Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Regionalization
2.3.1. Spatial Clustering
2.3.2. Calculation of PCD and PCP
2.3.3. Regional Homogeneity
2.4. Standardized Precipitation Index
2.5. Wavelet Analysis
2.5.1. Continuous Wavelet Transform
2.5.2. Cross Wavelet Transform
2.5.3. Wavelet Coherence
3. Results
3.1. The Spatial Pattern of PCD and PCP
3.2. Climate Regionalization
3.3. Temporal Evolution of Regional Meteorological Drought
3.4. Period Analysis
3.5. The Correlation between the Time Series SPI-12 and SOI
4. Discussion
4.1. Comparison with the Results of Other Scholars on Climate Regionalization
4.2. Effects of Large-Scale Climate Anomalies on Precipitation/Meteorological Drought
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolokytha, E.; Oishi, S.; Teegavarapu, R.S. Sustainable Water Resources Planning and Management under Climate Change; Springer: New York, NY, USA, 2017. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2010, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Che, S.; Li, C.; Shen, S. Analysis of drought-flood spatial-temporal characteristics based on standard precipitation index (SPI) in Heibei province during 1965–2005. Chin. J. Agrometeorol. 2010, 31, 137–143. [Google Scholar]
- Qi, H.; Zhi, X.; Bai, Y. Interdecadal variation and trend analysis of the drought occurrence frequency in China. Trans. Atmos. Sci. 2011, 34, 447–455. [Google Scholar]
- Zhai, L.; Feng, Q. Dryness/wetness climate variation based on standardized precipitation index in northwest China. J. Nat. Resour. 2011, 26, 847–857. [Google Scholar]
- Li, M.; Wang, G.; Chai, X.; Hu, W.; Zhang, L. Climate regionalization and temporal evolution of meteorological drought in northeast China based on spatial clustering. J. Nat. Resour. 2019, 34, 1682–1693. [Google Scholar]
- Jiang, S.; Yang, R.; Cui, N.; Zhao, L.; Liang, C. Analysis of Drought Vulnerability Characteristics and Risk Assessment Based on Information Distribution and Diffusion in Southwest China. Atmosphere 2018, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Srinivasan, K. Analysis of Spatio-temporal Characteristics and Regional Frequency of Droughts in the Southern Peninsula of India. Water Resour. Manag. 2016, 30, 3879–3898. [Google Scholar] [CrossRef]
- Bong, C.H.J.; Richard, J. Drought and climate change assessment using Standardized Precipitation Index (SPI) for Sarawak River Basin. J. Water Clim. Chang. 2019. [Google Scholar] [CrossRef]
- Bahrami, M.; Bazrkar, S.; Zarei, A.R. Modeling, prediction and trend assessment of drought in Iran using standardized precipitation index. J. Water Clim. Chang. 2018, 10, 181–196. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Shao, M.; Jia, X.; Li, X. Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- Dezfuli, A.K.; Karamouz, M.; Araghinejad, S. On the relationship of regional meteorological drought with SOI and NAO over southwest Iran. Theor. Appl. Clim. 2009, 100, 57–66. [Google Scholar] [CrossRef]
- Mimmack, G.M.; Mason, S.J.; Galpin, J.S. Choice of Distance Matrices in Cluster Analysis: Defining Regions. J. Clim. 2001, 14, 2790–2797. [Google Scholar] [CrossRef]
- Raziei, T.; Saghafian, B.; Paulo, A.; Pereira, L.; Bordi, I. Spatial Patterns and Temporal Variability of Drought in Western Iran. Water Resour. Manag. 2008, 23, 439–455. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrol. Sci. J. 2006, 51, 83–97. [Google Scholar] [CrossRef]
- Rao, A.; Srinivas, V. Regionalization of watersheds by fuzzy cluster analysis. J. Hydrol. 2006, 318, 57–79. [Google Scholar] [CrossRef]
- Saracli, S.; Dogan, N.; Doğan, I. Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequalities Appl. 2013, 2013, 203. [Google Scholar] [CrossRef]
- Muñoz-Díaz, D.; Rodrigo, F.S. Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: Comparison. Ann. Geophys. 2004, 22, 1435–1448. [Google Scholar] [CrossRef]
