Prediction of Stock Returns: Sum-of-the-Parts Method and Economic Constraint Method
Abstract
:1. Introduction
2. Methodology
2.1. Return Decomposition
2.2. The Sum-of-the-Parts Method
2.3. Forecasting with Constrained-SOP Model
2.4. Forecast Evaluation
3. Data and Summary Statistics
3.1. Stock Return
3.2. Macroeconomic Variables
- stock variance (SVAR), the sum of the squared daily returns on the S&P 500 index;
- default return spread (DFR), long-term corporate bond return minus the long-term government bond return;
- long-term yield (LTY), long-term government bond yield;
- long-term return (LTR), return on long-term government bonds;
- inflation (INFL), calculated from the CPI (all urban consumers). We used one-month-lagged values because of the delay in CPI releases;
- term spread (TMS), long-term yield minus the treasury bill rate;
- treasury bill rate (TBL), interest rate on a three-month treasury bill (secondary market);
- default yield spread (DFY), difference between Moody’s BAA- and AAA-rated corporate bond yields;
- net equity expansion (NTIS), ratio of a twelve-month moving sum of net equity issues by New York Stock Exchange (NYSE)-listed stocks to the total end-of-year market capitalization of NYSE stocks
- dividend/payout ratio (log; DE), log of a twelve-month moving sum of dividends minus the log of a twelve-month moving sum of earnings;
- earnings/price ratio (log; EP), log of a twelve-month moving sum of earnings on the S&P 500 index minus the log of stock prices;
- dividend/price ratio (log; DP), log of a twelve-month moving sum of dividends paid on the S&P 500 index minus the log of stock prices (S&P 500 index);
- dividend yield (log; DY), log of a twelve-month moving sum of dividends minus the log of the lagged stock prices; and
- book-to-market ratio (BM), Book-to-market value ratio for the Dow Jones Industrial Average.
4. Empirical Performance
4.1. Out-of-Sample Forecasting Performance
4.2. Asset Allocation
5. Robustness Check
5.1. Investor Risk Aversion Choices
5.2. Transaction Cost
6. Conclusions and Implication
Author Contributions
Funding
Conflicts of Interest
References
- Cochrane, J.H. Presidential Address: Discount Rates. J. Financ. 2011, 66, 1047–1108. [Google Scholar] [CrossRef] [Green Version]
- Welch, I.; Goyal, A. A Comprehensive Look at The Empirical Performance of Equity Premium Prediction. Rev. Financ. Stud. 2007, 21, 1455–1508. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Yogo, M. Efficient tests of stock return predictability. J. Financ. Econ. 2006, 81, 27–60. [Google Scholar] [CrossRef] [Green Version]
- Vuolteenaho, T.; Campbell, J. Inflation Illusion and Stock Prices. Am. Econ. Rev. 2004, 94, 19–23. [Google Scholar]
- Neely, C.J.; Rapach, D.E.; Tu, J.; Zhou, G. Forecasting the Equity Risk Premium: The Role of Technical Indicators. Manag. Sci. 2014, 60, 1772–1791. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q. Technical analysis and stock return predictability: An aligned approach. J. Financ. Mark. 2018, 38, 103–123. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Z.; Liu, L.; Wu, C. Oil price increases and the predictability of equity premium. J. Bank. Financ. 2019, 102, 43–58. [Google Scholar] [CrossRef]
- Campbell, J.; Thompson, S.P. Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? Rev. Financ. Stud. 2008, 21, 1509–1531. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.A.; Santa-Clara, P. Forecasting stock market returns: The sum of the parts is more than the whole. J. Financ. Econ. 2011, 100, 514–537. [Google Scholar] [CrossRef] [Green Version]
