Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China
Abstract
:1. Introduction
2. Data and Materials
2.1. Study Area
2.2. Data Collection
2.2.1. MODIS
2.2.2. Meteorological Data
2.2.3. GIS Data
2.2.4. Landsat Data
2.3. SEBAL Model and Parameter Determination
- (1)
- Soil Heat Flux (G)
- (2)
- Normal Differential Vegetation Index (NDVI)
- (3)
- Sensible Heat Flux (H)
- (4)
- Aerodynamic Impedance (ra)
- (5)
- Land Surface Emissivity (ε)
- (6)
- Surface Roughnesszom (zom)
- (7)
- Friction Velocity (Ur)
- (8)
- Surface Temperature (Ts)
- (9)
- Daily Evapotranspiration
2.4. FAO Penman-Monteith Equation
3. Results and Discussion
3.1. Analysis of Evapotranspiration during the Year in the Bosten Lake Basin in 2013
3.1.1. Analysis of Time Change Rule
3.1.2. Analysis of Spatial Variation
3.2. Spatial Distribution and Comparison of ET over Different Land Use/Cover Types
3.2.1. Status of Land Use/Cover Types in the Bosten Lake Basin
3.2.2. Comparison of Daily Evapotranspiration in Different Land Types
3.2.3. Comparison of Evapotranspiration Water Consumption in Different Land Types
3.3. Changes in Evapotranspiration in the Bosten Lake Basin
3.3.1. Changes in Land Use/Cover Types in Bosten Lake Basin
3.3.2. Changes in Total Daily Evapotranspiration of Different Land Use/Cover Types
3.4. Accuracy Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, B.F.; Chen, Y.N.; Li, W.H.; Chen, Z.S.; Zhang, B.H.; Guo, B. Spatial and temporal variations of temperature and precipitation in the arid region of northwest China from 1960–2010. Fresenius Environ. Bull. 2013, 22, 362–371. [Google Scholar]
- Li, Z.; Chen, Y.; Shen, Y.; Liu, Y.; Zhang, S. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Huo, Z.; Wang, F.; Shock, C.C. Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table. Agric. Water Manag. 2016, 171, 131–141. [Google Scholar] [CrossRef]
- Lv, Y.P.; Xu, J.Z.; Yang, S.H.; Wang, Y.J. Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions. Agric. Water Manag. 2018, 196, 154–161. [Google Scholar] [CrossRef]
- Jiang, X.-W.; Sun, Z.-C.; Zhao, K.-Y.; Shi, F.-S.; Wan, L.; Wang, X.-S.; Shi, Z. A method for simultaneous estimation of groundwater evapotranspiration and inflow rates in the discharge area using seasonal water table fluctuations. J. Hydrol. 2017, 548, 498–507. [Google Scholar] [CrossRef]
- Choudhury, B.J.; di Girolamo, N.E. A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations. J. Hydrol. 1998, 205, 164–185. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuang, Q.; Chen, M.; Pan, Z.; Tchebakova, N.; Sokolov, A.P.; Kicklighter, D.; Melillo, J.; Sirin, A.; Zhou, G.; et al. Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Glob. Planet. Chang. 2013, 108, 85–99. [Google Scholar] [CrossRef]
- Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Swinbank, W.C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 1951, 8, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. Royal Soc. Ser. A 1948, 193, 120–145. [Google Scholar]
- Naledzani, N.; Lobina, G.; Abel, R. Modelling depth to groundwater level using SEBAL-based dry season potential evapotranspiration in the upper Molopo River Catchment, South Africa. Egypt. J. Remote Sens. Space Sci. 2017, 8, 3. [Google Scholar]
- Li, Z.-Y.; Liu, X.; Ma, T.; Kejia, D.; Zhou, Q.; Yao, B.; Niu, T. Retrieval of the surface evapotranspiration patterns in the alpine grassland–wetland ecosystem applying SEBAL model in the source region of the Yellow River, China. Ecol. Model. 2013, 270, 64–75. [Google Scholar] [CrossRef]
