Sustainable Mobility: A Review of Possible Actions and Policies
Abstract
:1. Introduction
1.1. Related Works
1.2. Methodology
1.3. Structure of the Paper
2. Transport Policies and Statistical Data
2.1. Transport Policies
- 1.
- “Halve the use of ‘conventionally fuelled’ cars in urban transport by 2030; phase them out in cities by 2050; [...].
- 2.
- Low-carbon sustainable fuels in aviation to reach 40% by 2050; also by 2050 reduce EU CO2 emissions from maritime bunker fuels by 40% (if feasible 50%).
- 3.
- Thirty per cent of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, and more than 50% by 2050, [...].
- 4.
- By 2050, complete a European high-speed rail network. Triple the length of the existing high-speed rail network by 2030 and maintain a dense railway network in all Member States. [...]
- 5.
- A fully functional and EU-wide multimodal TEN-T ‘core network’ by 2030, with a high-quality and capacity network by 2050 and a corresponding set of information services.
- 6.
- By 2050, connect all core network airports to the rail network, preferably high-speed; ensure that all core seaports are sufficiently connected to the rail freight and, where possible, inland waterway system.
- 7.
- Deployment of the modernised air traffic management infrastructure (SESAR) in Europe by 2020 and completion of the European common aviation area. [...].
- 8.
- By 2020, establish the framework for a European multimodal transport information, management and payment system.
- 9.
- By 2050, move close to zero fatalities in road transport. In line with this goal, the EU aims at halving road casualties by 2020. [...].
- 10.
- Move towards full application of ‘user pays’ and ‘polluter pays’ principles and private sector engagement to eliminate distortions, including harmful subsidies, generate revenues and ensure financing for future transport investments.” [19].
- Optimizing the transport system and improving its efficiency (ITS, pricing, multi-modality);
- Scaling up the use of low-emission alternative energy sources (low-emission alternative energy for transport, standardization, and inter-operability for electro-mobility);
- Moving towards zero-emission vehicles (vehicle efficiency, action on heavy-duty vehicles);
- Horizontal enablers to support low emissions mobility.
2.2. Main Statistical Data
3. Sustainable Mobility: Environmental Topics
3.1. Air Pollution and Greenhouse Gases
- The vehicle: Low-emission vehicles, electric vehicles, hybrid vehicles, etc.;
- The fuel: Low-carbon fuels, biodiesel, etc.;
- The users: Use of less polluting modes of transport, changes in mobility habits, incentives, pricing, etc.;
- Management technologies: Intelligent Transportation Systems (ITS), traffic control, connected vehicles, etc.
3.2. Cycling and Walking Promotion
- Creation of pedestrian areas;
- Creation of limited traffic zones;
- Creation of 30-zone;
- Maintenance and renovation of sidewalks;
- Construction of underpasses and overpasses or marked and illuminated pedestrian crossings (increasing the perceived safety);
- Construction of mobile infrastructure to assist pedestrian movements (escalators, conveyor belts, lifts).
- Construction of cycle paths;
- Preparation of parking areas dedicated to bicycles;
- Incentives for the purchase of bicycles;
- Bike-sharing systems.
3.3. Ecodriving
- Anticipate traffic flow and signals;
- Drive smoothly (and non-aggressively) and, as far as possible, maintain a steady speed;
- Change gear so to keep the engine in the optimal range (from 2000 to 3000 routes per minute, depending on the vehicle and engine); change gear earlier than usual;
- Check the tyre pressures more frequently;
- Limit the use of air conditioning and electrical equipment when not needed.
3.4. Noise
- Lday is the equivalent noise level during the day (7:00–19:00);
- Levening is the equivalent noise level during the evening (19:00–23:00);
- Lnight is the equivalent noise level during the night (23:00–7:00).
- Models, methods, and software for the estimation of traffic noise;
- Specific case studies;
- Impacts of noise on human health;
- Infrastructures and mitigation methods;
- Engines.
4. Sustainable Mobility: Socio-Economic Topics
4.1. Equity
- Equity in the environmental impacts of transport systems;
- Equity of investment in infrastructure and services available to the population;
- Equity in the accessibility, with particular attention to the weaker segments of the population, at risk of social exclusion, and to destinations of social and cultural importance;
- Equity in the improvement of the urban environment and the regeneration of areas;
- Equity in charges for the use of infrastructure, for the use of collective transport services and the taxation of fuels and vehicles.
4.2. Pricing, Taxes and Incentives
4.3. Transit Improvements and Public Transport Promotion
4.4. Safety
- Intersections (type, organization, traffic lights, pedestrian protection, canalization, etc.);
- Road layout (plano-altimetric layout, visibility distance, etc.);
- Urban roads (network organisation, 30-zone, restricted traffic zones, etc.);
- Paving (draining pavements, maintenance, etc.).
- Safety barriers (installation and maintenance, guardrails to separate carriageways, shock absorbers, etc.);
- Signage (luminous signage, variable message panels, LEDs, speed limits, road markings, maintenance, etc.).
- Lighting (intersections, pedestrian crossings, etc.).
- Type of lighting devices;
- Cruise control;
- Active safety belts;
- Airbags;
- Engine positioning;
- Protective devices in the bodywork;
- Automatic driving functions (automatic braking, trajectory control, intelligent cruise control, signal and speed limit recognition, etc.).
- Point driver’s license;
- Alcohol tests;
- Vehicle efficiency controls;
- Awareness campaigns;
- Safe driving courses.
4.5. E-Commerce and Teleworking
5. Sustainable Mobility: Technological Topics
5.1. Alternative Fuel Vehicles
5.1.1. Electricity
5.1.2. Natural Gas
5.1.3. Liquefied Petroleum Gas
5.1.4. Hydrogen Fuel Cells
5.2. Shared Mobility Models
5.2.1. Car-Sharing
- A verification process checks user identity and driving record once and, after that, the user can use the service’s cars in future without interacting each time with the operator staff. Generally, keyless access is provided using the in-vehicle telematics.
- The service’s car is usually driven by the end-user as in traditional car rental, differently from a taxi service.
- Service fees are based on minutes or hours rates, and sometimes also on travelled distance.
- Service’s vehicles are usually distributed in a served area, differently from car rental in which vehicles are located in dedicated areas.
5.2.2. Round-Trip Carsharing
5.2.3. One-Way Car-Sharing
5.2.4. Peer-to-Peer Car-Sharing
5.2.5. Shared Micro-Mobility
5.3. Intelligent Transportation Systems
5.3.1. Main Technologies and Applications
Advanced Traveller Information System (ATIS)
Advanced Traffic Management System (ATMS)
Advanced Public Transportation System (APTS)
5.3.2. Cooperative Intelligent Transportation Systems
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- European Commission. A Community Strategy for ‘Sustainable Mobility’, Green Paper on the Impact of Transport. on the Environment; COM (1992) 46 Final; Commission of the European Communities: Brussels, Belgium, 1992. [Google Scholar]
- Review of the EU Sustainable Development Strategy (EU SDS)—Renewed Strategy; 10917/06; Council of European Union: Brussels, Belgium, 2006.
- Klecha, L.; Gianni, F. Designing for Sustainable Urban Mobility Behaviour: A Systematic Review of the Literature. In Citizen, Territory and Technologies: Smart Learning Contexts and Practices, Smart Innovation; Mealha, Ó., Divitini, M., Rehm, M., Eds.; Systems and Technologies 80; Springer: Cham, Switzerland, 2018; pp. 137–149. [Google Scholar]
- Gonzales Aregall, M.; Bergqvist, R.; Monios, J. A global review of the hinterland dimension of green port strategies. Transp. Res. D 2018, 59, 23–34. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Taiebat, M.; Brown, A.L.; Safford, H.R.; Qu, S.; Xu, M. A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles. Environ. Sci. Technol. 2018, 52, 11449–11465. [Google Scholar] [CrossRef]
- Ferrero, F.; Perboli, G.; Rosano, M.; Vesco, A. Car-sharing services: An annotated review. Sustain. Cities Soc. 2018, 37, 501–518. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Kaplan, M.D.; Yilmaz, B.K. Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes. Transp. Res. A 2018, 109, 1–13. [Google Scholar] [CrossRef]
- Santos, G. Sustainability and Shared Mobility Models. Sustainability 2018, 10, 3194. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.R.; Alok, K. Adoption of electric vehicle: A literature review and prospects for sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Martinez-Dìaz, M.; Soriguera, F.; Pérez, I. Autonomous driving: A bird’s eye view. IET Intell. Transp. Syst. 2019, 13, 563–579. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.; Ruìz-Benìtez, R.; Vargas-Machuca, C. On the Environmental and Social Sustainability of Technological Innovations in Urban Bus Transport: The EU Case. Sustainability 2019, 11, 1413. [Google Scholar] [CrossRef] [Green Version]
- Letnik, T.; Marksel, M.; Luppino, G.; Bardi, A.; Bozicnik, S. Review of policies and measures for sustainable and energy efficient urban transport. Energy 2018, 163, 245–257. [Google Scholar] [CrossRef]
- Tirachini, A. Ride-hailing, travel behaviour and sustainable mobility: An international review. Transportation 2019. [Google Scholar] [CrossRef]
- Holden, E.; Gilpin, G.; Banister, D. Sustainable Mobility at Thirty. Sustainability 2019, 11, 1965. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.; Hu, W.; Dong, J.; Sun, B.; Chen, Y.; Chen, Z. A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy. Int. J. Environ. Res. Public Health 2020, 17, 261. [Google Scholar] [CrossRef] [Green Version]
- Pojani, D.; Stead, D. Policy design for sustainable urban transport in the global south. Policy Des. Pract. 2018, 1, 90–102. [Google Scholar] [CrossRef]
- Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System; COM(2011) 144; European Commission: Brussels, Belgium, 2011.
- Towards a Sustainable Europe by 2030; Reflection Paper; COM(2019) 22; European Commission: Brussels, Belgium, 2019.
- A European Strategy for Low-Emission Mobility. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM(2016) 501; European Commission: Brussels, Belgium, 2016.
- Action Plan on Urban Mobility; COM(2009) 490; European Commission: Brussels, Belgium, 2009.
- Guidelines for Developing and Implementing a Sustainable Urban Mobility Plan, 2nd ed.; Consult, R. (Ed.) European Platform on Sustainable Urban Mobility Plans: Cologne, Germany, 2019. [Google Scholar]
- Eltis. Available online: https://www.eltis.org/mobility-plans/city-database (accessed on 20 May 2020).
- Zhou, J. Sustainable transportation in the US: A review of proposals, policies, and programs since 2000. Front. Archit. Res. 2012, 1, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Institute for Transportation & Development Policy. Available online: https://www.itdp.org/where-we-work/north-america/united-states/ (accessed on 2 June 2020).
- Environmental European Agency. Available online: https://www.eea.europa.eu/ (accessed on 2 June 2020).
- Environmental Protection Agency. Available online: https://www.epa.gov/ (accessed on 2 June 2020).
- U.S. Department of Transportation. Available online: https://www.transportation.gov/ (accessed on 2 June 2020).
- World Health Organization. Available online: https://www.who.int/ (accessed on 2 June 2020).
