrogen).
- The trade balance of plant nutrients in animal feeds needs to be included in the assessment of nutrient loading potentials.
1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Data and Calculation Methods
2.3. Uncertainty Analysis
2.4. Data Exploration and Statistical Analysis
3. Results
3.1. Trade Quantities and Trend Analysis
3.2. Analysis of Sub-Group and Heading Level Flows
3.3. Spatial Distribution of Nutrients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The Global Nitrogen Cycle in the Twenty-First Century The Global Nitrogen Cycle in the Twenty- First Century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 1621. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Synthesis/Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Persson, Å.; Deutsch, L.; Zalasiewicz, J.; Williams, M.; Richardson, K.; Crumley, C.; Crutzen, P.; Folke, C.; Gordon, L.; et al. The Anthropocene: From Global Change to Planetary Stewardship. Ambio 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.; Fetzer, I.; Bennett, E.; Biggs, R.; Carpenter, S. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 348, 1217. [Google Scholar] [CrossRef] [Green Version]
- Kahiluoto, H.; Kuisma, M.; Kuokkanen, A.; Mikkilä, M.; Linnanen, L. Taking Planetary Nutrient Boundaries Seriously: Can We Feed the People? Glob. Food Secur. 2014, 3, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; Drangert, J.O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Mew, M.C. Phosphate Rock Costs, Prices and Resources Interaction. Sci. Total Environ. 2016, 542, 1008–1012. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key Sustainability Challenges for the Global Phosphorus Resource, Their Implications for Global Food Security, and Options for Mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Ryther, J.H.; Dunstan, W.M. Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment. Science 1971, 171, 1008–1013. [Google Scholar] [CrossRef] [Green Version]
- Selman, M.; Greenhalgh, S.; Diaz, R.; Sugg, Z. Eutrophication and Hypoxia in Coastal Areas: A Global Assessment of the State of Knowledge. World Resour. Insitute Policy Note 2008, 284, 1–6. [Google Scholar]
- Selman, M. Interactive Map of Eutrophication & Hypoxia; World Resources Insititute: Washington, DC, USA, 2013. [Google Scholar]
- Conley, D.J.; Humborg, C.; Rahm, L.; Savchuk, O.P.; Wulff, F. Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry. Environ. Sci. Technol. 2002, 36, 5315–5320. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, J.; Andersen, J.H.; Gustafsson, B.G.; Conley, D.J. Deoxygenation of the Baltic Sea during the Last Century. Proc. Natl. Acad. Sci. USA 2014, 111, 5628–5633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming-Lehtinen, V.; Andersen, J.H.; Carstensen, J.; Łysiak-Pastuszak, E.; Murray, C.; Pyhälä, M.; Laamanen, M. Recent Developments in Assessment Methodology Reveal That the Baltic Sea Eutrophication Problem Is Expanding. Ecol. Indic. 2015, 48, 380–388. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. First Baltic Sea Pollution Load Compilation; Helsinki Commission: Helsinki, Finland, 1987.