- Guo, B.; Li, W.; Guo, J.; Chen, C. Risk Assessment of Regional Irrigation Water Demand and Supply in an Arid Inland River Basin of Northwestern China. Sustainability 2015, 7, 12958–12973. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.N. Sustainable Utilization of Water Resources in the Bosten Lake Basin; Science Press: Beijing, China, 2013; pp. 88–89. [Google Scholar]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [PubMed]
- Bastiaanssen, W.G.M.; Noordman, E.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources man-agement under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Bastiaanssen, W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Yang, K.; Zhou, J. Assessing the impacts of an ecological water diversion project on water consumption through high-resolution estimations of actual evapotranspiration in the downstream regions of the Heihe River Basin, China. Agric. For. Meteorol. 2018, 249, 210–227. [Google Scholar] [CrossRef]
- Ma, Y.M.; Wang, Y.M. A Survey in the Study of Area Evaporation (Evapotranspiration) Over the Heterogeneous Landscape. Plateau Meteorol. 1997, 4, 111–117. [Google Scholar]
- Chen, Y.H.; Li, X.B.; Shi, P.J. Regional Evapotranspiration Estimation over Northwest China Using Remote Sensing. Acta Geogr. Sin. 2001, 6, 261–268. [Google Scholar]
- Li, S.; Zhao, W. Satellite-based actual evapotranspiration estimation in the middle reach of the Heihe River Basin using the SEBAL method. Hydrol. Process. 2010, 24, 3337–3344. [Google Scholar] [CrossRef]
- Li, B.F.; Chen, Y.N.; Li, W.H.; Cao, Z.C. Remote Sensing and the SEBAL Model for Estimating Evapotranspiration in the Tarim River. Acta Geogr. Sin. 2011, 66, 1230–1238. [Google Scholar]
- Du, J.; Zhang, B.; Song, K.S.; Wang, Z.M.; Zeng, L.H. Estimation of Evapotranspiration for Typical Ecosystems in the Bielahong River Basin Based on SEBAL. Res. Sci. 2009, 31, 1755–1763. [Google Scholar]
- Yang, X.L.; Reng, L.L.; Yang, F.; Yong, B.; Jiang, S.H. Study on Evapotranspiration in the Shalamulun River Basin Using SEBAL Model and MODIS Data. Arid Zone Ress. 2010, 27, 507–514. [Google Scholar]
- Monteith, J.L. Evaporation and Environment; The State and Movement of Water in Living Organisms, 19th Symposia of the Society for Experimental Biology; Cambridge University Press: London, UK, 1965; pp. 205–234. [Google Scholar]
- Roderick, M.L.; Hobbins, M.T.; Farquhar, G.D. Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geogr. Compass 2009, 3, 761–780. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, H.; Li, Y.; Cai, X.B. Relationship between dynamic change of vegetation cover climate factors in Bayinbuluk grassland of the Tianshan Mountains. Adv. Climate Change Res. 2006, 2, 173–176. [Google Scholar]
- Li, X.L.; Yang, L.X.; Xu, X.F.; Tian, W.; He, C.S. Analysis of evapotranspiration pattern by SEBAL model during the growing season in the agro-pastoral ecotone in Northwest China. Acta Ecol. Sin. 2020, 40, 2175–2185. [Google Scholar]
- Wang, Y.; Chen, Y.N.; Li, Z. The spatial coupling of land use change and its environmental effects on Bosten Lake Basin, Xinjiang. Fresenius Environ. Bull. 2014, 23, 2627–2635. [Google Scholar]
- Chen, Y.N.; Li, Z.; Fan, Y.T.; Wang, H.J.; Fang, G.H. Research progress on the impact of climate change on water resources in the arid region of Northwest China. Acta Geogr. Sin. 2014, 69, 1295–1304. [Google Scholar]