- Rapach, D.E.; Strauss, J.K.; Zhou, G. Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. Rev. Financ. Stud. 2010, 23, 821–862. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, J. Predicting stock returns: Regime-switching combination approach and economic links. J. Bank. Financ. 2013, 37, 4120–4133. [Google Scholar] [CrossRef]
- Pettenuzzo, D.; Timmermann, A.; Valkanov, R. Forecasting stock returns under economic constraints. J. Financ. Econ. 2014, 114, 517–553. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, L.; Ma, F.; Diao, X. Momentum of return predictability. J. Empir. Financ. 2018, 45, 141–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Ma, F.; Yi, Y. Economic constraints and stock return predictability: A new approach. Int. Rev. Financ. Anal. 2019, 63, 1–9. [Google Scholar] [CrossRef]
- Binsbergen, J.; Koijen, R. Predictive regressions: A present-value approach. J. Financ. 2010, 65, 1439–1471. [Google Scholar] [CrossRef] [Green Version]
- Paye, B.S. ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables. J. Financ. Econ. 2012, 106, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Rapach, D.E.; Ringgenberg, M.C.; Zhou, G. Short interest and aggregate stock returns. J. Financ. Econ. 2016, 121, 46–65. [Google Scholar] [CrossRef]
- Clark, T.E.; West, K.D. Approximately normal tests for equal predictive accuracy in nested models. J. Econ. 2007, 138, 291–311. [Google Scholar] [CrossRef] [Green Version]
- Rapach, D.; Zhou, G. Forecasting Stock Returns. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2013; pp. 328–383. [Google Scholar]
- Connor, G. Sensible Return Forecasting for Portfolio Management. Financ. Anal. J. 1997, 53, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Zhu, H. Forecasting stock market returns by combining sum-of-the-parts and ensemble empirical mode decomposition. Appl. Econ. 2019. [Google Scholar] [CrossRef]
- Dai, Z.; Zhu, H. Stock return predictability from a mixed model perspective. Pac. Basin Financ. J. 2020. forthcoming. [Google Scholar]
- Balduzzi, P. Transaction costs and predictability: Some utility cost calculations. J. Financ. Econ. 1999, 52, 47–78. [Google Scholar] [CrossRef] [Green Version]
- Claeskens, G.; Magnus, J.; Vasnev, A.; Wang, W. The forecast combination puzzle: A simple theoretical explanation. Int. J. Forecast. 2016, 32, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Henkel, S.J.; Martin, J.S.; Nardari, F.; Martin, S. Time-varying short-horizon predictability. J. Financ. Econ. 2011, 99, 560–580. [Google Scholar] [CrossRef]
- Kelly, B.T.; Pruitt, S. Market Expectations in the Cross Section of Present Values. J. Financ. 2012, 68, 1721–1756. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Z.; Zhao, X.; Yin, H. Interaction between Industrial Policy and Stock Price Volatility: Evidence from China’s Power Market Reform. Sustainability 2018, 10, 1719. [Google Scholar] [CrossRef] [Green Version]
- Narayan, P.K.; Ahmed, H.A.; Narayan, S. Can investors gain from investing in certain sectors? J. Int. Financ. Mark. Inst. Money 2017, 48, 160–177. [Google Scholar] [CrossRef]
- Dangl, T.; Halling, M. Predictive regressions with time-varying coefficients. J. Financ. Econ. 2012, 106, 157–181. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, F.; Tu, J.; Zhou, G. Investor sentiment aligned: A powerful predictor of stock returns. Rev. Financ. Stud. 2015, 28, 791–837. [Google Scholar] [CrossRef]