- Uusitalo, R.; Turtola, E.; Grönroos, J.; Kivistö, J.; Mäntylahti, V.; Turtola, A.; Lemola, R.; Salo, T. Finnish Trends in Phosphorus Balances and Soil Test Phosphorus. Agric. Food Sci. 2007, 16, 301–316. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. HELCOM Core Indicators. Final Report of the HELCOM CORESET Project. Balt. Sea Environ. Proc. No. 136 2013, 136, 71. [Google Scholar]
- HELCOM. Updated Fifth Baltic Sea Pollution Load Compilation (PLC-5.5). Baltic Sea Environment Proceedings No. 145. Balt. Sea Environ. Proc. 2015, 145. [Google Scholar]
- Antikainen, R.; Haapanen, R.; Lemola, R.; Nousiainen, J.I.; Rekolainen, S. Nitrogen and Phosphorus Flows in the Finnish Agricultural and Forest Sectors, 1910–2000. Water. Air. Soil Pollut. 2008, 194, 163–177. [Google Scholar] [CrossRef]
- Antikainen, R.; Lemola, R.; Nousiainen, J.I.; Sokka, L.; Esala, M.; Huhtanen, P.; Rekolainen, S. Stocks and Flows of Nitrogen and Phosphorus in the Finnish Food Production and Consumption System. Agric. Ecosyst. Environ. 2005, 107, 287–305. [Google Scholar] [CrossRef]
- Lehikoinen, E.; Parviainen, T.; Helenius, J.; Jalava, M.; Salonen, A.O.; Kummu, M. Cattle Production for Exports in Water-Abundant Areas: The Case of Finland. Sustainability 2019, 11, 1075. [Google Scholar] [CrossRef] [Green Version]
- Sandström, V.; Lehikoinen, E.; Peltonen-Sainio, P. Replacing Imports of Crop Based Commodities by Domestic Production in Finland: Potential to Reduce Virtual Water Imports. Front. Sustain. Food Syst. 2018, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Knuuttila, M.; Vatanen, E. Elintarvikemarkkinoiden Tuontiriippuvuus; Luonnonvara- ja biotalouden tutkimus; Natural Resources Institute Finland: Helsinki, Finland, 2015. [Google Scholar]
- Keyworth, N.B.G.S. European Mineral Statistics 2009–13. A Product of the World Mineral Statistics Database; Keyworth, N., Ed.; British Geological Survey: Nottingham, UK, 2015. [Google Scholar]
- Granstedt, A.; Schneider, T.; Seuri, P.; Thomsson, O. Ecological Recycling Agriculture to Reduce Nutrient Pollution to the Baltic Sea. Biol. Agric. Hortic. 2008, 26, 279–307. [Google Scholar] [CrossRef]
- Withers, P.J.A.; van Dijk, K.C.; Neset, T.-S.S.; Nesme, T.; Oenema, O.; Rubæk, G.H.; Schoumans, O.F.; Smit, B.; Pellerin, S. Stewardship to Tackle Global Phosphorus Inefficiency: The Case of Europe. Ambio 2015, 44, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Känkänen, H.; Suokangas, A.; Tiilikkala, K.; Nykänen, A. Biologinen Typensidonta Fossiilisen Energian Säästäjänä; MTT: Jokioinen, Finland, 2013. [Google Scholar]
- van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus Flows and Balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- Voet, E. Substance Flow Analysis Metholodology. In A Handbook of Industrial Ecology; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Brunner, P.H.; Ma, H.W. Substance Flow Analysis an Indispensable Tool for Goal-Oriented Waste Management. J. Ind. Ecol. 2009, 13, 11–14. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Book Reviews: Practical Handbook of Material Flow Analysis. Int. J. Life Cycle Assess. 2004, 9, 337–338. [Google Scholar] [CrossRef]
- Marttinen, S.; Venelampi, O.; Iho, A.; Koikkalainen, K.; Lehtonen, E.; Luostarinen, S.; Rasa, K.; Sarvi, M.; Tampio, E.; Turtola, E.; et al. Kohti Ravinteiden Kierrätyksen Läpimurtoa—Nykytila Ja Suositukset Ohjauskeinojen Kehittämiseksi Suomessa; Natural Resources Institute Finland: Helsinki, Finland, 2017. [Google Scholar]
- Official Statistics of Finland (OSF). Utilised Agricultural Area. Available online: https://stat.luke.fi/en/utilised-agricultural-area (accessed on 1 September 2018).
- Customs, F. International Trade Statistics. Available online: http://uljas.tulli.fi/uljas/ (accessed on 1 March 2016).
- USDA. National Nutrient Database for Standard Reference; Release 24; United States Department of Agriculture Agricultural Research Service: Washington, DC, USA, 2008.
- Agroscope. Swiss Feed Database. Available online: http://www.feedbase.ch (accessed on 8 April 2018).
- Natural Resources Institute Finland (Luke). Feed Tables. Available online: https://portal.mtt.fi/portal/page/portal/Rehutaulukot/feed_tables_english (accessed on 10 April 2018).
- THL, N.; Institute for Health and Welfare. Finelli. Available online: https://fineli.fi/ (accessed on 15 May 2018).
