Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment
Abstract
:1. Introduction
2. Methodology
- thermal conductivity λ (expressed in W/m∙K), which describes the capacity of a material to conduct heat when there is a difference of temperature. It depends on the nature of the material, but not on its shape;
- thermal transmittance U (expressed as W/m2∙K), which describes the tendency of an element to disperse heat in the presence of a temperature difference.
2.1. Modeling Design Alternatives
2.2. Energy Analyses of Design Alternatives
2.3. Cost Processing of the Design Alternatives
3. Results and Discussion
3.1. Example of Evaluation of Design Alternatives
3.2. Analyses of Costs and Energy Consumption of the Design Alternatives
3.3. Joint Analyses of Costs and Energy Consumption of Design Alternatives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Najjar, M.K.; Tam, V.W.Y.; Di Gregorio, L.T.; Evangelista, A.C.J.; Hammad, A.W.A.; Haddad, A. Integrating parametric analysis with building information modeling to improve energy performance of construction projects. Energies 2019, 12, 1515. [Google Scholar] [CrossRef] [Green Version]
- Sözer, H.; Sözen, H. Waste capacity and its environmental impact of a residential district during its life cycle. Energy Rep. 2020, 6, 286–296. [Google Scholar] [CrossRef]
- Zardo, P.; Ribeiro, L.A.; Mussi, A.Q. BIM and parametric design applications for buildings’ energy efficiency: An analysis of practical applications. Arquitetura Rev. 2019, 15, 238–255. [Google Scholar]
- Sadeghifam, A.N.; Meynagh, M.M.; Mahdiyar, M.; Memari, A.; Ismail, S.; Tabatabaee, S. Assessment of the building components in the energy efficient design of tropical residential buildings: An application of BIM and statistical Taguchi method. Energy 2019, 188, 116080. [Google Scholar] [CrossRef]
- Palumbo, E.; Politi, S. Possible Integration Approaches of Life Cycle Assessment in Bim; Laura, M., Mussinelli, E., Tucci, F., Eds.; Maggioli Editore: Milano, Italy, 2019; ISBN 9788-8-916-3602-7. [Google Scholar]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Simplification in life cycle assessment of single-family houses: A review of recent developments. Build. Environ. 2016, 103, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of BIM-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Hollberg, A.; Genova, G.; Habert, G. Evaluation of BIM-based LCA results for building design. Autom. Constr. 2020, 109, 102972. [Google Scholar] [CrossRef]
- Raut, A.; Khatoon, S.; Goud, P. A comparative study on effects of various insulating layers of roof system on energy usage of building envelope. IOP Conf. Ser. Earth Environ. 2019, 354, 012055. [Google Scholar] [CrossRef]
- Jalilzadehazhari, E.; Vadiee, A.; Johansson, P. Achieving a trade-off construction solution using BIM, an optimization algorithm, and a multi-criteria decision-making method. Buildings 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, M.; Mukkavaara, J.; Shadram, F.; Olofsson, T. Multidisciplinary optimization of life-cycle energy and cost using a bim-based master model. Sustainability 2019, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Sadhu, A. Multicomponent energy assessment of buildings using building information modeling. Sustain. Cities Soc. 2019, 49, 101603. [Google Scholar] [CrossRef]
- Spiridigliozzi, G.; Pompei, L.; Cornaro, C.; De Santoli, L.; Bisegna, F. BIM-BEM support tools for early stages of zero-energy building design. IOP Conf. Ser. Mater. Sci. 2019, 609, 072075. [Google Scholar] [CrossRef]
- Tallberg, M.; Bohne, R. BIM based iterative simulation—Efficient building design: A case study. IOP Conf. Ser. Earth Environ. 2019, 323, 012043. [Google Scholar] [CrossRef]
- Akcay, E.C.; Arditi, D. Desired points at minimum cost in the “Optimize Energy Performance” credit of LEED certification. J. Civ. Eng. Manag. 2017, 23, 796–805. [Google Scholar] [CrossRef]
- Veselka, J.; Nehasilová, M.; Dvořáková, K.; Ryklová, P.; Volf, M.; Růžička, J.; Lupíšek, A. Recommendations for developing a BIM for the purpose of LCA in green building certifications. Sustainability 2020, 12, 6151. [Google Scholar] [CrossRef]
- Palumbo, E.; Soust-Verdaguer, B.; Llatas, C.; Traverso, M. How to obtain accurate environmental impacts at early design stages in BIM when using environmental product declaration. A method to support decision-making. Sustainability 2020, 12, 6927. [Google Scholar]
- Montiel-Santiago, F.J.; Hermoso-Orzáez, M.J.; Terrados-Cepeda, J. Sustainability and energy efficiency: BIM 6D. Study of the BIM methodology applied to hospital buildings. Value of interior lighting and daylight in energy simulation. Sustainability 2020, 12, 5731. [Google Scholar] [CrossRef]
- Ijasahmed, M.; Ramesh Krishnan, L.; Gangadhara Kiran Kumar, L. Modeling and simulation of a building towards energy efficiency. Int. J. Innov. Tech. Exp. Eng. 2019, 8, 1063–1073. [Google Scholar]
- Maciel, A.C.F.; Carvalho, M.T. Operational energy of opaque ventilated façades in Brazil. J. Build. Eng. 2019, 25, 100775. [Google Scholar] [CrossRef]
- Mirrahimi, S.; Mohamed, M.F.; Haw, L.C.; Ibrahim, N.L.N.; Yusoff, W.F.M.; Aflaki, A. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renew. Sustain. Energy Rev. 2015, 53, 1508–1519. [Google Scholar] [CrossRef]
- Zachariadis, T.; Michopoulos, A.; Vougiouklakis, Y.; Piripitsi, K.; Ellinopoulos, C.; Struss, B. Determination of cost-effective energy efficiency measures in buildings with the aid of multiple indices. Energies 2018, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Astiaso Garcia, D.; Cumo, F.; Tiberi, M.; Sforzini, V.; Piras, G. Cost-benefit analysis for energy management in public buildings: Four Italian case studies. Energies 2016, 9, 522. [Google Scholar] [CrossRef]
- ASHRAE. Available online: https://www.ashrae.org/ (accessed on 29 July 2020).