- Environmental European Agency. Air Quality in Europe—2019 Report; EEA Report No. 10/2019; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Environmental European Agency. Annual European Union Approximated Greenhouse Gas Inventory for the Year 2018; EEA Report No. 16/2019; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Climatewatch. Available online: www.climatewatchdata.org (accessed on 18 May 2020).
- Environmental Protection Agency. Air Emissions. Available online: https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data (accessed on 18 May 2020).
- Energy Information Administration. Available online: https://www.eia.gov/consumption/ (accessed on 2 June 2020).
- Bureau of Transportation Statistics. Available online: https://maps.bts.dot.gov/MapGallery/map.html?webmap=27e3d934d04b4a699c07afd08fc7f3f9 (accessed on 2 June 2020).
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO Document Production Services; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization. Global Status Report on Road Safety 2018; WHO Document Production Services; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 20 May 2020).
- Crippa, M.; Oreggioni, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Lo Vullo, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.G.J.; Vignati, E. Fossil CO2 and GHG Emissions of All World Countries—2019 Report; EUR 29849 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Frankhauser, S.; Tol, R.S.J.; Pearce, D.W. The Aggregation of Climate Change Damages: A Welfare Theoretic Approach. Environ. Resour. Econ. 1997, 10, 249–266. [Google Scholar] [CrossRef]
- Dellink, R.; Lanzi, E.; Chateau, J.; Bosello, F.; Parrado, R.; de Bruin, K. Consequences of Climate Change Damages for Economic Growth: A Dynamic Quantitative Assessment; OECD Economics Department Working Papers; OECD: Paris, France, 2014. [Google Scholar]
- Kugler, N.R.; Sariego, P.M. “Climate change damages”, conceptualization of a legal notion with regard to reparation under international law. Clim. Risk Manag. 2016, 13, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Auffhammer, M. Quantifying Economic Damages from Climate Change. J. Econ. Perspect. 2018, 32, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, P.; Blanco, A.M. A human rights-based approach to loss and damage under the climate change regime. Clim. Policy 2019. [Google Scholar] [CrossRef]
- Yuan, X.-C.; Sun, X. Climate change impacts on socioeconomic damages from weather-related events in China. Nat. Hazards 2019, 99, 1197–1213. [Google Scholar] [CrossRef]
- Frame, D.J.; Rosier, S.M.; Noy, I.; Harrington, L.J.; Carey-Smith, T.; Sparrow, S.N.; Stone, D.A.; Dean, S.M. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Chang. 2020. [Google Scholar] [CrossRef]
- Neumann, J.E.; Willwerth, J.; Martinich, J.; McFarland, J.; Sarofim, M.C.; Yohe, G. Climate Damage Functions for Estimating the Economic Impacts of Climate Change in the United States. Rev. Environ. Econ. Policy 2020, 14, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Cervero, R.; Radisch, C. Travel choices in pedestrian versus automobile oriented neighborhoods. Transp. Policy 1996, 3, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, R.; Mars, L.; Ruiz, T. Perceptions of Pedestrian and Cyclist Environments, Travel Behaviors, and Social Networks. Sustainability 2018, 10, 3241. [Google Scholar] [CrossRef] [Green Version]
- Fistola, R.; Gallo, M.; La Rocca, R.A.; Raimondo, M. Soft mobility in the “oblique city”. In Town and Infrastructure Planning for Safety and Urban Quality; Pezzagno, M., Tira, M., Eds.; Taylor & Francis Group: London, UK, 2018; pp. 319–326. [Google Scholar]
- 15° Rapporto Sulla Mobilità Degli Italiani; ISFORT: Rome, Italy, 2018.
- Morris, J.N.; Hardman, A.E. Walking to health. Sports Med. 1997, 23, 306–332. [Google Scholar] [CrossRef]
- Oja, P.; Vuori, I.; Paronen, O. Daily walking and cycling to work: Their utility as health enhancing physical activity. Patient Educ. Couns. 1998, 33, S87–S94. [Google Scholar] [CrossRef]
- Andrews, G.J.; Hall, E.; Evans, B.; Colls, R. Moving beyond walkability: On the potential of health geography. Soc. Sci. Med. 2012, 75, 1925–1932. [Google Scholar] [CrossRef]
- Chiquetto, S. The environmental impacts from the implementation of a pedestrianization scheme. Transp. Res. D 1997, 2, 133–146. [Google Scholar] [CrossRef]
- Jou, K.K. Pedestrian areas and sustainable development. World Acad. Sci. Eng. Technol. 2011, 77, 483–490. [Google Scholar]
- Kelly, C.E.; Tight, M.R.; Hodgson, F.C.; Page, M.W. A comparison of three methods for assessing the walkability of the pedestrian environment. J. Transp. Geogr. 2011, 19, 1500–1508. [Google Scholar] [CrossRef]
- Lindelow, D.; Svensson, A.; Sternudd, C.; Johansson, M. What limits the pedestrian? Exploring perceptions of walking in the built environment and in the context of every-day life. J. Transp. Health 2014, 1, 223–231. [Google Scholar] [CrossRef]
- Binetti, M.; Caggiani, L.; Camporeale, R.; Ottomanelli, M. A Sustainable Crowdsourced Delivery System to Foster Free-Floating Bike-Sharing. Sustainability 2019, 11, 2772. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, X.; Zhou, P.; Gou, Z.; Lu, Y. Towards a cycling-friendly city: An updated review of the associations between built environment and cycling behaviors (2007–2017). J. Transp. Health 2019, 14, 100613. [Google Scholar] [CrossRef]
- Appolloni, L.; Corazza, M.V.; D’Alessandro, D. The Pleasure of Walking: An Innovative Methodology to Assess Appropriate Walkable Performance in Urban Areas to Support Transport Planning. Sustainability 2019, 11, 3467. [Google Scholar] [CrossRef] [Green Version]
- Eren, E.; Uz, V.E. A review on bike-sharing: The factors affecting bike-sharing demand. Sustain. Cities Soc. 2020, 54, 101882. [Google Scholar] [CrossRef]
- Fistola, R.; Gallo, M.; La Rocca, R.A.; Russo, F. The Effectiveness of Urban Cycle Lanes: From Dyscrasias to Potential Solutions. Sustainability 2020, 12, 2321. [Google Scholar] [CrossRef] [Green Version]
- McLeod, S.; Babb, C.; Barlow, S. How to ‘do’ a bike plan: Collating best practices to synthesise a Maturity Model of planning for cycling. Transp. Res. Interdiscip. Perspect. 2020, 5, 100130. [Google Scholar] [CrossRef]
- Allison, C.K.; Stanton, N.A. Eco-driving: The role of feedback in reducing emissions from everyday driving behaviours. Theor. Issues Ergon. Sci. 2019, 20, 85–104. [Google Scholar] [CrossRef]
- Kato, H.; Kobayashi, S. Factor Contributing to Improved Fuel Economy in Eco-drive. J. Soc. Automot. Eng. Jpn. 2008, 62, 79–84. [Google Scholar]
- Taniguchi, M. A Study on Eco-Driving and Driver’s Behaviors (in Japanese). J. Jpn. Soc. Traffic Eng. 2006, 41, 54–62. [Google Scholar]
- Ando, R.; Nishihori, Y. How does driving behavior change when following an eco-driving car? Procedia Soc. Behav. Sci. 2011, 20, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Boggio-Marzet, A. Evaluation of Eco-Driving Training for Fuel Efficiency and Emissions Reduction According to Road Type. Sustainability 2018, 10, 3891. [Google Scholar] [CrossRef] [Green Version]
- De Vlieger, I. On-board emission and fuel consumption measurement campaign on petrol-driven passenger cars. Atmos. Environ. 1997, 31, 3753–3761. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Maggetto, G.; Van De Burgwal, E.; Gense, R. Driving style and trafc measures—Infuence on vehicle emissions and fuel consumption. Proc. Inst. Mech. Eng. D J. Automob. Eng. 2004, 218, 43–50. [Google Scholar] [CrossRef]
- Coloma, J.F.; Garcia, M.; Wang, Y.; Monzon, A. Green Eco-Driving Effects in Non-Congested Cities. Sustainability 2018, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Bifulco, G.N.; Galante, F.; Pariota, L.; Russo Spena, M. A Linear Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems. Sustainability 2015, 7, 14326–14343. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, X.; Yao, Y.; Zhang, Y.; Rong, J.; Lui, X. Driver’s Eco-Driving Behavior Evaluation Modeling Based on Driving Events. J. Adv. Transp. 2018, 2018, 9530470. [Google Scholar] [CrossRef] [Green Version]
- Muslim, N.H.; Keyvanfar, A.; Shafaghat, A.; Abdullahi, M.M.; Khorami, M. Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission. Sustainability 2018, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.; Oettich, S. A new integrated approach to dynamic schedule synchronization and energy-saving train control. WIT Trans. Built Environ. 2002, 61, 847–856. [Google Scholar]
- Liu, R.; Golovitcher, I.M. Energy-efficient operation of rail vehicles. Transp. Res. A 2003, 37, 917–932. [Google Scholar] [CrossRef]
- Sicre, C.; Cucala, P.; Fernández, A.; Jiménez, J.A.; Ribera, I.; Serrano, A. A method to optimise train energy consumption combining manual energy efficient driving and scheduling. WIT Trans. Built Environ. 2010, 114, 549–560. [Google Scholar]
- Sicre, C.; Cucala, A.P.; Fernández, A.; Lukaszewicz, P. Modeling and optimizing energy-efficient manual driving on high-speed lines. IEEJ Trans. Electr. Electron. Eng. 2012, 7, 633–640. [Google Scholar] [CrossRef]
- De Martinis, V.; Weidmann, U.; Gallo, M. Towards a simulation based framework for evaluating energy-efficient solutions in train operation. WIT Trans. Built Environ. 2014, 135, 721–732. [Google Scholar]
- Gallo, M.; Simonelli, F.; De Luca, G.; De Martinis, V. Estimating the effects of energy-efficient driving profiles on railway consumption. In Proceedings of the IEEE EEEIC 2015—15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015; pp. 813–818. [Google Scholar]
- Canca, D.; Zarzo, A. Design of energy-efficient timetables in two-way railway rapid transit lines. Transp. Res. B Methodol. 2017, 102, 142–161. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Liu, H.; Gao, X.; Mao, B. Optimizing the energy-efficient metro train timetable and control strategy in off-peak hour with uncertain passenger demands. Energies 2017, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- D’Acierno, L.; Botte, M. A passenger-oriented optimization model for implementing energy-saving strategies in railway contexts. Energies 2018, 11, 2946. [Google Scholar] [CrossRef] [Green Version]