- Lin, H.; Wu, C.; Zhou, G. Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach. Manag. Sci. 2018, 64, 3971–4470. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Lee, J.; Martin, X.; Zhou, G. Manager sentiment and stock returns. J. Financ. Econ. 2019, 132, 126–149. [Google Scholar] [CrossRef]
- Dai, Z.; Zhu, H. A modified Hestenes-Stiefel-type derivative-free method for large-scale nonlinear monotone equations. Mathematics 2020, 8, 115. [Google Scholar]
- Dai, Z.; Zhu, H.; Wen, F. Two nonparametric approaches to mean absolute deviation portfolio selection model. J. Ind. Manag. Optim. 2019. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Nogales, F.J.; Uppal, R. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Manag. Sci. 2009, 55, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Faria, G.; Verona, F. Forecasting stock market returns by summing the frequency-decomposed parts. J. Empir. Financ. 2018, 45, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Zhou, H.; Huang, S. Stock market volatility predictability: The role of implied volatility. Mathematics 2020, 8, 124. [Google Scholar]
- Nonejad, N. Déjàvol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data. Int. Rev. Financ. Anal. 2018, 58, 260–270. [Google Scholar]
- Yi, Y.; Ma, F.; Huang, D.; Zhang, Y. Internet rate level and stock return predictability. Rev. Financ. Econ. 2019, 37, 506–522. [Google Scholar] [CrossRef]
Mean | Std | Min | Median | Max | Skewness | Kurtosis | AR (1) | |
---|---|---|---|---|---|---|---|---|
Ret | 0.769 | 5.375 | −34.537 | 1.197 | 35.560 | −0.454 | 10.905 | 0.078 |
gm | 0.019 | 6.687 | −72.382 | 0.131 | 53.607 | −0.601 | 24.230 | 0.273 |
ge | 0.437 | 4.320 | −52.828 | 0.660 | 70.386 | 1.961 | 104.056 | 0.761 |
dp | 0.313 | 0.145 | 0.090 | 0.290 | 1.272 | 1.230 | 6.618 | 0.982 |
BM | 0.566 | 0.267 | 0.121 | 0.542 | 2.028 | 0.768 | 4.384 | 0.986 |
DY | −3.379 | 0.462 | −4.531 | −3.349 | −1.913 | −0.205 | 2.579 | 0.993 |
DP | −3.383 | 0.464 | −4.524 | −3.358 | −1.873 | −0.178 | 2.600 | 0.993 |
EP | −2.744 | 0.418 | −4.836 | −2.797 | −1.775 | −0.565 | 5.523 | 0.987 |
DE | −0.640 | 0.330 | −1.244 | −0.632 | 1.380 | 1.540 | 9.027 | 0.991 |
INFL | 0.246 | 0.526 | −2.055 | 0.242 | 5.882 | 1.170 | 17.425 | 0.489 |
TMS | 1.727 | 1.297 | −3.650 | 1.770 | 4.550 | −0.295 | 3.217 | 0.960 |
TBL | 3.392 | 3.101 | 0.010 | 2.910 | 16.300 | 1.085 | 4.273 | 0.993 |
DFY | 1.125 | 0.693 | 0.320 | 0.900 | 5.640 | 2.478 | 11.825 | 0.975 |
NTIS | 0.016 | 0.025 | −0.058 | 0.017 | 0.177 | 1.669 | 11.614 | 0.980 |
LTR | 0.469 | 2.457 | −11.240 | 0.300 | 15.230 | 0.577 | 7.484 | 0.044 |
LTY | 5.119 | 2.793 | 1.750 | 4.220 | 14.820 | 1.084 | 3.592 | 0.996 |
DFR | 0.034 | 1.373 | −9.750 | 0.050 | 7.370 | −0.375 | 10.499 | −0.117 |
SVAR | 0.288 | 0.575 | 0.007 | 0.126 | 7.095 | 5.779 | 46.408 | 0.632 |
SOP | CT-SOP | MOP-SOP | Three-sigma SOP | |
---|---|---|---|---|
BM | 0.249 | 0.643 ** | 0.571 *** | 0.661 *** |
DY | 0.39 * | 0.971 *** | 0.234 | 0.989 *** |
DP | −0.157 | 0.270 | 0.532 ** | 0.287 |
EP | −0.440 | 0.41 * | 0.129 | 0.586 ** |
DE | 0.706 ** | 1.358 *** | 0.380 | 1.535 *** |
INFL | 0.251 | 0.491 ** | 0.094 | 0.615 ** |
TMS | 0.797 *** | 0.91 *** | 0.804 *** | 0.93 *** |
TBL | 0.515 ** | 0.84 *** | 0.501 ** | 0.861 *** |
DFY | 0.57 ** | 0.886 ** | 0.493 ** | 0.962 *** |
NTIS | 0.397 * | 0.559 ** | 0.38 * | 0.514 ** |
LTR | 1.137 ** | 0.878 ** | 1.015 ** | 0.581 * |
