NaCl Improves Suaeda salsa Aniline Tolerance in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions
2.2. Experimental Design
2.3. Plant Growth Measurements
2.4. Shoot and Root Elemental Analysis
2.5. Chlorophyll Fluorescence and Leaf Pigment Content Analysis
2.6. Statistical Analyses
3. Results
3.1. Alleviation of the Effects Caused by Aniline on the Growth of S. salsa by Salinity
3.2. Increase in the Removal Efficiency of Aniline in S. Salsa Seedlings by Salinity
3.3. Salinity Moderation of the Decrease in Leaf Pigment Contents Due to Aniline
3.4. Photosystem II Parameters Altered by Aniline and Salinity
3.5. Cl− Concentration in S. salsa Tissues
3.6. Aniline Inhibition of Na+ Absorption and Change in K+/Na+ in S. salsa Seedlings
3.7. NaCl Alleviation of the Decrease in Ca2+ and Mg2+ Caused by Aniline in S. salsa
3.8. Ordination Analysis
4. Discussion
4.1. S. salsa Absorbance and Utilization of Salinity of Wastewater and Removal of Aniline
4.2. Moderate Salinity Enhancement of Protection of Photosystem II under High Aniline Stress in S. salsa
4.3. Enhancement of Excretion of Toxic Molecules in S. salsa by Moderate Salinity
4.4. Increase in Resistance to Aniline by Moderate Salinity Regulating Nutrient Homeostasis in S. salsa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Chaminda, G.T.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable. Development 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, W.Y.; Xu, L.W.; Mu, Q. Analysis of Genotoxicity and Characterization of Dissolved Organic Matter in the Aniline Industrial Wastewater. Adv. Mater. Res. 2014, 1010–1012, 472–477. [Google Scholar] [CrossRef]
- Dom, N.; Knapen, D.; Benoot, D.; Nobels, I.; Blust, R. Aquatic multi-species acute toxicity of (chlorinated) anilines: Experimental versus predicted data. Chemosphere 2010, 81, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Cravedi, J.P.; Gillet, C.; Monod, G. In vivo metabolism of pentachlorophenol and aniline in arctic charr (Salvelinus alpinus L.) larvae. Bull. Environ. Contam. Toxicol. 1995, 54, 711–716. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Ji, W.; Xu, N.; Gao, N.; Zhang, X.; Yu, H. Phase-selective gelators based on closed-chain glucose derivatives: Their applications in the removal of dissolved aniline/nitrobenzene, and toxic dyes from contaminated water. J. Mater. Chem. A 2015, 3, 18953–18962. [Google Scholar] [CrossRef]
- Xie, H.C.; Li, C.R.; Li, J.H.; Wang, L. Phytoremediatgion of wastewater containing azo dye by sunflowers and their photosynthetic response. Acta Ecol. Sin. 2012, 32, 240–243. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, R.; Yao, J.; Wang, F.; Qian, Y.; Masakorala, K. Short-term effect of aniline on soil microbial activity: A combined study by isothermal microcalorimetry, glucose analysis, and enzyme assay techniques. Environ. Sci. Pollut. Res. 2014, 21, 674–683. [Google Scholar] [CrossRef]
- Yan, F.; Liu, T.; Jia, Q.; Wang, Q. Multiple toxicity endpoint–structure relationships for substituted phenols and anilines. Sci. Total Environ. 2019, 663, 560–567. [Google Scholar] [CrossRef]
- Nie, C.; Ao, Z.; Duan, X.; Wang, C.; Wang, S.; An, T. Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process. Chemosphere 2018, 206, 432–438. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Li, M.; Sang, W.; Wang, Y.; Wu, L. Bioaugmentation of sequencing batch reactor for aniline treatment during start-up period: Investigation of microbial community structure of activated sludge. Chemosphere 2020, 243, 125426. [Google Scholar] [CrossRef]
- Pullagurala, V.L.R.; Rawat, S.; Adisa, I.O.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Plant uptake and translocation of contaminants of emerging concern in soil. Sci. Total Environ. 2018, 636, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bi, L.; Ji, Y.; Ma, H.; Yin, X. Removal of humic acid from aqueous solution by magnetically separable polyaniline: Adsorption behavior and mechanism. J. Colloid Interface Sci. 2014, 430, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Kariminiaae-Hamedaani, H.R.; Sakurai, A.; Sakakibara, M. Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes Pigments 2007, 72, 157–162. [Google Scholar] [CrossRef]