- Shang-yuan, C. A green building information modelling approach: Building energy performance analysis and design optimization. MATEC Web Conf. 2018, 169, 01004. [Google Scholar]
- Gazzetta Ufficiale della Repubblica Italiana, Presidenza della Repubblica, D.P.R. 26/08/1993, n. 412: Regolamento Recante Norme per la Progettazione, L’installazione, L’esercizio e la Manutenzione Degli Impianti Termici Degli Edifici ai Fini del Contenimento dei Consumi di Energia. Available online: https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg (accessed on 2 September 2020).
- Gazzetta Ufficiale della Repubblica Italiana, Ministero dello Sviluppo, D.M. 26/06/2015: Applicazione delle Metodologie di Calcolo Delle Prestazioni Energetiche e Definizione Delle Prescrizioni e dei Requisiti Minimi Degli Edifici. Available online: https://www.gazzettaufficiale.it/eli/id/2015/07/15/15A05198/sg (accessed on 2 September 2020).
- Guida alla Bioedilizia 2020/21. Available online: https://naturalia-bau.it/ (accessed on 29 July 2020).
- Foamglas. Available online: https://www.foamglas.com/it-it (accessed on 29 July 2020).
- Foamglas Product Sheet—FOAMGLAS® BOARD T4+. Available online: https://www.foamglas.com/it-it/prodotti/fgbt4boards (accessed on 29 July 2020).
- UNI EN ISO 10077-1:2018: Prestazione Termica di Finestre, Porte e Chiusure Oscuranti—Calcolo Della Trasmittanza Termica—Parte 1: Generalità. Available online: http://store.uni.com/catalogo/index.php/catalog/product/view/id/274678/s/uni-en-iso-10077-1-2018/category/3440/?___store=en&josso_back_to=http%3A%2F%2Fstore.uni.com%2Fjosso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com&___from_store=it (accessed on 2 September 2020).
- Regione Lombardia: Prezzario Regionale Delle Opere Pubbliche 2020. Available online: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioServizio/servizi-e-informazioni/Enti-e-Operatori/Autonomie-locali/Acquisti-e-contratti-pubblici/Osservatorio-regionale-contratti-pubblici/prezzario-lavori-opere-pubbliche/prezzario-opere-pubbliche (accessed on 2 September 2020).
- Autodesk Green Building Studio. Available online: https://gbs.autodesk.com/ (accessed on 29 July 2020).