- Hedbrant, J.; Sörme, L. Data Vagueness and Uncertainties in Urban Heavy-Metal Data Collection. Water Air Soil Pollut. Focus 2001, 1, 43–53. [Google Scholar] [CrossRef]
- Cooper, J.; Carliell-Marquet, C. A Substance Flow Analysis of Phosphorus in the UK Food Production and Consumption System. Resour. Conserv. Recycl. 2013, 74, 82–100. [Google Scholar] [CrossRef]
- Luostarinen, S.; Grönroos, J.; Hellstedt, M.; Nousiainen, J.; Munther, J. Finnish Normative Manure System: System Documentation and First Results; Natural Resources Institute Finland: Helsinki, Finland, 2017. [Google Scholar]
- Official Statistics of Finland (OSF). Number of Livestock. Available online: https://stat.luke.fi/en/number-of-livestock (accessed on 11 May 2018).
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; US Geological Survey: Reston, VA, USA, 2002; Book 4; 522p. [CrossRef]
- Güçlü, Y.S. Multiple Şen-Innovative Trend Analyses and Partial Mann-Kendall Test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- HELCOM; Svendsen, L.M.; Bartnicki, J.; Boutrup, S.; Gus-Tafsson, B.; Jarosinski, W.; Knuuttila, S.; Kotilainen, P.; Larsen, S.E.; Pyhälä, M.; et al. Updated Fift Baltic Sea Pollution Load Compilation (PLC-5.5). Balt. Sea Environ. Proc. 2015, 145, 143. [Google Scholar]
- Larsen, S.E.; Svendsen, L.M. Statistical Aspects in Relation to Baltic Sea Pollution Load Compilation; Aarhus University, DCE—Danish Centre for Environment and Energy: Arhus, Denmark, 2013. [Google Scholar]
- Salmi, T.; Maatta, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann–Kendall Test and Sen’s Slope Estimates. Publ. Air Qual. 2002. [Google Scholar]
- NLS, N.L.S. of F. Municipal Division Dataset. Available online: https://kartta.paikkatietoikkuna.fi/ (accessed on 1 February 2016).
- Ylivainio, K.; Sarvi, M.; Lemola, R.; Uusitalo, R.; Turtola, E. Regional P Stocks in Soil and in Animal Manure as Compared to P Requirement of Plants in Finland; MTT: Jokioinen, Helsinki, Finland, 2014. [Google Scholar]
- Hong, B.; Swaney, D.P.; McCrackin, M.; Svanbäck, A.; Humborg, C.; Gustafsson, B.; Yershova, A.; Pakhomau, A. Advances in NANI and NAPI Accounting for the Baltic Drainage Basin: Spatial and Temporal Trends and Relationships to Watershed TN and TP Fluxes. Biogeochemistry 2017, 133, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Simons, P.C.M.; Versteegh, H.A.J.; Jongbloed, A.W.; Kemme, P.A.; Slump, P.; Bos, K.D.; Wolters, M.G.E.; Beudeker, R.F.; Verschoor, G.J. Improvement of Phosphorus Availability by Microbial Phytase in Broilers and Pigs. Br. J. Nutr. 1990, 64, 525–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R. Eutrophication of Aquatic Ecosystems: Bistability and Soil Phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salo, T.; Lemola, R.; Esala, M. National and Regional Net Nitrogen Balances in Finland in 1990–2005. Agric. Food Sci. 2007. [Google Scholar] [CrossRef] [Green Version]
- Grönroos, J.; Regina, K.; Nousiainen, J.; Perälä, P.; Kristina, S.; Mikkola-Pusa, J. Development of the Ammonia Emission Inventory in Finland, Revised Model for Agriculture; Finnish Environment Institute: Helsinki, Finland, 2009. [Google Scholar]
- Official Statistics of Finland (OSF). Agricultural statistics, Structure. Available online: https://stat.luke.fi/en/ (accessed on 5 January 2020).
