Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Measures
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nussenbaum, K.; Amso, D.; Markant, J. When increasing distraction helps learning: Distractor number and content interact in their effects on memory. Atten. Percept. Psychophys. 2017, 79, 2606–2619. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M.; Barbot, A. Spatial attention alters visual appearance. Curr. Opin. Psych. 2019, 29, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Estévez-González, A.; García-Sánchez, C.; Junqué, C. La atención: Una compleja función cerebral. Rev. Neurol. 1997, 25, 1989–1997. [Google Scholar] [PubMed]
- Gray, R.; Gaska, J.; Winterbottom, M. Relationship between sustained, orientated, divided, and selective attention and simulated aviation performance: Training & pressure effects. J. Appl. Res. Mem. Cogn. 2016, 5, 34–42. [Google Scholar] [CrossRef]
- Jangmo, A.; Stålhandske, A.; Chang, Z.; Chen, Q.; Almqvist, C.; Feldman, I.; Bulik, C.M.; Lichtenstein, P.; D’Onofrio, B.; Kuja-Halkola, R.; et al. Attention-deficit/hyperactivity disorder, school performance, and effect of medication. J. Am. Acad. Child. Adolesc. Psychiatr. 2019, 58, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Hüttermann, S.; Ford, P.R.; Williams, A.M.; Varga, M.; Smeeton, N.J. Attention, perception, and action in a simulated decision-making task. J. Sport. Exerc. Psy. 2019, 41, 230–241. [Google Scholar] [CrossRef]
- Rusciano, A.; Corradini, G.; Stoianov, I. Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players. Psychophysiology 2017, 54, 916–926. [Google Scholar] [CrossRef]
- Colmenero, J.M.; Catena, A.; Fuentes, L.J. Atención visual: Una revisión sobre las redes atencionales del cerebro. Psicologia 2001, 17, 45–67. [Google Scholar]
- Mirdamadi, J.L.; Suzuki, L.Y.; Meehan, S.K. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation. Neuroscience 2017, 359, 151–158. [Google Scholar] [CrossRef]
- Etchepareborda, M.C.; Abad-Mas, L. Sustrato biológico y evaluación de la atención. Rev. Neurol. Clin. 2001, 2, 113–124. [Google Scholar]
- Holroyd, C.B.; Nieuwenhuis, S.; Mars, R.B.; Coles, M.G. Anterior cingulate cortex, selection for action, and error processing. In Cognitive Neuroscience of Attention; Posner, M.I., Ed.; Guilford Press: New York, NY, USA, 2004; pp. 219–231. [Google Scholar]
- Jiménez, J.E.; Hernández, S.; García, E.; Díaz, A.; Rodríguez, C.; Martín, R. Test de atención D-2: Datos normativos y desarrollo evolutivo de la atención en educación primaria. Eur. J. Educ. Psychol. 2012, 5, 93–106. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, J.W.; Lawrence, M.A.; McConnell, M.M.; Eskes, G.A.; Klein, R.M.; Shore, D.I. Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology 2010, 24, 637. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Rothbart, M.K. Temperament and brain networks of attention. Philos. Trans. R. Soc. B-Biol. Sci. 2018, 373, 20170254. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Etchepareborda, M.C. Bases experimentales para la evaluación de la atención en el trastorno por déficit de atención con hiperactividad. Rev. Neurol. 2004, 38, 137–144. [Google Scholar] [CrossRef]
- Koppitz, E.M. The Visual Aural Digit Span Test; Grune and Stratton: New York, NY, USA, 1977. [Google Scholar] [CrossRef]
- Madoz-Gúrpide, A.; Ochoa-Mangado, E. Alteraciones de funciones cognitivas y ejecutivas en pacientes dependientes de cocaína: Estudio de casos y controles. Rev. Neurol. 2012, 54, 199–208. [Google Scholar] [CrossRef]