- Yuan, X.; Bai, J. Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation. Sustainability 2018, 10, 3281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Chen, T.; Chi, D. Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China. Sustainability 2020, 12, 1713. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, F.; Yang, J.; Zhao, J.; Wang, X.; Gao, G.; Zhang, R.; Jia, Z. Spatio-Temporal Variation in Dryland Wheat Yield in Northern Chinese Areas: Relationship with Precipitation, Temperature and Evapotranspiration. Sustainability 2018, 10, 4470. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Jin, J.; Wu, P.; Niu, G.-Y. Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area. Sustainability 2018, 10, 4589. [Google Scholar] [CrossRef] [Green Version]
Product Name | Surface Characteristic Parameter | Time Resolution | Spatial Resolution |
---|---|---|---|
MOD11A1 | Surface temperature, emissivity | 1d | 1000 m |
MOD11A2 | Surface temperature, emissivity | 8d synthesis | 1000 m |
MOD13A2 | NDVI | 16d synthesis | 1000 m |
MOD43B3 | Surface albedo | 16d synthesis | 1000 m |
Data | SPATIAL Resolution | Originate |
---|---|---|
DEM data | 1:250,000 | geographic information data of China Meteorological Administration |
Topographic data | 1:250,000 | geographic information data of China Meteorological Administration |
Boundary data of study area | 1:250,000 | national basic geographic information data |
Imaging Time | Satellite | Available Band | Spatial Resolution (m) | Cloudiness |
---|---|---|---|---|
9 August 1990 | LANDSAT-5 | TM 1–7 | 30 | 6% |
4 August 2000 | LANDSAT-5 | TM 1–7 | 30 | Null |
16 August 2013 | LANDSAT-8 | TM 1–9 | 30 | 4% |
Land-Use Types | Area(km2) | % | Land-Use Types | Area(km2) | % |
---|---|---|---|---|---|
Forest | 440.21 | 0.57 | Water | 1254.02 | 1.63 |
shrubland | 89.57 | 0.12 | Snow/ice | 191.76 | 0.25 |
H. grassland | 14671.33 | 19.05 | R.&I. area | 414.81 | 0.54 |
M. grassland | 5220.79 | 6.78 | Unused land | 41868.1 | 54.37 |
L. grassland | 7832.69 | 10.17 | Cultivated land | 5016.72 | 6.52 |
Water | Forest | Shrubland | Grassland | Cultivated Land | R.&I. Area | Snow/Ice | Unused Land | |
---|---|---|---|---|---|---|---|---|
ET(mm/d) | 5.61 | 4.06 | 3.59 | 4.60 | 3.51 | 3.78 | 4.29 | 1.83 |
Water | Forest | Shrubland | Grassland | Cultivated Land | R.&I. Area | Snow/Ice | Unused Land | |
---|---|---|---|---|---|---|---|---|
ET(mm/d) | 2.4 × 104 | 2.25 × 103 | 1.23 × 103 | 1.43 × 107 | 3.67 × 105 | 1580.84 | 447.18 | 1.26 × 107 |
Site | Longitude | Latitude | SEBAL (mm) | FAO P-M (mm) | Relative Error(%) |
---|---|---|---|---|---|
Bayanbulak | 84.09° | 43.02° | 4.63 | 5.12 | 9.57 |
Kuche | 86.34° | 42.05° | 4.43 | 4.91 | 9.76 |
Tieganlike | 87.42° | 40.38° | 1.95 | 2.43 | 19.75 |
Mean | 13.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, S.; Chang, X. Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China. Sustainability 2020, 12, 7293. https://doi.org/10.3390/su12187293
Wang Y, Zhang S, Chang X. Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China. Sustainability. 2020; 12(18):7293. https://doi.org/10.3390/su12187293
Chicago/Turabian StyleWang, Yang, Shuai Zhang, and Xueer Chang. 2020. "Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China" Sustainability 12, no. 18: 7293. https://doi.org/10.3390/su12187293
APA StyleWang, Y., Zhang, S., & Chang, X. (2020). Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China. Sustainability, 12(18), 7293. https://doi.org/10.3390/su12187293