- Kong, Q.; Guerreiro, S.B.; Blenkinsop, S.; Li, X.-F.; Fowler, H.J. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extrem. 2020, 28, 100242. [Google Scholar] [CrossRef]
- Guo, J.; Mao, K.; Zhao, Y.; Lu, Z.; Xiaoping, L. Impact of Climate on Food Security in Mainland China: A New Perspective Based on Characteristics of Major Agricultural Natural Disasters and Grain Loss. Sustainability 2019, 11, 869. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wu, P. Meteorological drought over the Chinese Loess Plateau: 1971–2010. Nat. Hazards 2013, 67, 951–961. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zheng, H.; Duan, Q.; Lei, X.; Li, H. Meteorological and Hydrological Drought on the Loess Plateau, China: Evolutionary Characteristics, Impact, and Propagation. J. Geophys. Res. Atmos. 2018, 123, 11569–11584. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Z.; Cao, X.; Yang, Q.; Liu, Z.; Lei, Y. Characteristics of drought change in the Loess Plateau area of Shaanxi based on the standardized precipitation index during 1971–2010. J. Des. Res. 2013, 33, 1560–1567. [Google Scholar]
- Ma, Q.; Zhang, B.; Wang, D.; Zhang, Y.; Ji, D.; Yang, S. The temporal and spatial distribution of drought on the Loess Plateau based on the standardized precipitation evapotranspiration index from 1960 to 2012. Resour. Sci. 2014, 36, 1834–1841. [Google Scholar]
- Sun, Y.; Liu, X.; Ren, Z.; Li, S. Spatiotemporal variations of multi-scale drought and its influencing factors across the Loess Plateau from 1960 to 2016. Geogr. Res. 2019, 38, 1820–1832. [Google Scholar]
- Wang, X.; Wang, B.; Xu, X. Effects of large-scale climate anomalies on trends in seasonal precipitation over the Loess Plateau of China from 1961 to 2016. Ecol. Indic. 2019, 107, 105643. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Q.; Guillet, S.; Stoffel, M. 500-yr. precipitation variability in Southern Taihang Mountains, China, and its linkages to ENSO and PDO. Clim. Chang. 2016, 144, 419–432. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Q.; Zhao, X.; Wu, P.; Pan, W.; Zhao, X.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Qi, F.; Wei, L.; Aigang, L.; Yu, W.; Jing, Y.; Aifang, C.; Yamin, W.; Yubo, S.; Li, L.; et al. Changes of daily climate extremes in Loess Plateau during 1960–2013. Quat. Int. 2015, 371, 5–21. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Yang, Y.; Long, D.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Maeda, E.E.; Torres, J.A.; Carmona-Moreno, C. Characterisation of global precipitation frequency through the L-moments approach. Area 2012, 45, 98–108. [Google Scholar] [CrossRef]
- National Meteorological Information Center. Assessment Report of China’s Ground Precipitation 0.5° × 0.5° Gridded Dataset (V2.0); National Meteorological Information Center: Beijing, China, 2012. [Google Scholar]
- Zhao, Y.; Zhu, J.; Xu, Y. Establishment and assessment of the grid precipitation datasets in China for recent 50 years. J. Meteorol. Sci. 2014, 34, 414–420. [Google Scholar]
- Li, M.; Chai, X.; Wang, G.; Hu, W.; Zhang, L. Research on meteorological drought in the middle and lower reaches of the Yangtze River. J. Nat. Resour. 2019, 34, 374–384. [Google Scholar]
- Mao, Y.; Wang, K.; Liu, X.; Liu, C. Water storage in reservoirs built from 1997 to 2014 significantly altered the calculated evapotranspiration trends over China. J. Geophys. Res. Atmos. 2016, 121, 10,097–10,112. [Google Scholar] [CrossRef]
- Ren, H.; Li, G.; Cui, L.; He, L. Phases and periodic changes of water discharge and sediment load from the Yellow River to the Bohai Sea during 1950–2011. Acta Geogr. Sin. 2014, 69, 619–631. [Google Scholar]
- Badr, H.S.; Dezfuli, A.; Zaitchik, B.F.; Peters-Lidard, C. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models. J. Clim. 2016, 29, 9027–9043. [Google Scholar] [CrossRef] [Green Version]