- Reynolds, C.R.; Bigler, E.D. TOMAL. Test. de Memoria y Aprendizaje; TEA: Madrid, Spain, 2001. [Google Scholar]
- Soprano, A.M. Cómo Evaluar la Atención y Las Funciones Ejecutivas en Los Niños y Adolescents; Paidós: Buenos Aires, Argentina, 2009. [Google Scholar]
- Wechsler, D. Escala de Inteligencia de Wechsler Para Adultos-III (WAIS-III); TEA: Madrid, Spain, 1999. [Google Scholar]
- Wechsler, D. Manual de Aplicación y Corrección del WISC-IV; TEA: Madrid, Spain, 2005. [Google Scholar]
- Bosse, M.L.; Tainturier, M.J.; Valdois, S. Developmental dyslexia: The visual attention span deficit hypothesis. Cognition 2007, 104, 198–230. [Google Scholar] [CrossRef]
- Ans, B.; Carbonnel, S.; Valdois, S. A connectionist multiple-trace memory model for polysyllabic word reading. Psychol. Rev. 1998, 105, 678–723. [Google Scholar] [CrossRef]
- Souza, A.S.; Oberauer, K. The contributions of visual and central attention to visual working memory. Atten. Percept. Psychophys. 2017, 79, 1897–1916. [Google Scholar] [CrossRef]
- Olivers, C.N. Interactions between visual working memory and visual attention. Front. Biosci. 2008, 13, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.; Hartley, G.; Furley, P.A.; Wilson, M.R. Working memory capacity, visual attention and hazard perception in driving. J. Appl. Res. Mem. Cogn. 2016, 5, 454–462. [Google Scholar] [CrossRef]
- Carlisle, N.B.; Kristjánsson, Á. How visual working memory contents influence priming of visual attention. Psychol. Res. 2018, 82, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.L.; Lilburn, S.D.; Corbett, E.A.; Sewell, D.K.; Kyllingsbæk, S. The attention-weighted sample-size model of visual short-term memory: Attention capture predicts resource allocation and memory load. Cogn. Psychol. 2016, 89, 71–105. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.; López, V.; Carrasco, X.; Escobar, M.J.; García, A.M.; Parra, M.A.; Aboitiz, F. Neurocognitive mechanisms underlying working memory encoding and retrieval in Attention-Deficit/Hyperactivity Disorder. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ramey, M.M.; Henderson, J.M.; Yonelinas, A.P. The spatial distribution of attention predicts familiarity strength during encoding and retrieval. J. Exp. Psychol. Gen. 2020. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, P.; González-Castro, P.; Núñez, J.C.; González-Pineda, J.; Bernardo, A. Evaluación y control de la activación cortical en los déficit de atención sostenida. Int. J. Clin. Health Psychol. 2008, 8, 509–524. [Google Scholar]
- Peng, P.; Miller, A.C. Does attention training work? A selective meta-analysis to explore the effects of attention training and moderators. Learn. Individ. Differ. 2016, 45, 77–87. [Google Scholar] [CrossRef]
- Amir, N.; Taylor, C.T.; Elías, J.; Donohue, M.C. Predictors of response to an attention modification program in generalized social phobia. J. Consult. Clin. Psychol. 2011, 79, 533–541. [Google Scholar] [CrossRef]
- Amorós-Boix, M.; Rosa Alcázar, A.I.; Olivares-Olivares, P.J. Papel de la focalización de la atención en el tratamiento de la fobia social generalizada en adolescents. Psicologia 2011, 27, 718–728. [Google Scholar]
- Goodwin, H.; Yiend, J.; Hirsch, C.R. Generalized Anxiety Disorder, worry and attention to threat: A systematic review. Clin. Psychol. Rev. 2017, 54, 107–122. [Google Scholar] [CrossRef]