- Botte, M.; D’Acierno, L. Dispatching and rescheduling tasks and their interactions with travel demand and the energy domain: Models and algorithms. Urban Rail Transit 2018, 4, 163–197. [Google Scholar] [CrossRef]
- Botte, M.; D’Acierno, L.; Pagano, M. Impact of railway energy efficiency on the primary distribution power grid. IEEE Trans. Veh. Technol. 2020, in press. [Google Scholar] [CrossRef]
- D’Acierno, L.; Botte, M. Optimising frequency-based railway services with a limited fleet endowment: An energy-efficient perspective. Energies 2020, 13, 2403. [Google Scholar] [CrossRef]
- Miyatake, M.; Matsuda, K. Energy saving speed and charge/discharge control of a railway vehicle with on-board energy storage by means of an optimization model. IEEJ Trans. Electr. Electron. Eng. 2009, 4, 771–778. [Google Scholar] [CrossRef]
- Nasri, A.; Fekri Moghadam, M.; Mokhtari, H. Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2010), Pisa, Italy, 14–16 June 2010. [Google Scholar]
- Teymourfar, R.; Asaei, B.; Iman-Eini, H.; Nejati Fard, R. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line. Energy Convers. Manag. 2012, 56, 206–214. [Google Scholar] [CrossRef]
- Gallo, M.; Botte, M.; Ruggiero, A.; D’Acierno, L. The optimisation of driving profiles for minimising energy consumptions in metro lines. In Proceedings of the 20th IEEE International Conference on Environment and Electrical Engineering (IEEE EEEIC 2020) and 4th Industrial and Commercial Power Systems Europe (I&CPS 2020), Web Conference, Madrid, Spain, 9–12 June 2020. [Google Scholar]
- Domínguez, M.; Fernández–Cardador, A.; Cucala, A.P.; Pecharromán, R.R. Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles. IEEE Trans. Autom. Sci. Eng. 2012, 9, 496–504. [Google Scholar] [CrossRef]
- Carreno, W.C. Efficient Driving of CBTC ATO Operated Trains. Ph.D. Thesis, Universidad Pontificia Comillas, Madrid, Spain, 2017. [Google Scholar]
- World Health Organization. Environmental Noise Guidelines for the European Region; WHO Regional Office for Europe: Copenhagen, Denmark, 2018. [Google Scholar]
- European Commission. Directive 2002/49/EC of the European Parliament and of Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise, L. 189/12, 18.7.2002; Official Journal of the European Communities: Brussels, Belgium, 2002. [Google Scholar]
- Steele, C. A critical review of some traffic noise prediction models. Appl. Acoust. 2001, 62, 271–287. [Google Scholar] [CrossRef]
- Garg, N.; Maji, S. A critical review of principal traffic noise models: Strategies and implications. Environ. Impact Asses. 2014, 46, 68–81. [Google Scholar] [CrossRef]
- Khan, J.; Ketzel, M.; Kakosimos, K.; Sorensen, M.; Jensen, S.S. Road traffic air and noise pollution exposure assessment – A review of tools and techniques. Sci. Total Environ. 2018, 634, 661–676. [Google Scholar] [CrossRef]
- Li, B.; Tao, S. Influence of expanding ring roads on traffic noise in Beijing City. Appl. Acoust. 2004, 65, 243–249. [Google Scholar] [CrossRef]
- Murphy, E.; King, E.A.; Rice, H.J. Estimating human exposure to transport noise in central Dublin, Ireland. Environ. Int. 2009, 35, 298–302. [Google Scholar] [CrossRef]
- Phan, H.Y.T.; Yano, T.; Sato, T.; Nishimura, T. Characteristics of road traffic noise in Hanoi and Ho Chi Minh City, Vietnam. Appl. Acoust. 2010, 71, 479–485. [Google Scholar] [CrossRef]
- Pamanikabud, P.; Tansatcha, M. 3D analysis and investigation of traffic noise impact from a new motorway on building and surrounding area. Appl. Acoust. 2010, 71, 1185–1193. [Google Scholar] [CrossRef]
- Agarwal, S.; Swami, B.L. Comprehensive approach for the development of traffic noise prediction model for Jaipur city. Environ. Monit. Assess. 2011, 172, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, M.R.; Kim, M.; Seong, J.C.; Arsalan, M.H. Spatio-temporal patterns of road traffic noise pollution in Karachi, Pakistan. Environ. Int. 2011, 37, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; De Luca, G.; De Martinis, V. The effects of urban traffic plans on noise abatement: A case study. In The Sustainable City IX—Urban Regeneration and Sustainability; Marchettini, N., Brebbia, C.A., Pulselli, R., Bastianoni, S., Eds.; WIT Transactions on Ecology and Environment Series; WIT Press: Southampton, UK, 2014; Volume 191, pp. 583–594. [Google Scholar]
- Bravo-Moncayo, L.; Pavon-Garcia, I.; Lucio-Naranjo, J.; Mosquera, R. Contingent valuation of road traffic noise: A case study in the urban area of Quito, Ecuador. Case Stud. Transp. Policy 2017, 5, 722–730. [Google Scholar] [CrossRef]
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef]
- Pirrera, S.; De Valck, E.; Cluydts, R. Nocturnal road traffic noise: A review on its assessment and consequences on sleep and health. Environ. Int. 2010, 36, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Paunovic, K.; Stansfeld, S.; Clark, C.; Belojevic, G. Epidemiological studies on noise and blood pressure in children: Observations and suggestions. Environ. Int. 2011, 37, 1030–1041. [Google Scholar] [CrossRef]
- Recio, A.; Linares, C.; Banegas, J.R.; Diaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms. Environ. Res. 2016, 146, 359–370. [Google Scholar] [CrossRef]
- Munzel, T.; Schmidt, F.P.; Steven, S.; Herzog, J.; Daibner, A.; Sorensen, M. Environmental Noise and the Cardiovascular System. J. Am. Coll. Cardiol. 2018, 71, 688–697. [Google Scholar] [CrossRef]
- Sakhvidi, M.J.Z.; Sakhvidi, F.Z.; Mehrparvar, A.H.; Foraster, M.; Dadvand, P. Association between noise exposure and diabetes: A systematic review and meta-analysis. Environ. Res. 2018, 166, 647–657. [Google Scholar] [CrossRef]
- Jafari, Z.; Kolb, B.E.; Mohajerani, M.H. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci. Biobehav. Rev. 2019, in press. [Google Scholar] [CrossRef]
- Khosravipour, M.; Khanlari, P. The association between road traffic noise and myocardial infarction: A systematic review and meta-analysis. Sci. Total Environ. 2020, 731, 139226. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; King, E.A. Scenario analysis and noise action planning: Modelling the impact of mitigation measures on population exposure. Appl. Acoust. 2011, 72, 487–494. [Google Scholar] [CrossRef]
- Praticò, F.G.; Anfosso-Ledee, F. Trends and Issues in Mitigating Traffic Noise through Quiet Pavements. Procedia Soc. Behav. 2012, 53, 203–212. [Google Scholar] [CrossRef]
- Garg, N.; Kumar, A.; Maji, S. Significance and implications of airborne sound insulation criteria in building elements for traffic noise abatement. Appl. Acoust. 2013, 74, 1429–1435. [Google Scholar] [CrossRef]
- Jiang, L.; Kang, J. Combined acoustical and visual performance of noise barriers in mitigating the environmental impact of motorways. Sci. Total Environ. 2016, 543, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Ohiduzzaman, M.; Sirin, O.; Kassem, E.; Rochat, J.L. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques. Sustainability 2016, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Sirin, O. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 2: Factors Affecting Tire-Pavement Noise and Prediction Models. Sustainability 2016, 8, 692. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Wei, W.; Van Renterghem, T.; Botteldooren, D. Measurement-based auralization methodology for the assessment of noise mitigation measures. J. Sound Vib. 2016, 379, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Vaiktus, A.; Cygas, D.; Vorobjovas, V.; Andriejauskas, T. Traffic/Road Noise Mitigation under Modified Asphalt Pavements. Transp. Res. Proc. 2016, 14, 2698–2703. [Google Scholar]
- Van Renterghem, T.; Botteldooren, D. Landscaping for road traffic noise abatement: Model validation. Environ. Modell. Softw. 2018, 109, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Horne, D.; Jashami, H.; Hurwitz, D.S.; Monsere, C.M.; Kothuri, S. Mitigating roadside noise pollution: A comparison between rounded and sinusoidal milled rumble strips. Transp. Res. D 2019, 77, 37–49. [Google Scholar] [CrossRef]
- Kleiziene, R.; Senas, O.; Vaitkus, A.; Simanaviciene, R. Asphalt Pavement Acoustic Performance Model. Sustainability 2019, 11, 2938. [Google Scholar] [CrossRef] [Green Version]
- Van Renterghem, T. Towards explaining the positive effect of vegetation on the perception of environmental noise. Urban For. Urban Green. 2019, 40, 133–144. [Google Scholar] [CrossRef]
- Tester, B.; Kempton, A. RESOUND—EU research into reduction of engine source noise through understanding and novel design. Air Space Eur. 2001, 3, 250–251. [Google Scholar] [CrossRef]
- Usuda, S.; Otsuke, M.; Nagata, M. Noise and vibration reduction of newly developed 3.0l direct injection diesel engine. JSAE Rev. 2002, 23, 285–289. [Google Scholar] [CrossRef]
- Paun, F.; Gasser, S.; Leylekian, L. Design of materials for noise reduction in aircraft engines. Aerosp. Sci. Technol. 2003, 7, 63–72. [Google Scholar] [CrossRef]
- Lu, M.-H.; Jen, M.U. Source identification and reduction of engine noise. Noise Control Eng. J. 2010, 58, 251–258. [Google Scholar] [CrossRef]
- Borg, J.; Watanabe, A.; Tokuo, K. Mitigation of Noise and Vibration in the High-Pressure Fuel System of a Gasoline Direct Injection Engine. Procedia Soc. Behav. 2012, 48, 3170–3178. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Hao, Z.-Y.; Jing, G.-X.; Zheng, X.; Liu, C. Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Appl. Acoust. 2013, 74, 150–159. [Google Scholar] [CrossRef]
- Ferrari, A.; Novara, C.; Paolucci, E.; Vento, O.; Violante, M.; Zhang, T. Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines. Appl. Energy 2018, 232, 358–367. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; Broatch, A.; Gil, A.; Gomez-Soriano, J. Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Appl. Acoust. 2018, 135, 91–100. [Google Scholar] [CrossRef]
- Qin, Y.; Tang, X.; Jia, T.; Duan, Z.; Zhang, J.; Li, Y.; Zheng, L. Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges. Renew. Sustain. Energy Rev. 2020, 124, 109782. [Google Scholar] [CrossRef]