- Tabagari, I.; Kurashvili, M.; Varazi, T.; Adamia, G.; Gigolashvili, G.; Pruidze, M.; Niemsdorff, P. Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water 2019, 11, 1759. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Wang, Y.; Sun, S.; Mu, C.; Yan, X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 2017, 576, 234–241. [Google Scholar] [CrossRef]
- Fatma, M.; Asgher, M.; Masood, A.; Khan, N.A. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ. Exp. Bot. 2014, 107, 55–63. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef]
- Rocha, D.N.; Martins, M.A.; Soares, J.; Vaz, M.G.M.V.; de Oliveira Leite, M.; Covell, L. Combination of trace elements and salt stress in different cultivation modes improves the lipid productivity of Scenedesmus spp. Bioresour. Technol. 2019, 289, 121644. [Google Scholar] [CrossRef]
- Kefu, Z.; Hai, F.; Ungar, I.A. Survey of halophyte species in China. Plant Sci. 2002, 163, 491–498. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Wang, L.; Tian, C.Y.; Huang, Z.Y. Germination dimorphism in Suaeda acuminata: A new combination of dormancy types for heteromorphic seeds. S. Afr. J. Bot. 2012, 78, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Shi, G.; Xing, S.; Yin, C.; Fan, H.; Wang, B. Ecophysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. Aquat. Bot. 2009, 91, 311–317. [Google Scholar] [CrossRef]
- Tian, C.; Feng, G.; Li, X.; Zhang, F. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol. 2004, 26, 143–148. [Google Scholar] [CrossRef]
- Song, J.; Wang, B. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann. Bot. 2015, 115, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Hamed, K.; Chibani, F.; Abdelly, C.; Magne, C. Growth, sodium uptake and antioxidant responses of coastal plants differing in their ecological status under increasing salinity. Biologia 2014, 69, 193–201. [Google Scholar] [CrossRef]
- Shiri, M.; Rabhi, M.; El Amrani, A.; Abdelly, C. Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants. Acta Physiol. Plant 2015, 37, 209. [Google Scholar] [CrossRef] [Green Version]
- Tipirdamaz, R.; Gagneul, D.; Duhazé, C.; Aïnouch, A.; Monnier, C.; Özkum, D. Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ. Exp. Bot. 2006, 57, 139–153. [Google Scholar] [CrossRef]
- Song, J.; Fan, H.; Zhao, Y.; Jia, Y.; Du, X.; Wang, B. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat. Bot. 2008, 88, 331–337. [Google Scholar] [CrossRef]
- Jia, J.; Huang, C.; Bai, J.; Zhang, G.; Zhao, Q.; Wen, X. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands. Phys. Chem. Earth 2018, 103, 68–74. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Es’Haghi, Z. Comparison of hollow fiber and single-drop liquid-phase microextraction techniques for HPLC determination of aniline derivatives in water. Chromatographia 2006, 63, 563–569. [Google Scholar] [CrossRef]
- Lichtenthaler, H.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 1987, 131, 101–110. [Google Scholar] [CrossRef]
- Song, P.; Zhang, L.; Li, Q. Response of photosynthetic apparatus of Isochrysis galbana to different nitrogen concentrations. Bioresour. Technol. Rep. 2018, 4, 74–79. [Google Scholar] [CrossRef]
- Sghaier, D.B.; Duarte, B.; Bankaji, I.; Caçador, I.; Sleimi, N. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl. J. Photochem. Photobiol. B Biol. 2015, 149, 204–214. [Google Scholar] [CrossRef]
- Gao, B.; Song, J.; Liu, J.; Sui, N.; Fan, H.; Wang, B. Effects of salt stress on photosynthesis and ion accumulation patterns of Suaeda salsa under different habitats. Acta Phytoecol. Sin. 2010, 34, 671–677. [Google Scholar] [CrossRef]
- Zhang, Y.; Thas, O. Constrained ordination analysis in the presence of zero inflation. Stat. Model. 2012, 12, 463–485. [Google Scholar] [CrossRef]
- Ter Braak, C.J.; Šmilauer, P. Topics in constrained and unconstrained ordination. Plant Ecol. 2015, 216, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Gorcek, Z.; Erdal, S. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. J. Sci. Food 2015, 95, 14. [Google Scholar] [CrossRef]