- Eldar, S.; Bar-Haim, Y. Neural plasticity in response to attention training in anxiety. Psychol. Med. 2010, 40, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, H.; Oades, R.D. Negative priming within a stroop task in children and adolescents with attention-deficit hyperactivity disorder, their siblings, and independent controls. J. Atten. Disord. 2010, 13, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Bikic, A.; Leckman, J.F.; Christensen, T.Ø.; Bilenberg, N.; Dalsgaard, S. Attention and executive functions computer training for attention-deficit/hyperactivity disorder (ADHD): Results from a randomized, controlled trial. Eur. Child. Adoles. Psy. 2018, 27, 1563–1574. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Robbins, T.W.; Winder-Rhodes, S.; Müller, U.; Sahakian, B.J.; Blackwell, A.D.; Barnett, J.H. Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol. Psychiatry 2011, 69, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.; Babani, H.; Jon, E. Development of a computerized visual search test. Int. J. Rehabil. Res. 2009, 32, 205–212. [Google Scholar] [CrossRef]
- Kletzel, S.L.; Cary, M.P.; Ciro, C.; Berbrayer, D.; Dawson, D.; Hoffecker, L.; Machtinger, J.; Pham, P.; Thai, M.; Heyn, P.C. Brain Gaming: A User’s Product Guide for the Clinician. Arch. Phys. Med. Rehabil. 2016, 97, 1399–1400. [Google Scholar] [CrossRef]
- Morrison, G.E.; Simone, C.M.; Ng, N.F.; Hardy, J.L. Reliability and validity of the NeuroCognitive Performance Test, a web-based neuropsychological assessment. Front. Psychol. 2015, 6, 1652. [Google Scholar] [CrossRef]
- Rabiner, D.L.; Murray, D.W.; Skinner, A.T.; Malone, P.S. A randomized trial of two promising computer-based interventions for students with attention difficulties. J. Abnorm. Child. Psychol. 2010, 38, 131–142. [Google Scholar] [CrossRef]
- Shatil, E.; Mikulecka, J.; Bellotti, F.; Bureš, V. Novel television-based cognitive training improves working memory and executive function. PLoS ONE 2014, 9, e101472. [Google Scholar] [CrossRef]
- González-Ruiz, S.L.; Domínguez-Alfonso, R.; Chica-Merino, E.; Pastrana-Brincones, J.L.; Hernández-Mendo, A. Una plataforma virtual para la evaluación e investigación on-line: Menpas. Cuad. Psicol. Deporte 2018, 18, 26–48. [Google Scholar]
- González-Ruiz, S.L.; Hernández-Mendo, A.; Pastrana-Brincones, J.L. Herramienta software para la evaluación psicosocial de deportistas y entornos deportivos. EF Deportes 2010, 15, 144. Available online: http://www.efdeportes.com/efd144/evaluacion-psicosocial-de-deportistas.htm (accessed on 29 January 2020).
- Hernández-Mendo, A.; Martínez-Jiménez, M.A.; Pastrana-Brincones, J.L.; Morales-Sánchez, V. Programa informático para evaluación y entrenamiento de la atención. Rev. Iberoam. Psicol. Ejerc. Deporte 2012, 7, 339–358. [Google Scholar]
- Reigal, R.E.; González-Guirval, F.; Morillo-Baro, J.P.; Morales-Sánchez, V.; De Mier, R.J.-R.; Hernández-Mendo, A. Effects of a Computerized Training on Attentional Capacity of Young Soccer Players. Front. Psychol. 2019, 10, 2279. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mendo, A.; Ramos-Pollán, R. El uso de la informática en la psicología del deporte. EF Deportes 2000, 5, 19. Available online: http://www.efdeportes.com/efd19/infpsi.htm (accessed on 15 January 2020).
- Zeki, S.; Shipp, S. The functional logic of cortical connections. Nature 1988, 335, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Zeki, S. La imagen visual en la mente y en el cerebro. Investig. Cienc. 1992, 194, 27–35. [Google Scholar]