- Litman, T.; Brenman, M. A New Social Equity Agenda for Sustainable Transportation. Presented at the 2012 Transportation Research Board Annual Meeting, Washington, DC, USA, 22–26 January 2012. Paper 12-3916. [Google Scholar]
- Reckien, D.; Creutzig, F.; Blanca, F.; Lwasa, S.; Tovar-Restrepo, M.; McEvoy, D.; Satterthwaite, D. Climate change, equity and the Sustainable Development Goals: An urban perspective. Environ. Urban 2017, 29, 159–182. [Google Scholar] [CrossRef]
- Henke, I.; Cartenì, A.; Molitierno, C.; Errico, A. Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability 2020, 12, 764. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Lucas, K. The social consequence of transport decision-making: Clarifying concepts, synthesising knowledge and assessing implications. J. Transp. Geogr. 2012, 21, 4–16. [Google Scholar] [CrossRef]
- Martens, K. Transport Justice. Defining Fair Transportation Systems; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Beyazit, E. Evaluating social justice in transport: Lessons to be learned from the capability approach. Transp. Rev. 2011, 31, 117–134. [Google Scholar] [CrossRef]
- Delbosc, A.; Currie, G. Using Lorenz curves to assess public transport equity. J. Transp. Geogr. 2011, 19, 1252–1259. [Google Scholar] [CrossRef]
- Bertolaccini, K.; Lownes, N.E. Effects of scale and boundary selection in assessing equity of transit supply distribution. Transp. Res. Rec. 2013, 2350, 58–64. [Google Scholar] [CrossRef]
- Welch, T.F. Equity in transport: The distribution of transit access and connectivity among affordable housing units. Transp. Policy 2013, 30, 283–293. [Google Scholar] [CrossRef]
- Welch, T.F.; Mishra, S. A measure of equity for public transit connectivity. J. Transp. Geogr. 2013, 33, 29–41. [Google Scholar] [CrossRef]
- Kaplan, S.; Popoks, D.; Prato, C.G.; Ceder, A. Using connectivity for measuring equity in transit provision. J. Transp. Geogr. 2014, 37, 82–92. [Google Scholar] [CrossRef]
- Nahmias-Biran, B.-H.; Sharaby, N.; Shiftan, Y. Equity Aspects in Transportation Projects: Case Study of Transit Fare Change in Haifa. Int. J. Sustain. Transp. 2014, 8, 69–83. [Google Scholar] [CrossRef]
- Gallo, M. Assessing the equality of external benefits in public transport investments: The impact of urban railways on real estate values. Case Stud. Transp. Policy 2020, in press. [Google Scholar] [CrossRef]
- Camporeale, R.; Caggiani, L.; Fonzone, A.; Ottomanelli, M. Better for everyone: An approach to multimodal network design considering equity. Transp. Res. Proc. 2016, 19, 303–315. [Google Scholar] [CrossRef]
- Camporeale, R.; Caggiani, L.; Fonzone, A.; Ottomanelli, M. Quantifying the impacts of horizontal and vertical equity in transit route planning. Transp. Plan. Technol. 2017, 40, 28–44. [Google Scholar] [CrossRef]
- Camporeale, R.; Caggiani, L.; Ottomanelli, M. Modeling horizontal and vertical equity in the public transport design problem: A case study. Transp. Res. A 2019, 125, 184–206. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Ottomanelli, M. Facing equity in transportation Network Design Problem: A flexible constraints based model. Transp. Policy 2017, 55, 9–17. [Google Scholar] [CrossRef]
- Gallo, M. Improving equity of urban transit systems with the adoption of origin-destination based taxi fares. Soc. Econ. Plan. Sci. 2018, 64, 38–55. [Google Scholar] [CrossRef]
- Gallo, M.; D’Acierno, L. An Origin-Destination Based Parking Pricing Policy for Improving Equity in Urban Transportation. In New Trends in Emerging Complex Real Life Problems; Daniele, P., Scrimali, L., Eds.; AIRO Springer Series; Springer: Cham, Switzerland, 2018; Volume 1, pp. 247–255. [Google Scholar]
- Camporeale, R.; Caggiani, L.; Fonzone, A.; Ottomanelli, M. Study of the accessibility inequalities of cordon-based pricing strategies using a multimodal Theil index. Transp. Plan. Technol. 2019, 42, 498–514. [Google Scholar] [CrossRef] [Green Version]
- Jansson, J.O. Road pricing and parking policy. Res. Transp. Econ. 2010, 29, 346–353. [Google Scholar] [CrossRef]
- Coria, J.; Bonilla, J.; Grundstrom, M.; Pleijel, H. Air pollution dynamics and the need for temporally differentiated road pricing. Transp. Res. A 2015, 75, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Munoz Miguel, J.P.; de Blas, C.S.; Garcia Sipols, A.E. A forecast air pollution model applied to a hypothetical urban road pricing scheme: An empirical study in Madrid. Transp. Res. D 2017, 55, 21–38. [Google Scholar] [CrossRef]
- Coria, J.; Zhang, X.-B. Optimal environmental road pricing and daily commuting patterns. Transp. Res. B 2017, 105, 297–314. [Google Scholar] [CrossRef]
- Zhong, S.; Bushell, M. Impact of the built environment on the vehicle emission effects of road pricing policies: A simulation case study. Transp. Res. A 2017, 103, 235–249. [Google Scholar] [CrossRef]
- Cavallaro, F.; Giaretta, F.; Nocera, S. The potential of road pricing schemes to reduce carbon emissions. Transp. Policy 2018, 67, 85–92. [Google Scholar] [CrossRef]
- Chang, T.-H.; Tseng, J.-S.; Hsieh, T.-H.; Hsu, Y.-T.; Lu, Y.-C. Green transportation implementation through distance-based road pricing. Transp. Res. A 2018, 111, 53–64. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, S.; Gao, Z.; Li, X.; Sun, W. Design of a heuristic environment-friendly road pricing scheme for traffic emission control under uncertainty. J. Environ. Manag. 2019, 236, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Rotaris, L.; Danielis, R.; Marcucci, E.; Massiani, J. The urban road pricing scheme to curb pollution in Milan, Italy: Description, impacts and preliminary cost–benefit analysis assessment. Transp. Res. A 2010, 44, 359–375. [Google Scholar] [CrossRef]
- Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, M.; Sioutas, C.; Westerdahl, D. Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmos. Environ. 2011, 45, 3522–3527. [Google Scholar] [CrossRef]
- Percoco, M. Is road pricing effective in abating pollution? Evidence from Milan. Transp. Res. D 2013, 25, 112–118. [Google Scholar] [CrossRef]
- Beevers, S.D.; Carslaw, D.C. The impact of congestion charging on vehicle emissions in London. Atmos. Environ. 2005, 39, 1–5. [Google Scholar] [CrossRef]
- Prud’homme, R.; Bocarejo, J.P. The London congestion charge: A tentative economic appraisal. Transp. Policy 2005, 12, 279–287. [Google Scholar] [CrossRef]
- Santos, G.; Bhakar, J. The impact of the London congestion charging scheme on the generalised cost of car commuters to the city of London from a value of travel time savings perspective. Transp. Policy 2006, 13, 22–33. [Google Scholar] [CrossRef]
- Quddus, M.A.; Bell, M.G.H.; Schmocker, J.-D.; Fonzone, A. The impact of the congestion charge on the retail business in London: An econometric analysis. Transp. Policy 2007, 14, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.W.; Barratt, B.; Armstrong, B.; Andersen, H.R.; Beevers, S.D.; Mudway, I.S.; Green, D.; Derwent, R.G.; Wilkinson, P.; Tonne, C.; et al. The impact of the congestion charging scheme on ambient air pollution concentrations in London. Atmos. Environ. 2009, 43, 5493–5500. [Google Scholar] [CrossRef]
- Green, C.P.; Heywood, J.S.; Navarro, M. Traffic accidents and the London congestion charge. J. Public Econ. 2016, 133, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.; Behrendt, H.; Maconi, L.; Shirvani, T.; Teytellboym, A. Part I: Externalities and economic policies in road transport. Res. Transp. Econ. 2010, 28, 2–45. [Google Scholar] [CrossRef]
- Proost, S.; Van Dender, K. The welfare impacts of alternative policies to address atmospheric pollution in urban road transport. Reg. Sci. Urban Econ. 2001, 31, 383–411. [Google Scholar] [CrossRef]
- Parry, I.W.H.; Bento, A. Estimating the welfare effect of congestion taxes: The critical importance of other distortions within the transport system. J. Urban Econ. 2002, 51, 339–365. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, E.T. Second-best congestion pricing in general networks. Heuristic algorithms for finding second-best optimal toll levels and toll points. Transp. Res. B 2002, 36, 707–729. [Google Scholar] [CrossRef]
- Manville, M. Parking Pricing. In Parking Issues and Policies; Emerald: Bingley, UK, 2014; pp. 137–155. [Google Scholar] [CrossRef]
- Zong, F.; He, Y.; Yuan, Y. Dependence of Parking Pricing on Land Use and Time of Day. Sustainability 2015, 7, 9587–9607. [Google Scholar] [CrossRef] [Green Version]
- Mei, Z.; Feng, C.; Kong, L.; Zhang, L.; Chen, J. Assessment of Different Parking Pricing Strategies: A Simulation-based Analysis. Sustainability 2020, 12, 2056. [Google Scholar] [CrossRef] [Green Version]
- Parmar, J.; Das, P.; Dave, S.M. Study on demand and characteristics of parking system in urban areas: A review. J. Traffic Transp. Eng. 2020, 7, 111–124. [Google Scholar] [CrossRef]
- D’Acierno, L.; Gallo, M.; Montella, B. Optimisation models for the urban parking pricing problem. Transp. Policy 2006, 13, 34–48. [Google Scholar] [CrossRef]
- Santos, G. Road fuel taxes in Europe: Do they internalize road transport externalities? Transp. Policy 2017, 53, 120–134. [Google Scholar] [CrossRef] [Green Version]
- Steinsland, C.; Fridstrom, L.; Madslien, A.; Minken, H. The climate, economic and equity effects of fuel tax, road toll and commuter tax credit. Transp. Policy 2018, 72, 225–241. [Google Scholar] [CrossRef]
- Sterner, T. Fuel taxes: An important instrument for climate policy. Energy Policy 2007, 35, 3194–3202. [Google Scholar] [CrossRef]
- Montag, J. The simple economics of motor vehicle pollution: A case for fuel tax. Energy Policy 2015, 85, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Fukui, H.; Miyoshi, C. The impact of aviation fuel tax on fuel consumption and carbon emissions: The case of the US airline industry. Transp. Res. D 2017, 50, 234–253. [Google Scholar] [CrossRef] [Green Version]
- Givord, P.; Grislain-Letremy, C.; Naegele, H. How do fuel taxes impact new car purchases? An evaluation using French consumer-level data. Energy Econ. 2018, 74, 76–96. [Google Scholar] [CrossRef]
- Storchmann, K.-H. The impact of fuel taxes on public transport—An empirical assessment for Germany. Transp. Policy 2001, 8, 19–28. [Google Scholar] [CrossRef]