- Núñez, J.; Verbist, K.; Wallis, J.; Schaefer, M.; Morales-Salinas, L.; Cornelis, W.M. Regional frequency analysis for mapping drought events in north-central Chile. J. Hydrol. 2011, 405, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Lujun, Z.; Yongfu, Q. Annual distribution features of precipitation in China and their interannual variations. J. Meteorol. Res. 2003, 17, 146–163. [Google Scholar]
- Huang, Y.; Wang, H.; Xiao, W.-H.; Chen, L.-H.; Yang, H. Spatiotemporal characteristics of precipitation concentration and the possible links of precipitation to monsoons in China from 1960 to 2015. Theor. Appl. Clim. 2019, 138, 135–152. [Google Scholar] [CrossRef]
- Li, X.; Jiang, F.; Li, L.; Wang, G. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int. J. Clim. 2010, 31, 1679–1693. [Google Scholar] [CrossRef]
- Liu, Y.; Cen, M.; Yan, J. The relationship between precipitation heterogeneity and meteorological drought/flood in China. J. Meteorol. Res. 2016, 30, 758–770. [Google Scholar] [CrossRef]
- Xiao, B.; Cui, B.; Li, D.; Chang, X. Temporal and spatial variations of precipitation in different climatic regions of the Loess Plateau. Sci. Soil Water Conserv. 2017, 15, 51–61. [Google Scholar]
- Liu, X.; Ren, Z.; Zhang, C.; Lin, Z. Inhomogeneity characteristics of intra-annual precipitationon the Loess Plateau during 1959–2008. Prog. Geogr. 2012, 31, 1157–1163. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zhang, C.; Liu, H.; Song, Y.; Liao, Y.; Duan, J.; Cai, W.; Wang, S. Meteorological Drought Grade (GB/T20481-2017); China Standard Press: Beijing, China, 2017. [Google Scholar]
- Paulo, A.; Pereira, L.S. Stochastic Prediction of Drought Class Transitions. Water Resour. Manag. 2007, 22, 1277–1296. [Google Scholar] [CrossRef] [Green Version]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Bordi, I.; Cancelliere, A.; Rossi, G.; Sutera, A. Spatial Variability of Drought: An Analysis of the SPI in Sicily. Water Resour. Manag. 2003, 17, 273–296. [Google Scholar] [CrossRef]
- Grindsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Tong, L.; Zhou, W.; Li, X.; Li, J.-L. Rescaled Statistics and Wavelet Analysis on Agricultural Drought Disaster Periodic Fluctuations in China from 1950 to 2016. Sustainability 2018, 10, 3257. [Google Scholar] [CrossRef]
- Shi, P.; Sun, Z.; Wang, M.; Li, N.; Wang, J.; Jin, Y.; Gu, X.; Yin, W. Climate change regionalization in China (1961–2010). Sci. Sin. Terrae 2014, 44, 2294–2306. [Google Scholar] [CrossRef]
- Maheswaran, R.; Ankit, A.; Bellie, S.; Norbert, M.; Jürgen, K. Wavelet analysis of precipitation extremes over India and teleconnections to climate indices. Stoch. Env. Res. Risk Assess. 2019, 33, 2053–2069. [Google Scholar]
- Tan, X.; Gan, T.Y.; Shao, D. Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies. J. Geophys. Res. Atmos. 2016, 121, 14–469. [Google Scholar] [CrossRef]
- Shi, S.; Wang, F.; Jin, K.; Ding, W. Response of vegetation index to meteorological drought over Loess Plateau. J. Arid Meteorol. 2020, 38, 1–13. [Google Scholar]
- Kaluba, P.; Verbist, K.M.J.; Cornelis, W.M.; Van Ranst, E. Spatial mapping of drought in Zambia using regional frequency analysis. Hydrol. Sci. J. 2017, 62, 1825–1839. [Google Scholar] [CrossRef]
- Chen, W.; Feng, J.; Wu, R. Roles of ENSO and PDO in the Link of the East Asian Winter Monsoon to the following Summer Monsoon. J. Clim. 2013, 26, 622–635. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, S.; Huang, Y.; Wan, Y.; Wu, B.; Liu, L. Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China. Sustainability 2020, 12, 3526. [Google Scholar] [CrossRef]
- Li, H.J.; Gao, J.E.; Zhang, H.C.; Zhang, Y.X.; Zhang, Y.Y. Response of Extreme Precipitation to Solar Activity and El Nino Events in Typical Regions of the Loess Plateau. Adv. Meteorol. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Xu, Z.X.; Li, J.Y.; Takeuchi, K.; Ishidaira, H. Long-term trend of precipitation in China and its association with the El Niño–southern oscillation. Hydrol. Process. 2006, 21, 61–71. [Google Scholar] [CrossRef]