- Shafiei, H.; Zare, H. Effectiveness of attention bias modification by computerized attention training on reducing social anxiety of adolescents. Adv. Cog. Sci. 2019, 21, 108–120. [Google Scholar] [CrossRef]
- Abend, R.; Rosenfelder, A.; Shamai, D.; Pine, D.S.; Tavor, I.; Assaf, Y.; Bar-Haim, Y. Brain structure changes induced by attention bias modification training. Biol. Psychol. 2019, 146, 107736. [Google Scholar] [CrossRef]
- González de la Torre, G.; González de la Torre, A. Evaluación de la Atención mediante el Test de Cancelación Simple y Cancelación Condicionada [Batería Neuropsicológica Sevilla (BNS)] en niños con Transtorno por Déficit de Atención e Hiperactividad (TDAH). Rev. Esp. Neuropsicol. 2003, 5, 177–193. [Google Scholar]
- Fernández-Calvo, B.; Rodríguez-Pérez, R.; Contador, I.; Rubio-Santorum, A.; Ramos, F. Eficacia del entrenamiento cognitivo basado en nuevas tecnologías en pacientes con demencia tipo Alzheimer. Psicothema 2011, 23, 44–50. [Google Scholar] [PubMed]
- Harris, D.J.; Wilson, M.R.; Vine, S.J. A systematic review of commercial cognitive training devices: Implications for use in sport. Front. Psychol. 2018, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Green, C.T.; Long, D.L.; Green, D.; Losif, A.M.; Dixon, J.F.; Miller, M.R.; Fassbender, C.; Schweitzer, J.B. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics 2012, 9, 639–648. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Blanco-Villaseñor, A.; Castellano, J.; Hernández-Mendo, A.; Sánchez-López, C.R.; Usabiaga, O. Aplicación de la TG en el deporte para el estudio de la fiabilidad, validez y estimación de la muestra. Rev. Psicol. Deporte 2014, 23, 131–137. [Google Scholar]
- Blanco-Villaseñor, A.; Castellano, J.; Hernández-Mendo, A. Generalizabilidad de las observaciones de la acción del juego en el fútbol. Psicothema 2000, 12, 81–86. [Google Scholar]
- Briesch, A.M.; Swaminathan, H.; Welsh, M.; Chafouleas, S.M. Generalizability theory: A practical guide to study design, implementation, and interpretation. J. Sch. Psychol. 2014, 52, 13–35. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Rajaratnam, N.; Gelser, G.C. Theory of generalizability: A liberalization of reliability theory. Brit. J. Stat. Psych. 1963, 16, 137–163. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Gleser, G.C.; Nanda, H.; Rajaratnam, N. The Dependability of Behavioral Measurements; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Mendo, A.M.; Díaz, F.; Sánchez, M. Construcción de una herramienta observacional para evaluar las conductas prosociales en las clases de educación física. Rev. Psicol. Deporte 2010, 19, 305–318. [Google Scholar]
- Maneiro, R.; Blanco-Villaseñor, Á.; Amatria, M. Analysis of the Variability of the Game Space in High Performance Football: Implementation of the Generalizability Theory. Front. Psychol. 2020, 11, 534. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of test. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Schlotzhauer, S.D.; Littell, R.C. SAS System for Elementary Statical Analysis; SAS Institute Inc.: Cary, NC, USA, 1997. [Google Scholar]
- Hernández-Mendo, A.; Blanco-Villaseñor, A.; Pastrana, J.L.; Morales-Sánchez, V.; Ramos-Pérez, F.J. SAGT: New software for generalizability analysis. Rev. Iberoam. Psicol. Ejerc. Deporte 2016, 11, 77–89. [Google Scholar]
- Hemmerle, W.; Hartley, H. Computing maximum likelihood estimates for the mixed AOV Model using the w-transformation. Technometrics 1973, 15, 819–831. [Google Scholar] [CrossRef]