- Kavalec, C.; Woods, J. Toward marginal cost pricing of accident risk: The energy, travel, and welfare impacts of pay-at-the-pump auto insurance. Energy Policy 1999, 27, 331–342. [Google Scholar] [CrossRef]
- Gallo, M. A fuel surcharge policy for reducing road traffic greenhouse gas emissions. Transp. Policy 2011, 18, 413–424. [Google Scholar] [CrossRef]
- Mandell, S.; Proost, S. Why truck distance taxes are contagious and drive fuel taxes to the bottom. J. Urban Econ. 2016, 93, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ewing, G.O.; Sarigollu, E. Car fuel-type choice under travel demand management and economic incentives. Transp. Res. D 1998, 3, 429–444. [Google Scholar] [CrossRef]
- Rudolph, C. How may incentives for electric cars affect purchase decisions? Transp. Policy 2016, 52, 113–120. [Google Scholar] [CrossRef]
- Hardman, S.; Chandan, A.; Tal, G.; Turrentine, T. The effectiveness of financial purchase incentives for battery electric vehicles—A review of the evidence. Renew. Sustain. Energy Rev. 2017, 80, 1100–1111. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, X. Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China. Renew. Sustain. Energy Rev. 2017, 70, 24–43. [Google Scholar] [CrossRef]
- Ma, S.-C.; Xu, J.-H.; Fan, Y. Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China. Energy Econ. 2019, 81, 197–215. [Google Scholar] [CrossRef]
- Munzel, C.; Plotz, P.; Sprei, F.; Gnann, T. How large is the effect of financial incentives on electric vehicle sales?—A global review and European analysis. Energy Econ. 2019, 84. [Google Scholar] [CrossRef]
- Deuten, S.; Gomez Vilchez, J.J.; Thiel, C. Analysis and testing of electric car incentive scenarios in the Netherlands and Norway. Technol. Forecast. Soc. 2020, 151, 119847. [Google Scholar] [CrossRef]
- Puerto Rico, J.A.; Mercedes, S.S.P.; Sauer, I.L. Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms. Renew. Sustain. Energy Rev. 2010, 14, 1874–1887. [Google Scholar] [CrossRef]
- Marin, G.; Zoboli, R. Effectiveness of car scrappage schemes: Counterfactual-based evidence on the Italian experience. Econ. Transp. 2020, 21. [Google Scholar] [CrossRef]
- Mattioli, G.; Roberts, C.; Steinberger, J.K.; Brown, A. The political economy of car dependence: A systems of provision approach. Energy Res. Soc. Sci. 2020, 66. [Google Scholar] [CrossRef]
- Vikerman, R. Transit investment and economic development. Res. Transp. Econ. 2008, 23, 107–115. [Google Scholar] [CrossRef]
- Beaudin, J.; Farzin, Y.H.; Lawell, C.-Y.C.L. Public transit investment and sustainable transportation: A review of studies of transit’s impact on traffic congestion and air quality. Res. Transp. Econ. 2015, 52, 15–22. [Google Scholar] [CrossRef]
- Daraio, C.; Diana, M.; Di Costa, F.; Leporelli, C.; Matteucci, G.; Nastasi, A. Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research. Eur. J. Oper. Res. 2016, 248, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kwan, S.C.; Hashim, J.H. A review on co-benefits of mass public transportation in climate change mitigation. Sustain. Cities Soc. 2016, 22, 11–18. [Google Scholar] [CrossRef]
- Murren, C.; Weisbrod, G. Workshop 8 report: The wider economic, social and environmental impacts of public transport investment. Res. Transp. Econ. 2016, 59, 397–400. [Google Scholar]
- Beaudoin, J.; Lawell, C.-Y.C.L. The effects of public transit supply on the demand for automobile travel. J. Environ. Econ. Manag. 2018, 88, 447–467. [Google Scholar] [CrossRef]
- Bork, R. Public transport and urban pollution. Reg. Sci. Urban Econ. 2019, 77, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Cao, X.; Yin, J.; Cao, X. Can metro transit reduce driving? Evidence from Xi’an, China. Transp. Policy 2019, 81, 350–359. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Fang, X.; Gao, X.; Xu, M. Urban public transport and air quality: Empirical study of China cities. Energy Policy 2019, 135. [Google Scholar] [CrossRef]
- Papagni, E.; Lepore, A.; Felice, E.; Baraldi, A.L.; Alfano, M.R. Public investment and growth: Lessons learned from 60-years experience in Southern Italy. J. Policy Model. 2020, in press. [Google Scholar] [CrossRef]
- Gallo, M.; Amo Guevara, A. A Model for Estimating the Impact of National Transport Investments on the Rail Modal Share and Greenhouse Gas Emissions. In Proceedings of the 2019 IEEE International Conference on Environmental and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 10–14 June 2019; pp. 369–373. [Google Scholar]
- Schulze, H.; Kobmann, I. The role of safety research in road safety management. Saf. Sci. 2010, 48, 1160–1166. [Google Scholar] [CrossRef]
- Wang, C.; Quddus, M.A.; Ison, S.G. The effect of traffic and road characteristics on road safety: A review and future research direction. Saf. Sci. 2013, 57, 264–275. [Google Scholar] [CrossRef]
- Hagenzieker, M.P.; Commandeur, J.J.F.; Bijleveld, F.D. The history of road safety research: A quantitative approach. Transp. Res. F 2014, 25, 150–162. [Google Scholar] [CrossRef]
- Mooren, L.; Grzebieta, R.; Williamson, A.; olivier, J.; Friswell, R. Safety management for heavy vehicle transport: A review of the literature. Saf. Sci. 2014, 62, 79–89. [Google Scholar] [CrossRef]
- Wegman, F.; Berg, H.-Y.; Cameron, I.; Thompson, C.; Siegrist, S.; Weijermars, W. Evidence-based and data-driven road safety management. IATSS Res. 2015, 39, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Gichaga, F.J. The impact of road improvements on road safety and related characteristics. IATSS Res. 2017, 40, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Masilkova, M. Health and social consequences of road traffic accidents. Kontakt 2017, 19, e43–e47. [Google Scholar] [CrossRef]
- Wegman, F. The future of road safety: A worldwide perspective. IATSS Res. 2017, 40, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Tesic, M.; Hermans, E.; Lipovac, K.; Pesic, D. Identifying the most significant indicators of the total road safety performance index. Accid. Anal. Prev. 2018, 113, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hermans, E.; Bao, Q.; Brijs, T.; Wets, G. Towards better road safety management: Lessons learned from inter-national benchmarking. Accid. Anal. Prev. 2020, 138. [Google Scholar] [CrossRef]
- Ziakopoulos, A.; Yannis, G. A review of spatial approaches in road safety. Accid. Anal. Prev. 2020, 135. [Google Scholar] [CrossRef]
- Andreev, P.; Salomon, I.; Pliskin, N. Review: State of teleactivities. Transp. Res. C 2010, 18, 3–20. [Google Scholar] [CrossRef]
- Falk, M.; Hagsten, E. E-commerce trends and impacts across Europe. Int. J. Prod. Econ. 2015, 170, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Mansky, C.F.; Salomon, I. The demand for teleshopping: An application of discrete choice models. Reg. Sci. Urban Econ. 1987, 17, 109–121. [Google Scholar] [CrossRef]
- Salomon, I.; Koppelman, F. A framework for studying teleshopping versus store shopping. Transp. Res. A 1988, 22, 247–255. [Google Scholar] [CrossRef]
- Nagurney, A.; Dong, J.; Mokhtarian, P.L. Teleshopping versus shopping: A multicriteria network equilibrium framework. Math. Comput. Model. 2001, 34, 783–798. [Google Scholar] [CrossRef]
- Nagurney, A.; Dong, J.; Mokhtarian, P.L. Multicriteria Network Equilibrium Modeling with Variable Weights for Decision-Making in the Information Age with Applications to Telecommuting and Teleshopping. J. Econ. Dyn. Control 2002, 26, 1629–1650. [Google Scholar] [CrossRef]
- Shao, J.; Yang, H.; Xing, X.; Yang, L. E-commerce and traffic congestion: An economic and policy analysis. Transp. Res. B 2016, 83, 91–103. [Google Scholar] [CrossRef]
- Cárdenas, I.; Beckers, J.; Vanelslander, T. E-commerce last-mile in Belgium: Developing an external cost delivery index. Res. Transp. Bus. Manag. 2017, 24, 123–129. [Google Scholar] [CrossRef]
- Hidayatno, A.; Destyanto, A.R.; Fadhil, M. Model Conceptualization on E-Commerce Growth Impact to Emissions Generated from Urban Logistics Transportation: A Case Study of Jakarta. Energy Procedia 2019, 156, 144–148. [Google Scholar] [CrossRef]
- Zhao, Y.-B.; Wu, G.-Z.; Gong, Y.-X.; Yang, M.-Z.; Ni, H.-G. Environmental benefits of electronic commerce over the conventional retail trade? A case study in Shenzhen, China. Sci. Total Environ. 2019, 679, 378–386. [Google Scholar] [CrossRef]
- Helminen, V.; Ristimaki, M. Relationships between commuting distance, frequency and telework in Finland. J. Transp. Geogr. 2007, 15, 331–342. [Google Scholar] [CrossRef]
- Van Lier, T.; De Witte, A.; Macharis, C. The Impact of Telework on Transport Externalities: The Case of Brussels Capital Region. Procedia Soc. Behav. 2012, 54, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Moeckel, R. Working from Home: Modeling the Impact of Telework on Transportation and Land Use. Transp. Res. Proc. 2017, 26, 207–214. [Google Scholar] [CrossRef]
- Giovanis, E. The relationship between teleworking, traffic and air pollution. Atmos. Pollut. Res. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- European Commission. State of the Art on Alternative Fuels Transport Systems in the European Union. Final Report. Available online: https://ec.europa.eu/transport/sites/transport/files/themes/urban/studies/doc/2015-07-alter-fuels-transport-syst-in-eu.pdf (accessed on 30 May 2020).
- European Academies Science Advisory Council. Decarbonisation of Transport: Options and Challenges. Available online: https://easac.eu/fileadmin/PDF_s/reports_statements/Decarbonisation_of_Tansport/EASAC_Decarbonisation_of_Transport_FINAL_March_2019.pdf (accessed on 30 May 2020).
- Franke, T.; Krems, J.F. What drives range preferences in electric vehicle users? Transp. Policy 2013, 30, 56–62. [Google Scholar] [CrossRef]
- Shirouzu, N.; Lienert, P. Exclusive: Tesla’s Secret Batteries Aim to Rework the Math for Electric Cars and the Grid. Available online: https://www.reuters.com/article/us-autos-tesla-batteries-exclusive/exclusive-teslas-secret-batteries-aim-to-rework-the-math-for-electric-cars-and-the-grid-idUSKBN22Q1WC (accessed on 30 May 2020).