Level | Uncertainty Interval | Reference: | Example: |
---|---|---|---|
1 | 1.05 | Official statistics of Finland, Official feed database | Foreign trade statistics, composition of wheat |
2 | 1.1 | Foreign feed databases such as AGROSCOPE, FAO feed tables or USDA | The composition of soybean meal |
3 | 1.2 | Official statistics with a methodology based on national averages or other national studies | The composition of foodstuff preparations based on national consumption averages of the product group |
4 | 1.33 | Values from literature without reference, methodology, significantly scaled values or assumptions of contents of variable content based on interviews | Composition of composite feed by average composition of constituents |
(A) | Nitrogen (N) | Phosphorus (P) | Potassium (K) | (C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total flow | Trend | Q | Sig. | Trend | Q | Sig. | Trend | Q | Sig. | N |
In flow | ↗ | 0.802 | *** | ↗ | 0.180 | *** | ↗ | 0.222 | *** | 53.57 ± 6.90 |
Out flow | ↗ | 0.553 | ** | ↗ | 0.102 | ** | ↗ | 0.127 | ** | 28.99 ± 3.73 |
Net flow | ↗ | 0.277 | ↗ | 0.120 | ↗ | 0.091 | 24.58 ± 3.16 | |||
(B) Net flows by division (SITC statistical groups) | N | |||||||||
00–Live animals | ↗ | 0.0057 | *** | ↗ | 0.0004 | ** | ↗ | 0.0005 | *** | 0.091 ± 0.04 |
01–Meat | ↗ | 0.0260 | ↗ | 0.0015 | ↗ | 0.0037 | 0.351 ± 0.05 | |||
02–Dairy and eggs | ↗ | 0.0609 | ** | ↗ | 0.0004 | ↗ | −0.0200 | ** | 0.487 ± 0.07 | |
03–Fish | ↘ | −0.0265 | *** | ↘ | −0.0023 | + | ↘ | −0.0061 | *** | 0.395 ± 0.06 |
04–Cereals | ↘ | −0.5276 | ** | ↘ | −0.0861 | * | ↘ | −0.1242 | ** | −14.95 ± 1.78 |
05–Vegetables and fruit | ↗ | 0.0262 | *** | ↗ | 0.0044 | *** | ↗ | 0.0290 | *** | 1.344 ± 0.21 |
06–Sugars and honey | ↗ | 0.0028 | + | ↗ | 0.0015 | ** | ↗ | 0.0260 | ** | 0.711 ± 0.09 |
07–Coffee, tea, cocoa and spices | ↗ | 0.0118 | *** | ↗ | 0.0037 | ** | ↗ | 0.0164 | *** | 0.213 ± 0.03 |
08–Feeds | ↗ | 0.9313 | *** | ↗ | 0.1802 | *** | ↗ | 0.2795 | *** | 27.03 ± 3.39 |
09–Other foodstuffs | ↗ | 0.0083 | ↗ | 0.0009 | ↗ | 0.0047 | * | 0.236 ± 0.03 | ||
11–Beverages | ↗ | 0.0034 | *** | ↗ | 0.0010 | *** | ↗ | 0.0042 | *** | 0.027 ± 0.01 |
22–Oil-seeds | ↘ | −0.3802 | *** | ↘ | −0.0377 | *** | ↘ | −0.1128 | *** | 6.873 ± 0.60 |
291–Crude materials | ↘ | −0.0895 | + | ↘ | −0.0121 | ↘ | −0.0090 | + | 1.775 ± 0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parviainen, T.; Helenius, J. Trade Imports Increasingly Contribute to Plant Nutrient Inputs: Case of the Finnish Food System 1996–2014. Sustainability 2020, 12, 702. https://doi.org/10.3390/su12020702
Parviainen T, Helenius J. Trade Imports Increasingly Contribute to Plant Nutrient Inputs: Case of the Finnish Food System 1996–2014. Sustainability. 2020; 12(2):702. https://doi.org/10.3390/su12020702
Chicago/Turabian StyleParviainen, Tuure, and Juha Helenius. 2020. "Trade Imports Increasingly Contribute to Plant Nutrient Inputs: Case of the Finnish Food System 1996–2014" Sustainability 12, no. 2: 702. https://doi.org/10.3390/su12020702
APA StyleParviainen, T., & Helenius, J. (2020). Trade Imports Increasingly Contribute to Plant Nutrient Inputs: Case of the Finnish Food System 1996–2014. Sustainability, 12(2), 702. https://doi.org/10.3390/su12020702