- Searle, S.; Casella, G.; McCulloch, C. Variance Components; John Wiley: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Hall, G.N.; Ibaraki, A.Y.; Huang, E.R.; Marti, C.N.; Stice, E. A meta-analysis of cultural adaptations of psychological interventions. Behav. Ther. 2016, 47, 993–1014. [Google Scholar] [CrossRef] [PubMed]
- González-Guirval, F.; Reigal, R.E.; Morillo-Baro, J.P.; Juárez-de Mier, R.; Hernández-Mendo, A.; Morales-Sánchez, V. Análisis de la validez convergente de un instrumento informatizado para evaluar la atención en deportistas: Rejilla 1.0. Cuad. Psicol. Deporte 2020, 20, 83–94. [Google Scholar] [CrossRef]
- Bays, P.M.; Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 2008, 321, 851–854. [Google Scholar] [CrossRef]
- Adam, K.C.; Vogel, E.K.; Awh, E. Clear evidence for item limits in visual working memory. Cog. Psychol. 2017, 97, 79–97. [Google Scholar] [CrossRef]
Male n = 4997 | Female n = 6543 | |||||
---|---|---|---|---|---|---|
M | DT | α | M | DT | α | |
Hits | 8.95 | 6.31 | 8.28 | 5.71 | ||
Errors | 4.51 | 6.98 | 0.73 | 5.09 | 7.16 | 0.71 |
Structure | 11.19 | 7.08 | 10.57 | 4.88 |
Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|
[g] [e] [s]/[h] | 0.98 | 0.97 |
[h] [e] [s]/[g] | 1 | 1 |
[g] [h] [s]/[e] | 0.97 | 0.95 |
[g] [h] [e]/[s] | 0.99 | 0.99 |
Spain n = 10,609 | Europe n = 244 | America n = 651 | Africa n = 36 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | DT | α | M | DT | α | M | DT | α | M | DT | α | |
Hits | 8.56 | 5.98 | 7.70 | 6.96 | 9.25 | 5.56 | 6.11 | 5.29 | ||||
Errors | 4.66 | 6.90 | 0.72 | 6.50 | 9.19 | 0.74 | 7.18 | 8.58 | 0.68 | 4.11 | 7.18 | 0.79 |
Structure | 10.77 | 5.90 | 10.87 | 6.46 | 11.99 | 6.34 | 9.42 | 3.69 |
Components of the Model | Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|---|
n×h×e×s [n] nation-origin, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[n] | 0.99 | 0.99 |
[n] [e] [s]/[h] | 0.98 | 0.98 | |
[n] [h] [s]/[e] | 0.98 | 0.96 | |
[n] [h] [e]/[s] | 0.99 | 0.99 | |
c×h×e×s [c] continent-origin, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[c] | 0.99 | 0.99 |
[c] [e] [s]/[h] | 0.98 | 0.97 | |
[c] [h] [s]/[e] | 0.98 | 0.96 | |
[c] [h] [e]/[s] | 0.99 | 0.90 |
18 to 25 Years n = 7839 | 26 to 35 Years n = 2307 | 36 to 45 Years n = 599 | 46 to 55 Years n = 795 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | DT | α | M | DT | α | M | DT | α | M | DT | α | |
Hits | 8.35 | 6.02 | 10.03 | 5.77 | 7.55 | 4.74 | 7.31 | 6.27 | ||||
Errors | 4.71 | 6.82 | 0.72 | 5.16 | 7.28 | 0.73 | 3.03 | 4.47 | 0.73 | 6.52 | 9.80 | 0.71 |
Structure | 10.70 | 6.02 | 11.94 | 6.05 | 9.27 | 3.74 | 10.22 | 5.69 |
Components of the Model | Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|---|
a×h×e×s [a] age, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[a] | 0.97 | 0.97 |
[a] [e] [s]/[h] | 0.97 | 0.96 | |
[a] [h] [s]/[e] | 0.98 | 0.97 | |
[a] [h] [e]/[s] | 0.99 | 0.99 | |
i×h×e×s [i] age-intervals, [h] hits, [e] errors, [s] structure | [h] [e] [s]/[i] | 1 | 1 |
[i] [e] [s]/[h] | 0.98 | 0.97 | |
[i] [h] [s]/[e] | 0.97 | 0.96 | |
[i] [h] [e]/[s] | 0.99 | 0.98 |
Primary n = 532 | Media n = 2876 | Superiors n = 8132 | |||||||
---|---|---|---|---|---|---|---|---|---|
M | DT | α | M | DT | α | M | DT | α | |
Hits | 7.15 | 5.50 | 8.64 | 6.62 | 8.64 | 5.76 | |||
Errors | 3.54 | 5.74 | 0.74 | 4.43 | 6.93 | 0.74 | 5.07 | 7.21 | 0.71 |
Structure | 9.20 | 4.51 | 11.05 | 6.66 | 10.87 | 5.74 |