- Tan, L.; Cai, Y.-J.; Cheng, H.; An, Z.; Edwards, R.L. Summer monsoon precipitation variations in central China over the past 750years derived from a high-resolution absolute-dated stalagmite. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 280, 432–439. [Google Scholar] [CrossRef]
- Shi, P.; Yang, T.; Zhang, K.; Tang, Q.; Yu, Z.; Zhou, X. Large-scale climate patterns and precipitation in an arid endorheic region: Linkage and underlying mechanism. Environ. Res. Lett. 2016, 11, 44006. [Google Scholar] [CrossRef]
- Yao, J.; Xiao, L.; Gou, M.; Li, C.; Lian, E.; Yang, S. Pacific decadal oscillation impact on East China precipitation and its imprint in new geological documents. Sci. China Earth Sci. 2018, 61, 473–482. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T.P. Interdecadal Modulation of ENSO Teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2725. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, H.; Ma, J.; Wang, T.; Sun, J. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall. J. Geophys. Res. Atmos. 2015, 120, 8817–8827. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Xue, F. Phase transition of the Pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century. Adv. Atmos. Sci. 2016, 33, 330–338. [Google Scholar] [CrossRef]
- Newman, M.; Compo, G.P.; Alexander, M.A. ENSO-Forced Variability of the Pacific Decadal Oscillation. J. Clim. 2003, 16, 3853–3857. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, R.; Xie, J.; Zhao, Y.; Li, F.; Zhu, J. Multiscale Variability of Precipitation and Their Teleconnection with Large-scale Climate Anomalies: A Case Study of Xi’an City, China. J. Coast. Res. 2019, 93, 417–426. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Xu, B. Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation. Clim. Chang. 2016, 144, 405–417. [Google Scholar] [CrossRef]
Drought Grade | No | Mild | Moderate | Severe | Extreme |
---|---|---|---|---|---|
SPI-12 | (−0.5,+∞) | (−1.0,−0.5] | (−1.5,−1.0] | (−2.0,−1.5] | (−∞,−2.0] |
Clusters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Silhouette Widths | 0 | 0.41 | 0.34 | 0.30 | 0.28 | 0.28 | 0.29 | 0.29 | 0.29 | 0.29 |
Initial Subregion Number | Subregion Number | Region Name | MAP (mm) | Number of Grid Points | H1 |
---|---|---|---|---|---|
A | I | Ordos Plateau semi-arid area | 280.1 | 78 | −0.13 |
II | Northern Shanxi hilly semi-humid area | 482.8 | 52 | −0.24 | |
B | III | Longzhong plateau cold-arid area | 445.0 | 62 | −0.06 |
IV | Fenwei Plain and Shaanxi-Shanxi hilly semi-humid area | 567.7 | 119 | −0.12 |
Subregions | Region I | Region II | Region III | Region IV |
---|---|---|---|---|
Mean phase | −12° | −9° | −54° | −28° |
Circular standard deviation | 52° | 28° | 23° | 26° |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Cao, F.; Wang, G.; Chai, X.; Zhang, L. Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017. Sustainability 2020, 12, 7237. https://doi.org/10.3390/su12187237
Li M, Cao F, Wang G, Chai X, Zhang L. Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017. Sustainability. 2020; 12(18):7237. https://doi.org/10.3390/su12187237
Chicago/Turabian StyleLi, Ming, Fuqiang Cao, Guiwen Wang, Xurong Chai, and Lianzhi Zhang. 2020. "Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017" Sustainability 12, no. 18: 7237. https://doi.org/10.3390/su12187237
APA StyleLi, M., Cao, F., Wang, G., Chai, X., & Zhang, L. (2020). Evolutional Characteristics of Regional Meteorological Drought and Their Linkages with Southern Oscillation Index across the Loess Plateau of China during 1962–2017. Sustainability, 12(18), 7237. https://doi.org/10.3390/su12187237