- Sakhdari, B.; Azad, N.L. An optimal energy management system for battery electric vehicles. In Proceedings of the IFAC Workshop Engine Powertrain Control, Columbus, OH, USA, 23–26 August 2015; pp. 86–92. [Google Scholar]
- Xu, G.; Xu, K.; Zheng, C.; Zhang, X.; Zahid, T. Fully Electrified Regenerative Braking Control for Deep Energy Recovery and Maintaining Safety of Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 1186–1198. [Google Scholar] [CrossRef]
- Naseri, F.; Farjah, E.; Ghanbari, T. An efficient regenerative braking system based on battery/supercapacitor for electric, hybrid, and plug-in hybrid electric vehicles with BLDC motor. IEEE Trans. Veh. Technol. 2017, 66, 3724–3738. [Google Scholar] [CrossRef]
- Sarker, M.R.; Pandzic, H.; Ortega-Vazquez, M.A. Optimal operation and services scheduling for an electric vehicle battery swapping station. IEEE Trans. Power Syst. 2015, 30, 901–910. [Google Scholar] [CrossRef]
- Anjos, M.F.; Gendron, B.; Joyce-Moniz, M. Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel. Eur. J. Oper. Res. 2020, 285, 263–278. [Google Scholar] [CrossRef]
- Cui, S.; Zhao, H.; Wen, H.; Zhang, C. Locating multiple size and multiple type of charging station for battery electricity vehicles. Sustainability 2018, 10, 3267. [Google Scholar] [CrossRef] [Green Version]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Spring, N. The smart grid and generation. Power Eng. 2009, 113, 44–50. [Google Scholar]
- Guille, C.; Gross, G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 2009, 37, 4379–4390. [Google Scholar] [CrossRef]
- Wu, H.H.; Gilchrist, A.; Sealy, K.; Israelsen, P.; Muhs, J. A review on inductive charging for electric vehicles. In Proceedings of the IEEE International Electric Machines and Drives Conference, Niagara Falls, ON, Canada, 15–18 May 2011; pp. 143–147. [Google Scholar]
- eRoadArlanda: The Technology. Available online: https://eroadarlanda.com/the-technology/ (accessed on 30 May 2020).
- Luo, S.; Ma, F.; Mehra, R.K.; Huang, Z. Deep insights of HCNG engine research in China. Fuel 2020, 263, 116612. [Google Scholar] [CrossRef]
- Brzezinska, D.; Markowski, A.S. Experimental investigation and CFD modelling of the internal car park environment in case of accidental LPG release. Process. Saf. Environ. 2017, 110, 5–14. [Google Scholar] [CrossRef]
- Nasution, T.H.; Nasution, R.Y.; Putri, K.A.; Nasution, C.F. Automatic regulator design for Liquified Petroleum Gas. In Proceedings of the International Conference on Information Technology and Engineering Management, Belitung, Indonesia, 27–29 June 2019. [Google Scholar]
- Brzezińska, D. LPG Cars in a Car Park Environment—How to Make it Safe. Int. J. Environ. Res. Pub. Health 2019, 16, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Meaza, I.; Zarrabeitia-Bilbao, E.; Rio-Belver, R.M.; Garechana-Anacabe, G. Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map. Sustainability 2020, 12, 2334. [Google Scholar] [CrossRef] [Green Version]
- Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy 2010, 38, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Fathabadi, H. Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Convers. Manag. 2018, 156, 192–201. [Google Scholar] [CrossRef]
- Zhou, D.; Ravey, A.; Al-Durra, A.; Gao, F. A comparative study of extremum seeking methods applied to online energy management strategy of fuel cell hybrid electric vehicles. Energy Convers. Manag. 2017, 151, 778–790. [Google Scholar] [CrossRef]
- Zhou, Y.; Ravey, A.; Péra, M.-C. Multi-objective energy management for fuel cell electric vehicles using online-learning enhanced Markov speed predictor. Energy Convers. Manag. 2020, 213, 112821. [Google Scholar] [CrossRef]
- Koubaa, R.; Bacha, S.; Smaoui, M.; Krichen, L. Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty. Energy 2020, 200, 117530. [Google Scholar] [CrossRef]
- International Association for Natural Gas Vehicles. Current Natural Gas Vehicle Statistics. Available online: https://www.iangv.org/current-ngv-stats/ (accessed on 30 May 2020).
- European Alternative Fuels Observatory. Available online: https://www.eafo.eu/ (accessed on 30 May 2020).
- International Energy Agency. Electric Car Stock by Region and Technology, 2013–2019. Available online: https://www.iea.org/data-and-statistics/charts/electric-car-stock-by-region-and-technology-2013-2019 (accessed on 30 May 2020).
- International Energy Agency. Global EV Outlook. 2020. Available online: https://www.iea.org/reports/global-ev-outlook-2020 (accessed on 30 May 2020).
- International Energy Agency. Advanced Fuel Cells Technology Collaboration Programme. Report on Mobile Fuel Cell Application: Tracking Market Trends. Available online: https://www.ieafuelcell.com/fileadmin/publications/2020_AFCTCP_Mobile_FC_Application_Tracking_Market_Trends_2020.pdf (accessed on 30 May 2020).
- U.S. Department of Energy. Alternative Fuels Data Center. Available online: https://afdc.energy.gov/data/ (accessed on 30 May 2020).
- World LPG Association. A Country-by-Country Analysis of Why and How Governments Encourage Autogas and What Works. Available online: https://www.wlpga.org/wp-content/uploads/2019/09/Autogas-Incentive-Policies-2019-1.pdf (accessed on 30 May 2020).
- Meijkamp, R. Changing consumer behaviour through eco-efficient services: An empirical study of car sharing in the Netherlands. Bus. Strategy Environ. 1998, 7, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Ramos, É.M.S.; Bergstad, C.J.; Chicco, A.; Diana, M. Mobility styles and car sharing use in Europe: Attitudes, behaviours, motives and sustainability. Eur. Transp. Res. Rev. 2020, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Rodenbach, J.; Mathis, J.; Chicco, A.; Diana, M. Car Sharing in Europe: A Multidimensional Classification and Inventory. Available online: http://stars-h2020.eu/wp-content/uploads/2019/06/STARS-D2.1.pdf (accessed on 3 June 2020).
- Wang, H.; Li, Z.; Zhu, X.; Liu, Z. A full service model for vehicle scheduling in one-way electric vehicle car-sharing systems. Lect. Notes Comput. Sci. 2015, 9502, 25–36. [Google Scholar]
- Lai, K.; Chen, T.; Natarajan, B. Optimal scheduling of electric vehicles car-sharing service with multi-temporal and multi-task operation. Energy 2020, 204, 117929. [Google Scholar] [CrossRef]
- Illgen, S.; Höck, M. Electric vehicles in car sharing networks—Challenges and simulation model analysis. Transp. Res. D Transp. Environ. 2018, 63, 377–387. [Google Scholar] [CrossRef]
- Clemente, M.; Fanti, M.P.; Iacobellis, G.; Nolich, M.; Ukovich, W. A Decision Support System for User-Based Vehicle Relocation in Car Sharing Systems. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1283–1296. [Google Scholar] [CrossRef]
- Brandstätter, G.; Kahr, M.; Leitner, M. Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand. Transp. Res. B Meth. 2017, 104, 17–35. [Google Scholar] [CrossRef]
- Lee, D.; Quadrifoglio, L.; Teulada, E.S.D.; Meloni, I. Discovering Relationships between Factors of Round-trip Car Sharing by Using Association Rules Approach. Procedia Eng. 2016, 161, 1282–1288. [Google Scholar] [CrossRef]
- Wu, C.; Le Vine, S.; Clark, M.; Gifford, K.; Polak, J. Factors associated with round-trip carsharing frequency and driving-mileage impacts in London. Int. J. Sustain. Transp. 2020, 14, 177–186. [Google Scholar] [CrossRef]
- Hui, Y.; Ding, M.; Zheng, K.; Lou, D. Observing trip chain characteristics of round-trip carsharing users in China: A case study based on GPS data in Hangzhou City. Sustainability 2017, 9, 949. [Google Scholar] [CrossRef] [Green Version]
- Namazu, M.; Dowlatabadi, H. Vehicle ownership reduction: A comparison of one-way and two-way carsharing systems. Transp. Policy 2018, 64, 38–50. [Google Scholar] [CrossRef]
- Bruglieri, M.; Colorni, A.; Luè, A. The relocation problem for the one-way electric vehicle sharing. Networks 2014, 64, 292–305. [Google Scholar] [CrossRef]
- Alfian, G.; Rhee, J.; Kang, Y.-S.; Yoon, B. Performance comparison of reservation based and instant access one-way car sharing service through discrete event simulation. Sustainability 2015, 7, 12465–12489. [Google Scholar] [CrossRef] [Green Version]
- Alfian, G.; Rhee, J.; Ijaz, M.F.; Syafrudin, M.; Fitriyani, N.L. Performance analysis of a forecasting relocation model for one-way carsharing. Appl. Sci. 2017, 7, 598. [Google Scholar] [CrossRef] [Green Version]
- Cepolina, E.M.; Farina, A.; Holloway, C.; Tyler, N. Innovative strategies for urban car-sharing systems and a simulator to assess their performance. Transp. Plan. Technol. 2015, 38, 375–391. [Google Scholar] [CrossRef]
- Zakaria, R.; Dib, M.; Moalic, L.; Caminada, A. Insights on car relocation operations in one-way carsharing systems. Int. J. Adv. Comput. Sci. App. 2018, 9, 281–290. [Google Scholar] [CrossRef]
- Di Febbraro, A.; Sacco, N.; Saeednia, M. One-Way Car-Sharing Profit Maximization by Means of User-Based Vehicle Relocation. IEEE Trans. Intell. Transp. 2019, 20, 628–641. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, Y.H. Vehicle-relocation optimization for one-way carsharing. Int. J. Ind. Eng. Theory 2017, 24, 468–482. [Google Scholar]
- Boyacı, B.; Zografos, K.G.; Geroliminis, N. An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations. Transp. Res. Part. B Meth. 2017, 95, 214–237. [Google Scholar] [CrossRef] [Green Version]
- Gambella, C.; Malaguti, E.; Masini, F.; Vigo, D. Optimizing relocation operations in electric car-sharing. Omega 2018, 81, 234–245. [Google Scholar] [CrossRef]
- Lemme, R.F.F.; Arruda, E.F.; Bahiense, L. Optimization model to assess electric vehicles as an alternative for fleet composition in station-based car sharing systems. Transp. Res. D Transp. Environ. 2019, 67, 173–196. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.; Chen, Y. An evaluation framework for the planning of electric car-sharing systems: A combination model of AHP-CBA-VD. Sustainability 2019, 11, 5627. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Zhao, Y.; Meng, X.; Zhang, Y. A three-phase fuzzy multi-criteria decision model for charging station location of the sharing electric vehicle. Int. J. Prod. Econ. 2020, 225, 107572. [Google Scholar] [CrossRef]
- Schmöller, S.; Weikl, S.; Müller, J.; Bogenberger, K. Empirical analysis of free-floating carsharing usage: The munich and berlin case. Transp. Res. C Emerg. Technol. 2015, 56, 34–51. [Google Scholar] [CrossRef]
- Ampudia-Renuncio, M.; Guirao, B.; Molina-Sanchez, R.; Bragança, L. Electric free-floating carsharing for sustainable cities: Characterization of frequent trip profiles using acquired rental data. Sustainability 2020, 12, 1248. [Google Scholar] [CrossRef] [Green Version]
- Ampudia-Renuncio, M.; Guirao, B.; Molina-Sánchez, R.; Engel de Álvarez, C. Understanding the spatial distribution of free-floating carsharing in cities: Analysis of the new Madrid experience through a web-based platform. Cities 2020, 98, 102593. [Google Scholar] [CrossRef]
- Müller, J.; Correia, G.H.A.; Bogenberger, K. An explanatory model approach for the spatial distribution of free-floating carsharing bookings: A case-study of German cities. Sustainability 2017, 9, 1290. [Google Scholar] [CrossRef] [Green Version]
- Weikl, S.; Bogenberger, K. A practice-ready relocation model for free-floating carsharing systems with electric vehicles—Mesoscopic approach and field trial results. Transp. Res. C Emerg. Technol. 2015, 57, 206–223. [Google Scholar] [CrossRef]
- Molnar, G.; Correia, G.H.D.A. Long-term vehicle reservations in one-way free-floating carsharing systems: A variable quality of service model. Transp. Res. C Emerg. Technol. 2019, 98, 298–322. [Google Scholar] [CrossRef]
- Folkestad, C.A.; Hansen, N.; Fagerholt, K.; Andersson, H.; Pantuso, G. Optimal charging and repositioning of electric vehicles in a free-floating carsharing system. Comput. Oper. Res. 2020, 113, 104771. [Google Scholar] [CrossRef]