Model | Relative G-Coefficient | Absolute G-Coefficient |
---|---|---|
[h] [e] [s]/[t] | 1 | 1 |
[t] [e] [s]/[h] | 0.98 | 0.97 |
[t] [h] [s]/[e] | 0.97 | 0.96 |
[t] [h] [e]/[s] | 0.99 | 0.99 |
Matrix | M | DT | % | A | K | K-S | r | ||
---|---|---|---|---|---|---|---|---|---|
Colors | Displayed Time | ||||||||
2 × 2 | Hits | 3.04 | 1.52 | 56.09 | −1.20 | −0.28 | 0.41 *** | −0.39 ** | 0.14 ** |
Errors | 2.38 | 4.36 | 43.91 | 3.43 | 14.35 | 0.29 *** | 0.24 ** | −0.28 ** | |
Colors | 3.61 | 1.48 | - | 3.89 | 23.36 | 0.35 *** | |||
Displayed time | 7.78 | 4.96 | - | 6.30 | 82.19 | 0.30 *** | |||
2 × 3 | Hits | 4.95 | 1.77 | 57.03 | −1.58 | 1.23 | 0.38 *** | −0.35 ** | 0.09 * |
Errors | 3.73 | 4.81 | 42.97 | 1.91 | 4.60 | 0.22 *** | 0.45 ** | −0.20 ** | |
Colors | 3.65 | 1.46 | - | 4.62 | 28.46 | 0.33 *** | |||
Displayed time | 6.52 | 3.73 | - | 3.68 | 16.97 | 0.45 *** | |||
3 × 3 | Hits | 6.34 | 3.19 | 64.43 | −0.78 | −0.86 | 0.29 *** | −0.69 ** | 0.38 ** |
Errors | 3.50 | 5.85 | 35.57 | 3.98 | 20.52 | 0.31 *** | 0.29 ** | −0.15 ** | |
Colors | 3.73 | 1.45 | - | 4.01 | 22.56 | 0.34 *** | |||
Displayed time | 7.18 | 5.95 | - | 5.31 | 46.11 | 0.43 *** | |||
3 × 4 | Hits | 10.91 | 2.69 | 72.64 | −2.63 | 6.08 | 0.47 *** | −0.48 ** | 0.22 ** |
Errors | 4.11 | 5.75 | 27.36 | 2.83 | 12.49 | 0.24 *** | 0.39 ** | −0.06 | |
Colors | 4.47 | 3.52 | - | 2.49 | 4.65 | 0.39 *** | |||
Displayed time | 9.10 | 7.33 | - | 4.59 | 33.45 | 0.30 *** | |||
4 × 4 | Hits | 14.29 | 3.72 | 65.31 | −2.36 | 4.75 | 0.42 *** | −0.30 ** | −0.11 ** |
Errors | 7.59 | 7.93 | 34.69 | 1.73 | 3.74 | 0.17 *** | 0.23 ** | −0.02 | |
Colors | 5.43 | 4.41 | - | 1.55 | 0.74 | 40 *** | |||
Displayed time | 10.10 | 8.57 | - | 3.09 | 12.47 | 0.30 *** | |||
4 × 5 | Hits | 17.10 | 4.76 | 65.22 | −1.87 | 2.87 | 0.29 *** | −0.36 ** | 0.22 ** |
Errors | 9.12 | 6.70 | 34.78 | 0.96 | 1.28 | 0.10 *** | 0.27 ** | −0.12 | |
Colors | 8.46 | 5.62 | - | 0.21 | −1.83 | 0.28 *** | |||
Displayed time | 11.60 | 11.59 | - | 4.01 | 20.58 | 0.35 *** | |||
5 × 5 | Hits | 21.37 | 6.67 | 58.42 | −1.77 | 1.89 | 0.38 *** | −0.44 ** | −0.15 ** |
Errors | 15.21 | 10.86 | 41.58 | 1.08 | 1.19 | 0.10 *** | 0.24 ** | −0.04 | |
Colors | 9.06 | 5.70 | - | 0.00 | −1.91 | 0.31 *** | |||
Displayed time | 9.01 | 8.08 | - | 2.76 | 10.13 | 0.39 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reigal, R.E.; González-Guirval, F.; Pastrana-Brincones, J.L.; González-Ruiz, S.; Hernández-Mendo, A.; Morales-Sánchez, V. Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color. Sustainability 2020, 12, 7655. https://doi.org/10.3390/su12187655
Reigal RE, González-Guirval F, Pastrana-Brincones JL, González-Ruiz S, Hernández-Mendo A, Morales-Sánchez V. Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color. Sustainability. 2020; 12(18):7655. https://doi.org/10.3390/su12187655
Chicago/Turabian StyleReigal, Rafael E., Fernando González-Guirval, José L. Pastrana-Brincones, Sergio González-Ruiz, Antonio Hernández-Mendo, and Verónica Morales-Sánchez. 2020. "Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color" Sustainability 12, no. 18: 7655. https://doi.org/10.3390/su12187655
APA StyleReigal, R. E., González-Guirval, F., Pastrana-Brincones, J. L., González-Ruiz, S., Hernández-Mendo, A., & Morales-Sánchez, V. (2020). Analysis of Reliability and Generalizability of One Instrument for Assessing Visual Attention Span: MenPas Mondrian Color. Sustainability, 12(18), 7655. https://doi.org/10.3390/su12187655