- Barnawal, D.; Bharti, N.; Pandey, S.S.; Pandey, A.; Chanotiya, C.S.; Kalra, A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol. Plantarum. 2017, 161, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Burgess, P.; Xu, J.; Meyer, W.; Huang, B. Osmotic stress-and salt stress-inhibition and gibberellin-mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion. Environ. Exp. Bot. 2016, 131, 101–109. [Google Scholar] [CrossRef]
- Colmer, T.D.; Pedersen, O.; Wetson, A.M.; Flowers, T.J. Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence. Environ. Exp. Bot. 2013, 92, 73–82. [Google Scholar] [CrossRef]
- Qiu, N.; Chen, M.; Guo, J.; Bao, H.; Ma, X.; Wang, B. Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Sci. 2007, 172, 1218–1225. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.J.; Wang, Y.; Wang, X.H.; Wen, Y.; Qin, W.C. Evaluation of toxicity data to green algae and relationship with hydrophobicity. Chemosphere 2015, 120, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Igwegbe, C.A. Adsorptive removal of phenol and aniline by modified bentonite: Adsorption isotherm and kinetics study. Appl. Water Sci. 2018, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wang, Y.; Liu, Z.; Liu, J.; Cai, J. Optimum removal conditions of aniline compounds in simulated wastewater by laccase from white-rot fungi. J. Environ. Health Sci. 2019, 17, 135–140. [Google Scholar] [CrossRef]
- Hossain, M.A.; Piyatida, P.; da Silva, J.A.T.; Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Botany 2012, 2012, 1–37. [Google Scholar] [CrossRef]
- Tissut, M.; Raveton, M.; Ravanel, P. Ecoremediation. Cooperation between plants and soil microorganisms, molecular aspects and limits. In Soil and Water Pollution Monitoring, Protection and Remediation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 489–504. ISBN 978-1-4020-4728-2. [Google Scholar]
- Barhoumi, Z.; Djebali, W.; Abdelly, C.; Chaïbi, W.; Smaoui, A. Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress. Protoplasma 2008, 233, 195–202. [Google Scholar] [CrossRef]
- Smaoui, A.; Barhoumi, Z.; Rabhi, M.; Abdelly, C. Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma 2011, 248, 363–372. [Google Scholar] [CrossRef]
- Su, Y.H.; Zhu, Y.G. Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environ. Pollut. 2006, 148, 94–100. [Google Scholar] [CrossRef]
- Sui, N.; Li, M.; Li, K.; Song, J.; Wang, B.S. Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 2010, 48, 623–629. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.; Zhang, X.; Wang, K.; Song, T.; Zeng, F. Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance. Acta Physiol. Plant 2012, 34, 581–588. [Google Scholar] [CrossRef]
- Rozentsvet, O.; Nesterov, V.; Bogdanova, E.; Kosobryukhov, A.; Subova, S.; Semenova, G. Structural and molecular strategy of photosynthetic apparatus organisation of wild flora halophytes. Plant Physiol. 2018, 129, 213–220. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Changes in Oil Accumulation and Fatty Acid Composition of Soybean Seeds under Salt Stress in Response to Salicylic Acid and Jasmonic Acid. Russ. J. Plant Physiol. 2018, 65, 229–236. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Govindjee Bosa, K.; Kościelniak, J.; Żuk-Gołaszewska, K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 2011, 73, 64–72. [Google Scholar] [CrossRef]
- Yin, Y.; Li, S.; Liao, W.; Lu, Q.; Wen, X.; Lu, C. Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J. Plant Physiol. 2009, 167, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Qiu, N.; Lu, Q.; Wang, B.; Kuang, T. Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci. 2002, 163, 1063–1068. [Google Scholar] [CrossRef]
- Rozentsvet, O.; Nesterov, V.; Bogdanova, E. Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russ. J. Plant Physiol. 2017, 64, 464–477. [Google Scholar] [CrossRef]
- Ivanov, A.; Allakhverdiev, S.; Huner, N.; Murata, N. Genetic decrease in fatty acid unsaturation of phosphatidylglycerol increased photoinhibition of photosystem I at low temperature in tobacco leaves. BBA Bioenerg. 2012, 1817, 1374–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Yao, Y.; Li, X.; Zhang, L.; Fan, S. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci. Rep. 2020, 10, 4236. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ. Exp. Bot. 2018, 155, 118–127. [Google Scholar] [CrossRef]