- Dandl, F.; Bogenberger, K. Comparing Future Autonomous Electric Taxis with an Existing Free-Floating Carsharing System. IEEE Trans. Intell. Transp. 2019, 20, 2037–2047. [Google Scholar] [CrossRef]
- Kaspi, M.; Raviv, T.; Tzur, M. Parking reservation policies in one-way vehicle sharing systems. Transp. Res. B Meth. 2014, 62, 35–50. [Google Scholar] [CrossRef]
- Kaspi, M.; Raviv, T.; Tzur, M.; Galili, H. Regulating vehicle sharing systems through parking reservation policies: Analysis and performance bounds. Eur. J. Oper. Res. 2016, 251, 969–987. [Google Scholar] [CrossRef]
- Hampshire, R.C.; Sinha, S. A simulation study of Peer-to-Peer carsharing. In Proceedings of the IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, Austria, 29 June–1 July 2011; pp. 159–163. [Google Scholar]
- Shaheen, S.; Martin, E.; Hoffman-Stapleton, M. Shared mobility and urban form impacts: A case study of peer-to-peer (P2P) carsharing in the US. J. Urban Des. 2019, 28, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dill, J.; McNeil, N.; Howland, S. Effects of peer-to-peer carsharing on vehicle owners’ travel behavior. Transp. Res. C Emerg. Technol. 2019, 101, 70–78. [Google Scholar] [CrossRef]
- Saranti, P.G.; Chondrogianni, D.; Karatzas, S. Autonomous vehicles and blockchain technology are shaping the future of transportation. Adv. Intell. Syst. 2019, 879, 797–803. [Google Scholar]
- Pham, T.T.; Kuo, T.-C.; Tseng, M.-L.; Tan, R.R.; Tan, K.; Ika, D.S.; Lin, C.J. Industry 4.0 to accelerate the circular economy: A case study of electric scooter sharing. Sustainability 2019, 11, 6661. [Google Scholar] [CrossRef] [Green Version]
- Eccarius, T.; Lu, C.-C. Adoption intentions for micro-mobility—Insights from electric scooter sharing in Taiwan. Transp. Res. D Transp. Environ. 2020, 84, 102327. [Google Scholar] [CrossRef]
- James, O.; Swiderski, J.I.; Hicks, J.; Teoman, D.; Buehler, R. Pedestrians and e-scooters: An initial look at e-scooter parking and perceptions by riders and non-riders. Sustainability 2019, 11, 5591. [Google Scholar] [CrossRef] [Green Version]
- Zagorskas, J.; Burinskiene, M. Challenges caused by increased use of E-powered personal mobility vehicles in European cities. Sustainability 2020, 12, 273. [Google Scholar] [CrossRef] [Green Version]
- Turoń, K.; Czech, P. The concept of rules and recommendations for riding shared and private e-scooters in the road network in the light of global problems. Adv. Intell. Syst. 2020, 1083, 275–284. [Google Scholar]
- European Union. Directive 2010/40/EU of the European Parliament and of the Council of 7 July 2010. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF (accessed on 8 June 2020).
- Perallos, A.; Hernandez-Jayo, U.; Onieva, E.; García-Zuazola, I.J. Intelligent Transport Systems: Technologies and Applications; John Wiley: New York, NY, USA, 2015. [Google Scholar]
- European Commission. Evaluation of the ITS Directive 2010/40/EU—Analysis of Responses to the Open Public Consultation. Available online: https://ec.europa.eu/transport/sites/transport/files/2017-evaluation-its-directive-analysis.pdf (accessed on 8 June 2020).
- Ben-Elia, E.; Avineri, E. Response to travel information: A behavioural review. Transp. Rev. 2015, 35, 352–377. [Google Scholar] [CrossRef]
- Dell’Orco, M.; Marinelli, M. Fuzzy data fusion for updating information in modeling drivers’ choice behavior. Lect. Notes Comput. Sci. 2009, 5755, 1075–1084. [Google Scholar]
- Di Pace, R.; Marinelli, M.; Bifulco, G.N.; Dell’Orco, M. Modeling risk perception in ATIS context through fuzzy logic. Procedia Soc. Behav. 2011, 20, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Marinelli, M.; Caggiani, L.; Ottomanelli, M. Managing the uncertainty of data fusion from different sources in modelling route choice behaviour. In Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 202–207. [Google Scholar]
- Zhong, S.; Zhou, L.; Ma, S.; Jia, N. Effects of different factors on drivers’ guidance compliance behaviors under road condition information shown on VMS. Transp. Res. A Policy Pract. 2012, 46, 1490–1505. [Google Scholar] [CrossRef]
- Yan, X.D.; Wu, J.W. Effectiveness of variable message signs on driving behavior based on a driving simulation experiment. Discret. Dyn. Nat. Soc. 2014, 2014, 206805. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Wang, J.; Jin, Y. Driver compliance model under dynamic travel information with ATIS. Adv. Intell. Syst. 2017, 454, 201–212. [Google Scholar]
- Dell’Orco, M.; Marinelli, M. Modeling the dynamic effect of information on drivers’ choice behavior in the context of an Advanced Traveler Information System. Transp. Res. C Emerg Tehnol. 2017, 85, 168–183. [Google Scholar] [CrossRef]
- Tu, Q.; Cheng, L.; Li, D.; Ma, J.; Sun, C. Stochastic transportation network considering ATIS with the information of environmental cost. Sustainability 2018, 10, 3861. [Google Scholar] [CrossRef] [Green Version]
- Rehrl, K.; Brunauer, R.; Gröchenig, S. Collecting floating car data with smartphones: Results from a field trial in Austria. J. Locat. Based Serv. 2016, 10, 16–30. [Google Scholar] [CrossRef]
- Marinelli, M.; Palmisano, G.; Astarita, V.; Ottomanelli, M.; Dell’Orco, M. A Fuzzy set-based method to identify the car position in a road lane at intersections by smartphone GPS data. Transp. Res. Proc. 2017, 27, 444–451. [Google Scholar] [CrossRef]
- He, Z.; Qi, G.; Lu, L.; Chen, Y. Network-wide identification of turn-level intersection congestion using only low-frequency probe vehicle data. Transp. Res. C Emerg. Tehnol. 2019, 108, 320–339. [Google Scholar] [CrossRef]
- Chen, D.; Yan, X.; Liu, F.; Liu, X.; Wang, L.; Zhang, J. Evaluating and diagnosing road intersection operation performance using floating car data. Sensors 2019, 19, 2256. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Chen, H.; Hu, R. A Novel Approach to Identify Intersection Information via Trajectory Big Data Analysis in Urban Environments. Smart Innov. Syst. Technol. 2020, 156, 189–199. [Google Scholar]
- Kieć, M.; Ambros, J.; Bąk, R.; Gogolín, O. Evaluation of safety effect of turbo-roundabout lane dividers using floating car data and video observation. Accid. Anal. Prev. 2019, 125, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Fusco, G.; Colombaroni, C.; Isaenko, N. Short-term speed predictions exploiting big data on large urban road networks. Transp. Res. C Emerg. Tehnol. 2016, 73, 183–201. [Google Scholar] [CrossRef]
- Rempe, F.; Franeck, P.; Fastenrath, U.; Bogenberger, K. A phase-based smoothing method for accurate traffic speed estimation with floating car data. Transp. Res. C Emerg. Tehnol. 2017, 85, 644–663. [Google Scholar] [CrossRef]
- Rahmani, M.; Koutsopoulos, H.N.; Jenelius, E. Travel time estimation from sparse floating car data with consistent path inference: A fixed point approach. Transp. Res. C Emerg. Tehnol. 2017, 85, 628–643. [Google Scholar] [CrossRef]
- He, Z.; Zheng, L. Visualizing traffic dynamics based on floating car data. J. Transp. Eng. A Syst. 2017, 143, 04017005. [Google Scholar] [CrossRef]
- Klunder, G.A.; Taale, H.; Kester, L.; Hoogendoorn, S. Improvement of Network Performance by In-Vehicle Routing Using Floating Car Data. J. Adv. Transp. 2017, 2017, 8483750. [Google Scholar] [CrossRef]
- Astarita, V.; Giofrè, V.P.; Guido, G.; Vitale, A. The use of adaptive traffic signal systems based on floating car data. Wirel. Comm. Mob. Comp. 2017, 2017, 4617451. [Google Scholar] [CrossRef]
- Astarita, V.; Giofrè, V.P.; Guido, G.; Vitale, A. A single intersection cooperative-competitive paradigm in real time traffic signal settings based on floating car data. Energies 2019, 12, 409. [Google Scholar] [CrossRef] [Green Version]
- Astarita, V.; Giofré, V.P.; Festa, D.C.; Guido, G.; Vitale, A. Floating car data adaptive traffic signals: A description of the first real-time experiment with “connected” vehicles. Electronics 2020, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Huang, S.; Xie, J.; Xiong, N.N.; Du, R. A review of research on intersection control based on connected vehicles and data-driven intelligent approaches. Electronics 2020, 9, 885. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Yang, H.; Xie, K.; Chen, X. Exploring the impacts of speed variances on safety performance of urban elevated expressways using GPS data. Accid. Anal. Prev. 2019, 123, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Colombaroni, C.; Fusco, G.; Isaenko, N. Analysis of Road Safety Speed from Floating Car Data. Transp. Res. Proc. 2020, 45, 898–905. [Google Scholar] [CrossRef]
- Gallelli, V.; Vaiana, R. Safety improvements by converting a standard roundabout with unbalanced flow distribution into an egg turbo roundabout: Simulation approach to a case study. Sustainability 2019, 11, 466. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Zhang, F.; Liu, J.; Yu, L.; Gao, Y.; Yu, L. Floating car data-based method for detecting flooding incident under grade separation bridges in Beijing. IET Intell. Transp. Syst. 2015, 9, 817–823. [Google Scholar] [CrossRef]
- Houbraken, M.; Logghe, S.; Schreuder, M.; Audenaert, P.; Colle, D.; Pickavet, M. Automated Incident Detection Using Real-Time Floating Car Data. J. Adv. Transp. 2017, 2017, 8241545. [Google Scholar] [CrossRef] [Green Version]
- Carrese, S.; Cipriani, E.; Mannini, L.; Nigro, M. Dynamic demand estimation and prediction for traffic urban networks adopting new data sources. Transp. Res. C Emerg. Tehnol. 2017, 81, 83–98. [Google Scholar] [CrossRef]
- Nigro, M.; Cipriani, E.; del Giudice, A. Exploiting floating car data for time-dependent Origin–Destination matrices estimation. J. Intell. Transp. Syst. 2018, 22, 159–174. [Google Scholar] [CrossRef]
- Bauer, D.; Richter, G.; Asamer, J.; Heilmann, B.; Lenz, G.; Kölbl, R. Quasi-Dynamic Estimation of OD Flows from Traffic Counts Without Prior OD Matrix. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2025–2034. [Google Scholar] [CrossRef]
- Fusco, G.; Bracci, A.; Caligiuri, T.; Colombaroni, C.; Isaenko, N. Experimental analyses and clustering of travel choice behaviours by floating car big data in a large urban area. IET Intell. Transp. Syst. 2018, 12, 270–278. [Google Scholar] [CrossRef]
- Vanajakshi, L.; Subramanian, S.C.; Sivanandan, R. Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses. IET Intell. Transp. Syst. 2009, 3, 1–9. [Google Scholar] [CrossRef]
- Gurmu, Z.K.; Fan, W.D. Artificial neural network travel time prediction model for buses using only GPS data. J. Public Transp. 2014, 17, 45–65. [Google Scholar] [CrossRef]
- Kodali, S.; Koppineni, A.; Chaitanya, K.; Siddharth, K.; Vanajakshi, L. Development of a telematics based advanced public transportation system. Eur. Transp. 2015, 58, 2. [Google Scholar]
- Kumar, B.A.; Vanajakshi, L.; Subramanian, S.C. Pattern-based time-discretized method for bus travel time prediction. J. Transp. Eng. 2017, 143, 04017012. [Google Scholar] [CrossRef]
- Kumar, B.A.; Vanajakshi, L.; Subramanian, S.C. Bus travel time prediction using a time-space discretization approach. Transp. Res. C Emerg. Tehnol. 2017, 79, 308–332. [Google Scholar] [CrossRef]
- Canca, D.; Zarzo, A.; González-R, P.L.; Barrena, E.; Algaba, E. A methodology for schedule-based paths recommendation in multimodal public transportation networks. J. Adv. Transp. 2013, 47, 319–335. [Google Scholar] [CrossRef]
- Toledo, T.; Cats, O.; Burghout, W.; Koutsopoulos, H.N. Mesoscopic simulation for transit operations. Transp. Res. C Emerg. Tehnol. 2010, 18, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Colombaroni, C.; Fusco, G.; Isaenko, N. A Simulation-Optimization Method for Signal Synchronization with Bus Priority and Driver Speed Advisory to Connected Vehicles. Transp. Res. Proc. 2020, 45, 890–897. [Google Scholar] [CrossRef]
- European Union. C-ITS Platform—Final Report. Available online: https://ec.europa.eu/transport/sites/transport/files/themes/its/doc/c-its-platform-final-report-january-2016.pdf (accessed on 8 June 2020).