LTY | 0.417 * | 0.769 *** | 0.459 ** | 0.790 |
DFR | 0.787 | 0.715 ** | 0.612 | 0.877 *** |
SVAR | 1.423 ** | 0.816 *** | 1.456 ** | 0.808 *** |
PC | 1.406 * | 1.772 *** | 1.569 ** | 1.807 *** |
SOP | CT-SOP | MOP-SOP | Three-Sigma SOP | |
---|---|---|---|---|
BM | 0.183 | 0.453 | 1.010 | 0.485 |
DY | 1.671 | 1.995 | 1.386 | 2.024 |
DP | −0.874 | −0.423 | 0.844 | 0.393 |
EP | −1.746 | −1.029 | −0.407 | −0.585 |
DE | 1.260 | 1.824 | 0.765 | 2.248 |
INFL | 0.813 | 0.689 | 0.360 | 1.006 |
TMS | 1.494 | 1.533 | 1.590 | 1.576 |
TBL | 1.472 | 1.620 | 1.309 | 1.660 |
DFY | 0.906 | 1.364 | 0.918 | 1.523 |
NTIS | −1.842 | −1.629 | −1.078 | −1.119 |
LTR | 0.659 | 0.083 | 0.432 | 0.886 |
LTY | 1.318 | 1.502 | 1.243 | 1.538 |
DFR | 2.177 | 1.232 | 1.928 | 1.624 |
SVAR | 2.144 | 1.693 | 2.178 | 1.694 |
PC | 2.182 | 2.299 | 2.365 | 2.358 |
SOP | CT-SOP | MOP-SOP | Three-Sigma SOP | SOP | CT-SOP | MOP-SOP | Three-Sigma SOP | |
---|---|---|---|---|---|---|---|---|
BM | 0.300 | 0.752 | 1.683 | 0.805 | 0.227 | 0.566 | 1.262 | 0.605 |
DY | 2.790 | 3.323 | 2.305 | 3.370 | 2.091 | 2.493 | 1.731 | 2.529 |
DP | −1.460 | −0.710 | 1.408 | 0.660 | −1.094 | −0.530 | 1.055 | 0.493 |
EP | −2.920 | −1.727 | −0.675 | −0.990 | −2.186 | −1.291 | −0.508 | −0.737 |
DE | 2.093 | 3.028 | 1.273 | 3.733 | 1.572 | 2.275 | 0.955 | 2.805 |
INFL | 1.355 | 1.149 | 0.603 | 1.674 | 1.016 | 0.862 | 0.451 | 1.256 |
TMS | 2.493 | 2.553 | 2.653 | 2.624 | 1.869 | 1.915 | 1.989 | 1.969 |
TBL | 2.446 | 2.695 | 2.180 | 2.762 | 1.837 | 2.023 | 1.636 | 2.073 |
DFY | 1.514 | 2.271 | 1.531 | 2.534 | 1.134 | 1.704 | 1.148 | 1.902 |
NTIS | −3.068 | −2.717 | −1.792 | −2.866 | −2.302 | −2.037 | −1.346 | −2.149 |
LTR | 1.114 | 0.149 | 0.727 | 1.460 | 0.830 | 0.108 | 0.543 | 1.101 |
LTY | 2.191 | 2.499 | 2.069 | 2.557 | 1.645 | 1.876 | 1.553 | 1.920 |
DFR | 3.629 | 2.052 | 3.213 | 2.703 | 2.722 | 1.540 | 2.410 | 2.029 |
SVAR | 3.566 | 2.816 | 3.623 | 2.819 | 2.677 | 2.114 | 2.720 | 2.116 |
PC | 2.367 | 3.159 | 3.574 | 3.258 | 2.027 | 2.6211 | 2.706 | 2.6954 |
SOP | CT-SOP | MOP-SOP | Three-Sigma SOP | |
---|---|---|---|---|
BM | 0.163 | 0.420 | 1.003 | 0.451 |
DY | 1.741 | 1.997 | 1.415 | 2.025 |
DP | −0.914 | −0.473 | 0.831 | 0.443 |
EP | −1.783 | −1.090 | −0.420 | −0.644 |
DE | 1.281 | 1.815 | 0.774 | 2.242 |
INFL | 0.817 | 0.671 | 0.361 | 0.989 |
TMS | 1.492 | 1.519 | 1.590 | 1.562 |
TBL | 1.484 | 1.614 | 1.316 | 1.655 |
DFY | 0.911 | 1.356 | 0.918 | 1.516 |
NTIS | −1.883 | −1.678 | −1.102 | −1.768 |
LTR | 0.657 | 0.047 | 0.424 | 0.929 |
LTY | 1.324 | 1.493 | 1.248 | 1.528 |
DFR | 2.185 | 1.215 | 1.937 | 1.610 |
SVAR | 2.143 | 1.679 | 2.183 | 1.681 |
PC | 2.123 | 2.287 | 2.368 | 2.346 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Z.; Zhou, H. Prediction of Stock Returns: Sum-of-the-Parts Method and Economic Constraint Method. Sustainability 2020, 12, 541. https://doi.org/10.3390/su12020541
Dai Z, Zhou H. Prediction of Stock Returns: Sum-of-the-Parts Method and Economic Constraint Method. Sustainability. 2020; 12(2):541. https://doi.org/10.3390/su12020541
Chicago/Turabian StyleDai, Zhifeng, and Huiting Zhou. 2020. "Prediction of Stock Returns: Sum-of-the-Parts Method and Economic Constraint Method" Sustainability 12, no. 2: 541. https://doi.org/10.3390/su12020541
APA StyleDai, Z., & Zhou, H. (2020). Prediction of Stock Returns: Sum-of-the-Parts Method and Economic Constraint Method. Sustainability, 12(2), 541. https://doi.org/10.3390/su12020541