- Chenchouni, H. Edaphic factors controlling the distribution of inland halophytes in an ephemeral salt-lake “Sabkha ecosystem” at North African semi-arid lands. Sci. Total Environ. 2017, 575, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Dassanayake, M.; Larkin, J.C. Making plants break a sweat: The structure, function, and evolution of plant salt glands. Front. Plant Sci. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, S.; Suzuki, K.; Oda, R.; Higuchi, K.; Maeda, Y.; Yoshiba, M. Characteristics of Na+ and K+ absorption in Suaeda salsa (L.) Pall. Soil Sci. Plant Nutr. 2011, 57, 377–386. [Google Scholar] [CrossRef]
- Guo, J.R.; Wang, B.S. Effects of NaCl treatments on flower number, Na+ and K+ contents of Suaeda salsa. Plant Physiol. J. 2014, 50, 861–866. [Google Scholar] [CrossRef]
- Feng, Z.T.; Deng, Y.Q.; Zhang, S.C.; Liang, X.; Yuan, F.; Hao, J.L. K+ accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Sci. 2015, 238, 286–296. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, N.; Zhao, Z.Y.; Zhang, K.; Wu, G.H.; Tian, C.Y. Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr. Microbial. 2016, 73, 574–581. [Google Scholar] [CrossRef]
- Kudo, N.; Fujiyama, H. Responses of Halophyte Salicornia bigelovii to Different Forms of Nitrogen Source. Pedosphere 2010, 20, 311–317. [Google Scholar] [CrossRef]
- Labidi, N.; Ammari, M.; Mssedi, D.; Benzerti, M.; Snoussi, S.; Abdelly, C. Salt excretion in suaeda fruticosa. Acta Biol. Hung. 2010, 61, 299–312. [Google Scholar] [CrossRef]
- Sobrado, M.A.; Greaves, E.D. Leaf secretion composition of the mangrove species Avicennia germinans (L.) in relation to salinity: A case study by using total-reflection X-ray fluorescence analysis. Plant Sci. 2000, 159, 1–5. [Google Scholar] [CrossRef]
- Manousaki, E.; Kalogerakis, N. Halophytes-an emerging trend in phytoremediation. Int. J. Phytorem. 2011, 13, 959–969. [Google Scholar] [CrossRef]
- Rabhi, M.; Ferchichi, S.; Jouini, J.; Hamrouni, M.H.; Koyro, H.W.; Ranieri, A.; Smaoui, A. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour. Technol. 2010, 101, 6822–6828. [Google Scholar] [CrossRef]
- Reginato, M.A.; Turcios, A.E.; Luna, V.; Papenbrock, J. Differential effects of NaCl and Na2SO4 on the halophyte Prosopis strombulifera are explained by different responses of photosynthesis and metabolism. Plant Physiol. Biochem. 2019, 141, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.F.; Song, J.; Fan, H.; Zhou, S.; Zhao, M. Growth response to ionic and osmotic stress of NaCl in salt-stolerant and salt-sensitive maize. J. Integr. Plant Biol. 2010, 52, 468–475. [Google Scholar] [CrossRef]
- Guan, X.; Zhao, C.; Liu, X.; Zhang, H. Hyperbranched polymers containing stereocontorted cores as on-line solid-phase microextraction adsorbent for polycyclic aromatic hydrocarbons. J. Chromatogr. A 2013, 1302, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Matinzadeh, Z.; Akhani, H.; Abedi, M.; Palacio, S. The elemental composition of halophytes correlates with key morphological adaptations and taxonomic groups. Plant Physiol. Biochem. 2019, 141, 259–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, Y.; Zhu, C.; Jia, H.; Tian, C.; Ma, H.; Lv, G. NaCl Improves Suaeda salsa Aniline Tolerance in Wastewater. Sustainability 2020, 12, 7457. https://doi.org/10.3390/su12187457
Xu J, Liu Y, Zhu C, Jia H, Tian C, Ma H, Lv G. NaCl Improves Suaeda salsa Aniline Tolerance in Wastewater. Sustainability. 2020; 12(18):7457. https://doi.org/10.3390/su12187457
Chicago/Turabian StyleXu, Jie, Yi Liu, Chao Zhu, Honglei Jia, Changyan Tian, Hongrui Ma, and Guanghui Lv. 2020. "NaCl Improves Suaeda salsa Aniline Tolerance in Wastewater" Sustainability 12, no. 18: 7457. https://doi.org/10.3390/su12187457
APA StyleXu, J., Liu, Y., Zhu, C., Jia, H., Tian, C., Ma, H., & Lv, G. (2020). NaCl Improves Suaeda salsa Aniline Tolerance in Wastewater. Sustainability, 12(18), 7457. https://doi.org/10.3390/su12187457