- Sae International. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Available online: https://www.sae.org/standards/content/j3016_201806/ (accessed on 8 June 2020).
- Botte, M.; Pariota, L.; D’Acierno, L.; Bifulco, G.N. An overview of cooperative driving in the European Union: Policies and practices. Electronics 2019, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.A.; Zeadally, S.; Hamida, E.B. Data analytics for Cooperative Intelligent Transport Systems. Veh. Commun. 2019, 15, 63–72. [Google Scholar]
- Javed, M.A.; Hamida, E.B. On the Interrelation of Security, QoS, and Safety in Cooperative ITS. IEEE Trans. Intell. Transp. 2017, 18, 1943–1957. [Google Scholar] [CrossRef]
- Ehlers, U.C.; Ryeng, E.O.; McCormack, E.; Khan, F.; Ehlers, S. Assessing the safety effects of cooperative intelligent transport systems: A bowtie analysis approach. Accid. Anal. Prev. 2017, 99, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.; Hill, G.; Goodman, P.; Blythe, P.; Mitchell, P.; Huebner, Y. Quantifying the impact of a real world cooperative-ITS deployment across multiple cities. Transp. Res. A Policy Pract. 2018, 115, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Roberts, S.; Cui, Y.; Gao, Y.; Chen, Q.; Xu, C.; He, Q.; Sharples, S.; Bhatia, P. Required navigation performance for connected and autonomous vehicles: Where are we now and where are we going? Transp. Plan. Technol. 2018, 41, 104–118. [Google Scholar] [CrossRef]
- Mertens, J.C.; Knies, C.; Diermeyer, F.; Escherle, S.; Kraus, S. The need for cooperative automated driving. Electronics 2020, 9, 754. [Google Scholar] [CrossRef]
- Zambrano-Martinez, J.L.; Calafate, C.T.; Soler, D.; Lemus-Zúñiga, L.G.; Cano, J.C.; Manzoni, P.; Gayraud, T.A. Centralized Route-Management Solution for Autonomous Vehicles in Urban Areas. Electronics 2019, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.; Jiang, R.; Chung, E. A Cooperative Intelligent Transport Systems (C-ITS)-based lane-changing advisory for weaving sections. J. Adv. Transp. 2016, 50, 752–768. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Sabar, N.R.; Chung, E.; Bhaskar, A.; Guo, X. Optimisation of lane-changing advisory at the motorway lane drop bottleneck. Transp. Res. C Emerg. Tehnol. 2019, 106, 303–316. [Google Scholar] [CrossRef]
- Chen, L.; Englund, C. Cooperative Intersection Management: A Survey. IEEE Trans. Intell. Transp. 2016, 17, 570–586. [Google Scholar] [CrossRef]
- Hasenjager, M.; Heckmann, M.; Wersing, H. A Survey of Personalization for Advanced Driver Assistance Systems. IEEE Trans. Intell. Veh. 2020, 5, 335–344. [Google Scholar] [CrossRef]
- Arena, F.; Pau, G. An overview of vehicular communications. Future Internet 2019, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Aramrattana, M.; Larsson, T.; Jansson, J.; Nåbo, A. A simulation framework for cooperative intelligent transport systems testing and evaluation. Transp. Res. F Traffic Psychol. Behav. 2019, 61, 268–280. [Google Scholar] [CrossRef]
- Aramrattana, M.; Andersson, A.; Reichenberg, F.; Mellegård, N.; Burden, H. Testing cooperative intelligent transport systems in distributed simulators. Transp. Res. F Traffic Psychol. Behav. 2019, 65, 206–216. [Google Scholar] [CrossRef]
Topic\Theme | Environmental | Socio-Economic | Technological |
---|---|---|---|
air pollution | ● | × | × |
car-sharing | × | ● | |
connected and automated vehicles | × | × | ● |
cycling promotion | ● | × | × |
ecodriving | ● | × | |
electric and hybrid vehicles | × | ● | |
equity | ● | ||
e-commerce | × | ● | |
fuel | × | ● | |
green-house gases | ● | × | |
intelligent transportation systems | × | ● | |
micro-mobility | × | ● | |
noise | ● | × | × |
pricing | × | ● | |
public transport promotion | × | ● | × |
safety | ● | × | |
taxes and incentives | × | ● | |
teleworking | × | ● | |
traffic-lights | × | ● | |
transit improvements | × | ● | |
walking promotion | ● | × |
Pollutant | EU Reference Value | Urban Population Exposure [%] | WHO Air Quality Guidelines | Exposure Estimate [%] |
---|---|---|---|---|
PM10 | Day (50 μg/m3) | 13–19 | Year (20 μg/m3) | 42–52 |
PM2.5 | Year (25 μg/m3) | 6–8 | Year (10 μg/m3) | 74–81 |
O3 | 8 h (120 μg/m3) | 12–29 | 8 h (100 μg/m3) | 95–98 |
NO2 | Year (40 μg/m3) | 7–8 | Year (40 μg/m3) | 7–8 |
BaP | Year (1 ng/m3) | 17–20 | Year (0.12 ng/m3) | 83–90 |
SO2 | Day (125 μg/m3) | <1 | Day (20 μg/m3) | 21–31 |
Pollutant | Premature Deaths in Europe | Premature Deaths in EU28 |
---|---|---|
PM2.5 | 412,000 | 374,000 |
NO2 | 71,000 | 68,000 |
O3 | 15,100 | 14,000 |
Sector | Globe | EU28 |
---|---|---|
Power industry | +82% | −30% |
Other industrial combustion | +60% | −40% |
Buildings | +6% | −34% |
Transport | +77% | +21% |
Other sectors | +110% | −20% |
Transport Mode | Recommendation |
---|---|
Road traffic | Noise levels, in terms of Lden, should be reduced below 53 dB. Above this level, the noise by road traffic produces adverse health effects. |
Noise levels during the night, in terms of Lnight, should be reduced below 45 dB. Above this level, the noise by road traffic produces adverse effects on sleep. | |
Reduce the population exposed to noise levels above these values acting on sources and infrastructures. | |
Railway | Noise levels, in terms of Lden, should be reduced below 54 dB. Above this level, the noise by railway traffic produces adverse health effects. |
Noise levels during the night, in terms of Lnight, should be reduced below 44 dB. Above this level, the noise by railway traffic produces adverse effects on sleep. | |
Reduce the population exposed to noise levels above these values. | |
Aircraft | Noise levels, in terms of Lden, should be reduced below 45 dB. Above this level, the noise by aircraft produces adverse health effects. |
Noise levels during the night, in terms of Lnight, should be reduced below 40 dB. Above this level, the noise by aircraft produces adverse effects on sleep. | |
Reduce the population exposed to noise levels above these values acting on infrastructures. |
Vehicle Type | Strengths | Weaknesses |
---|---|---|
Battery electric (BEV) |
|
|
Plug-in hybrid (PHEV) |
|
|
Natural gas (NGV) |
|
|
Liquefied Petroleum Gas (LPGV) |
|
|
Hydrogen fuel cell (HFCV) |
|
|
AFV Type | Europe | USA | Asia-Pacific |
---|---|---|---|
BEV/PHEV | 1,808,870 | 1,450,000 | 3,649,000 |
HFC | 2182 | 8039 | 14,894 |
CNG/LNG | 2,062,621 | 175,000 | 20,473,673 |
LPG | 13,026,304 | 200,000 | 3,400,000 |
AFS Type | Europe | USA | Asia-Pacific |
---|---|---|---|
Electric (charging points) | 211,438 | 78,301 | 314,275 |
Hydrogen | 133 | 61 | 212 |
Natural Gas | 3940 | 1591 | 20,275 |
LPG | 45,132 | 3178 | 8300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, M.; Marinelli, M. Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability 2020, 12, 7499. https://doi.org/10.3390/su12187499
Gallo M, Marinelli M. Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability. 2020; 12(18):7499. https://doi.org/10.3390/su12187499
Chicago/Turabian StyleGallo, Mariano, and Mario Marinelli. 2020. "Sustainable Mobility: A Review of Possible Actions and Policies" Sustainability 12, no. 18: 7499. https://doi.org/10.3390/su12187499
APA StyleGallo, M., & Marinelli, M. (2020). Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability, 12(18), 7499. https://doi.org/10.3390/su12187499