- Illankoon, I.M.C.S.; Tam, V.W.Y.; Le, K.N.; Wang, X.; Wang, J. Optimal roofing solutions for Australian green buildings: A life-cycle cost perspective. In Engineering Sustainability, Proceedings of the Institution of Civil Engineers—Engineering Sustainability; ICE Publishing: London, UK, 2020; Volume 173, pp. 1–2. [Google Scholar]
Building Component | Type | Site | Brief Description | U [W/m2K] |
---|---|---|---|---|
Wall | 1 | Milan | 10 cm single overcoat | 0.26 |
1 | Livigno | 12 cm single overcoat | 0.23 | |
2 | Milan, Livigno | 16 + 6 cm double overcoat | 0.13 | |
Roof | 1 | Milan | 16 cm insulating layer | 0.22 |
1 | Livigno | 18 cm insulating layer | 0.20 | |
2 | Milan, Livigno | 32 cm insulating layer | 0.11 | |
Floor | 1 | Milan | 12 cm insulating layer (Polystyrene) | 0.26 |
1 | Livigno | 14 cm insulating layer (Polystyrene) | 0.24 | |
2 | Milan, Livigno | 20 cm insulating layer (Foamglas) | 0.19 | |
Window | 1 | Milan | Aluminum, double glazing, Argon gas | 1.40 |
1 | Livigno | Aluminum, triple glazing, Krypton gas | 1.10 | |
2 | Milan | PVC, double glazing, Argon gas | 1.20 | |
2 | Livigno | PVC, triple glazing, Krypton gas | 0.90 |
Model # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wall Type | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 |
Roof Type | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
Floor Type | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
Window Type | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
WWR Type | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 |
Model # | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
Wall Type | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
Roof Type | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 |
Floor Type | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
Window Type | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
WWR Type | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 |
Model # | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
Wall Type | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Roof Type | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Floor Type | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
Window Type | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 |
WWR Type | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Building Component | Maintenance Description | Cost [€/m2] | Schedule [Years] |
---|---|---|---|
Wall | double plastering | 9.08 | 30–70 |
Roof | replacement of the waterproof membrane, joists tiles holders, damaged tiles | 20.05 | 35–65 |
Floor type 1 | full replacement | 208.51 | 60 |
Windows type 2 | full replacement | n/a | 50 |
Years | Walls [€/EUI] | Roof [€/EUI] | Floor [€/EUI] | Windows [€/EUI] |
---|---|---|---|---|
0 | 517 | 242 | 695 | - |
5 | 492 | 209 | 662 | - |
10 | 466 | 176 | 629 | - |
15 | 440 | 143 | 597 | - |
20 | 414 | 110 | 564 | - |
25 | 389 | 77 | 531 | - |
30 | 363 | 44 | 498 | - |
35 | 337 | 11 | 465 | - |
40 | 312 | - | 432 | - |
45 | 286 | - | 399 | - |
50 | 260 | - | 366 | 366 |
55 | 235 | - | 333 | 333 |
60 | 209 | - | - | 300 |
65 | 183 | - | - | 267 |
70 | 158 | - | - | 234 |
75 | 132 | - | - | 201 |
80 | 106 | - | - | 169 |
85 | 81 | - | - | 136 |
90 | 55 | - | - | 10 |
95 | 29 | - | - | 70 |
100 | 4 | - | - | 37 |
Years | Walls Roof [€/EUI] | Walls Floor [€/EUI] | Walls Windows [€/EUI] | Roof Floor [€/EUI] | Roof Windows [€/EUI] | Floor Windows [€/EUI] |
---|---|---|---|---|---|---|
0 | 415 | 560 | - | 401 | - | - |
5 | 387 | 533 | - | 368 | - | - |
10 | 358 | 505 | - | 335 | - | - |
15 | 330 | 478 | - | 302 | - | - |
20 | 301 | 451 | - | 269 | - | - |
25 | 273 | 423 | - | 236 | - | - |
30 | 245 | 396 | - | 203 | - | - |
35 | 216 | 368 | - | 170 | - | - |
40 | - | 341 | - | - | - | - |
45 | - | 313 | - | - | - | - |
50 | - | 286 | 290 | - | - | 366 |
55 | - | 259 | 262 | - | - | 333 |
60 | - | - | 235 | - | - | - |
65 | - | - | 207 | - | - | - |
70 | - | - | 179 | - | - | - |
75 | - | - | 152 | - | - | - |
80 | - | - | 124 | - | - | - |
85 | - | - | 96 | - | - | - |
90 | - | - | 68 | - | - | - |
95 | - | - | 41 | - | - | - |
100 | - | - | 13 | - | - | - |
Years | Single Component Analysis | Double Component Analysis |
---|---|---|
0–35 | Windows, Roof, Walls, Floor | Windows, Roof, Floor, Walls |
35–45 | Windows/Roof, Walls, Floor | Windows/Roof, Walls/Floor |
45–55 | Roof, Walls, Windows/Floor | Roof, Walls, Floor, Windows |
55–100 | Roof/Floor, Walls, Windows | Roof/Floor, Walls/Windows |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gaetani, C.I.; Macchi, A.; Perri, P. Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment. Sustainability 2020, 12, 7507. https://doi.org/10.3390/su12187507
De Gaetani CI, Macchi A, Perri P. Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment. Sustainability. 2020; 12(18):7507. https://doi.org/10.3390/su12187507
Chicago/Turabian StyleDe Gaetani, Carlo Iapige, Andrea Macchi, and Pasquale Perri. 2020. "Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment" Sustainability 12, no. 18: 7507. https://doi.org/10.3390/su12187507
APA StyleDe Gaetani, C. I., Macchi, A., & Perri, P. (2020). Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment. Sustainability, 12(18), 7507. https://doi.org/10.3390/su12187507